METHOD FOR PLANNING THE OPTIMAL TRAJECTORY OF A THREE-LINK MANIPULATOR IN TRIDIMENSIONAL SPACE WITH AN OBSTACLE
https://doi.org/10.21822/2073-6185-2018-45-1-98-112
Abstract
Objectives. The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article. A literature review on the research problem indicates that universal methods for planning the trajectory of the manipulator's movement are faced with problems of operational low accuracy or the algorithm's large computational complexity. The aim of the study is to develop methods for planning the optimal trajectory of a three-link manipulator in a tridimensional space with an obstacle.
Methods. The study was carried out using the method of iterative piecewise linear approximation of the trajectory of an anthropomorphic manipulator and the choice of the optimal displacement trajectory according to the criterion of energy efficiency.
Results. The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article. The task is reduced to finding the Euler angles of the manipulator engines in order to pass to the final position either directly or using the developed method of searching for intermediate positions to achieve the result. The choice of the optimal trajectory for the obstacle bypass is made using the criterion of minimisation of the manipulator power consumption for the continuous operation of the mobile manipulative or anthropomorphic robot in offline mode.
Conclusion. The method of planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a three-dimensional space containing an obstacle specified by an array of points and represented in the form of a sphere possesses flexibility, which is achieved by varying the input parameter. Its increase makes the manipulator's movement more angular by reducing the number of intermediate states, which reduces computational costs while increasing energy costs and reducing the movement speed. Conversely, decreasing the parameter reduces energy consumption and increases the speed, but also increases computational costs, as the number of intermediate states increases and the movement becomes smoother. However, in order to reduce the estimated time, it is assumed that parallel calculations are used in calculating the Euler angles for the engines during the movement between the intermediate points, which greatly speeds up the calculation process. With the value of h=0, the trajectory degenerates into a curve and the application of the proposed method is not justified.
About the Authors
V. O. AntonovRussian Federation
Vladimir O. Antonov - Post-graduate Student.
Pushkina Str., Stavropol 355009
M. M. Gurchinsky
Russian Federation
Mikhail M. Gurchinsky– Graduate Student.
Pushkina Str., Stavropol 355009
V. I. Petrenko
Russian Federation
Vyacheslav I. Petrenko - Cand. Sc. (Technical), Assoc. Prof., Deputy Director of the Institute of Information Technology and Telecommunications in Science; Department "Organization and technology of information protection."
Pushkina Str., Stavropol 355009
F. B. Tebueva
Russian Federation
Tebuueva Fariza Bilyalovna – Dr.Sci.(Physical and Mathematical), Department of Applied Mathematics and Computer Security.
Pushkina Str., Stavropol 355009
References
1. Shan'gin E. S. Upravlenie robotami i robototekhnicheskimi sistemami: konspekt lektsii. Ufa; 2005. [Shan'gin E. S. Control of robots and robotic systems: a summary of lectures. Ufa; 2005. (In Russ.)]
2. Pogorelov A.D. Obzor algoritmov planirovaniya traektorii dvizheniya manipulyatorov. Molodezhnyi nauchnotekhnicheskii vestnik. 2016;8. [Pogorelov A.D. Review of algorithms for planning the trajectory of motion of manipulators. Molodezhnyi nauchno-tekhnicheskii vestnik. 2016;8. (In Russ.)]
3. Kamil'yanov A.R. Planirovanie traektorii dvizheniya mnogozvennogo manipulyatora v slozhnom trekhmernom rabochem prostranstve na osnove evolyutsionnykh metodov. Dissertatsiya kandidata tekhnicheskikh nauk. Ufimskii gos. aviatsionnyi universitet. Ufa; 2007. [Kamil'yanov A.R. Planning the trajectories of a multi-link manipulator in a complex three-dimensional workspace based on evolutionary methods. Candidate of technical sciences thesis. The Ufa state aviation technical university. Ufa; 2007. (In Russ.)]
4. Morales D.O., Westerberg S., La Hera P.X., Mettin U., Freidovich L., Shiriaev A.S. Increasing the level of automation in the forestry logging process with crane trajectory planning and control. Journal of Field Robotics. 2014;31(3):343-363.
5. Lin H.-I. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. Journal of Intelligent and Robotic Systems: Theory and Applications. 2014;75(3-4):379-392.
6. Qi R., Zhou W., Wang T. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm. Jiqiren/Robot. 2014;36(3):263-270.
7. Howard T., Pivtoraiko M., Knepper R.A., Kelly A. Modelpredictive motion planning: Several key developments for autonomous mobile robots. IEEE Robotics and Automation Magazine. 2014;21(1):64-73.
8. Liu W., Chen D., Zhang L. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration. Jiqiren/Robot. 2016;38(4):504-512.
9. Chen Y.-J., Ju M.-Y., Hwang K.-S. A virtual torque-based approach to kinematic control of redundant manipulators. IEEE Transactions on Industrial Electronics. 2017;64(2):1728-1736.
10. Alekh V., Rahul E.S., Bhavani R.R. Comparative study of potential field and sampling algorithms for manipulator obstacle avoidance. International Journal of Control Theory and Applications. 2016;9(Special issue33):71-78.
11. Ren Z.-W., Zhu Q.-G., Xiong R. Trajectory planning of 7DOF humanoid manipulator under rapid and continuous reaction and obstacle avoidance environment. Zidonghua Xuebao/Acta Automatica Sinica. 2015;41(6):1131-1144.
12. Pham C.D., Coutinho F., Lizarralde F., Hsu L., From P.J. An analytical approach to operational space control of robotic manipulators with kinematic constraints. IFAC Proceedings Volumes (IFAC-Papers Online). 2014;19:8509-8515.
13. Simba K.R., Uchiyama N., Aldibaja M., Sano S. Visionbased smooth obstacle avoidance motion trajectory generation for autonomous mobile robots using Bézier curves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017;231(3):541-554.
14. Tsai C.C., Hung C.C., Chang C.F. Trajectory Planning and Control of a 7-DOF Robotic Manipulator. 2014 International conference on advanced robotics and intelligent systems (ARIS). JUN 06-08, 2014. P.1131-1144.
15. Xidias E.K. Time-optimal trajectory planning for hyperredundant manipulators in 3D workspaces. Robotics and computer-integrated manufacturing. 2018;50:286-298.
16. Menon M.S., Ravi V.C., Ghosal A. Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots. Journal of mechanisms and robotics-transactions of the ASME. 2017;9(4):041010.
17. Abu-Dakka F.J., Valero F.J., Suner J.L., Mata V. A direct approach to solving trajectory planning problems using genetic algorithms with dynamics considerations in complex environments. ROBOTICA. 2015;33(3):669-683.
18. Mahdavian M., Shariat-Panahi M., Yousefi-Koma A., Ghasemi-Toudeshki A. Optimal trajectory generation for energy consumption minimization and moving obstacle avoidance of a 4DOF robot arm. International Conference on Robotics and Mechatronics (ICROM 2015). 2017;7367810:353-358.
19. Tebueva F.B. Matematicheskie modeli i metody dlya zadach mnogokriterial'nogo vybora na grafakh v usloviyakh nedeterminirovannosti iskhodnykh dannykh. Aavtoreferat dis. ... doktora fiziko-matematicheskikh nauk: 05.13.18. Yuzhnyi federal'nyi universitet. Stavropol'; 2013. [Tebueva F.B. Mathematical models and methods for multicriteria selection problems on graphs in conditions of indeterminacy of the initial data. Published summary of the Doctor of Physica and mathematical Sciences Thesis: 05.13.18. Southern Federal Unversity. Stavropol'; 2013. (In Russ.)]
20. Antonov V.O., Gurchinskii M.M., Petrenko V.I., Tebueva F.B. Metod planirovaniya traektorii dvizheniya tochki v prostranstve s prepyatstviem na osnove iterativnoi kusochnolineinoi approksimatsii. Sistemy upravleniya, svyazi i bezopasnosti. 2018;1:168-182. URL: http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf [Antonov V.O., Gurchinskii M.M., Petrenko V.I., Tebueva F.B. Method for planning the trajectory of the motion of a point in an obstacle space on the basis of iterative piecewise-linear approximation. Systems of Control, Communication and Security. 2018;1:168-182. URL: http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf (In Russ.)]
21. Makarov A.N., Kutlubaev I.M., Usov I.G. Osnovy mekhaniki mnogodvigatel'nykh mashin. Uchebnoe posobie. Pod red. A.N. Makarova. 2-e izd. Magnitogorsk: GOU VPO ―MGTU im. G.I. Nosova‖. Magnitogorsk; 2006. [Makarov A.N., Kutlubaev I.M., Usov I.G. Fundamentals of mechanics of multi-motor vehicles. Tutorial. A.N. Makarov (Ed.). 2nd ed. Magnitogorsk: GOU VPO ―MGTU im. G.I. Nosova‖. Magnitogorsk; 2006. (in Russ.)]
22. Antonov V.O., Pizhevskii D.E. Algoritm vybora strategii povedeniya mobil'nogo manipulyatsionnogo robota v neshtatnoi situatsii pri razryve svyazi i utrate kontrolya operatorom. Sbornik materialov V Vserossiiskoi nauchnotekhnicheskoi konferentsii ―Studencheskaya nauka dlya razvitiya informatsionnogo obshchestva‖. 2016. S. 557-559. [Antonov V.O., Pizhevskii D.E. Algorithm for choosing the behaviour strategy of the mobile manipulation robot in an abnormal situation when the communication is broken and the operator had lost control. The materials of the V All-Russian scientific and technical conference ―Student science for the development of the information society‖. 2016. P. 557-559. (In Russ.)]
Review
For citations:
Antonov V.O., Gurchinsky M.M., Petrenko V.I., Tebueva F.B. METHOD FOR PLANNING THE OPTIMAL TRAJECTORY OF A THREE-LINK MANIPULATOR IN TRIDIMENSIONAL SPACE WITH AN OBSTACLE. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(1):98-112. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-1-98-112