APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS
https://doi.org/10.21822/2073-6185-2017-44-1-127-137
Abstract
Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions) for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists.
About the Authors
Vladimir P. AgapovRussian Federation
Dr. Sc. (Technical), Prof., Department of applied mechanics and mathmanics
26, Yaroslavskoje highway, Moscow 129337
Kurban R. Aidemirov
Russian Federation
Cand. Sc. (Technical), Associate Professor
70 I. Shamil Ave, Makhachkala 367015
References
1. Posobie po proektirovaniyu predvaritel'no napryazhennykh zhelezobetonnykh konstruktsiy iz tyazhelogo betona (k SP 52-102-2004). – Assotsiatsiya «Zhelezobeton» (TsNIIPROMZDANIY, NIIZhB). [Manual on the design of prestressed reinforced concrete structures from heavy concrete (to SP 52-102-2004). - "Zhelezobeton" Association (TsNIIPROMZDANIY, NIIZhB). (in Russ.)]
2. SP 63.13330.2012 Betonnye i zhelezobetonnye konstruktsii. Osnovnye polozheniya. Aktualizirovannaya redaktsiya SNiP 52-01-2003. Moscow: Minregion Rossii; 2012. [SP 63.13330.2012 Concrete and reinforced concrete structures. Basic provisions. Updated version of SNiP 52-01-2003. Moscow: Ministry of Regional Development of Russia; 2012. (in Russ.)]
3. Zhuravskiy D.I. O mostakh raskosnoy fermy Gau. Sankt-Peterburg; 1855. 161 s. [Zhuravskiy D.I. About the Howe bracing truss bridges. Saint-Petersburg; 1855. 161 p. (in Russ.)]
4. Galerkin B.G. K raschetu bezraskosnykh ferm i zhestkikh ram. Moscow: Gostekhizdat. 1926. 24 s. [Galerkin B.G. To the calculation of non-bracing trusses and rigid frames. Moscow: Gostekhizdat. 1926. 24 p. (in Russ.)]
5. Filin A.P. Matritsy v statike sterzhnevykh sistem. Moscow: Gosstroyizdat. 1966; 438 s. [Filin A.P. Matrices in the static of rod systems. Moscow: Gosstroyizdat. 1966; 438 s. (in Russ.)]
6. Gofman Sh.M., Agapov V.P. Raschet ustoychivosti prostranstvennykh sharnirnosterzhnevykh system. IVUZ. Stroitel'stvo i arkhitektura. 1972; 1:31-35. [Gofman Sh.M., Agapov V.P. Calculation of the stability of three-dimensional hinged-rod systems. News of higher educational institutions. Construction and architecture. 1972; 1:31-35. (in Russ.)]
7. Aleksandrov A.V., Lashchenikov B.Ya., Shaposhnikov N.N., Smirnov V.A. Metody rascheta sterzhnevykh sistem, plastin i obolochek s ispol'zovaniem EVM. Moscow: Stroyizdat; 1976. [Aleksandrov A.V., Lashchenikov B.Ya., Shaposhnikov N.N., Smirnov V.A. Methods for calculating rod systems, plates and shells using a computer. Moscow: Stroyizdat; 1976. (in Russ.)]
8. Baykov V.N., Sigalov E.E. Zhelezobetonnye konstruktsii. Obshchiy kurs. Moscow: Stroyizdat; 1991. 728 s. [Baykov V.N., Sigalov E.E. Reinforced Concrete Structures. General course. Moscow: Stroyizdat; 1991. 728 p. (in Russ.)]
9. Zhelezobetonnye konstruktsii. Osnovy teorii, rascheta i konstruirovaniya. Pod red. Petsol'da T.M., Tura V.V. Minsk: Izd-vo BGTU; 2003. 379 s. [Reinforced concrete structures. Fundamentals of theory, calculation and design. Petsol'd T.M. and Tur V.V. (Eds). Minsk: Izdvo BGTU; 2003. 379 p. (in Russ.)]
10. Posobie po proektirovaniyu betonnykh i zhelezobetonnykh konstruktsiy iz tyazhelykh i legkikh betonov bez predvaritel'nogo napryazheniya armatury (k SNiP 2.03.01-84). Moscow: TsITP. 1989; 189 s. [Manual for the design of concrete and reinforced concrete structures from heavy and lightweight concrete without prestressing the reinforcement (to SNiP 2.03.01-84). Moscow: TsITP. 1989; 189 p. (in Russ.)]
11. SP 52-101-2003. Betonnye i zhelezobetonnye konstruktsii iz tyazhelykh i legkikh betonov bez predvaritel'nogo napryazheniya armatury. Moscow; 2005. 53 s. [SP 52-101-2003. Concrete and reinforced concrete structures from heavy and lightweight concrete without prestressing reinforcement. Moscow; 2005. 53 p. (in Russ.)]
12. Agapov V.P. Metod konechnykh elementov v statike, dinamike i ustoychivosti konstruktsiy. Moscow: 2005. Izd-vo ASV. 247 s. [Agapov V.P. Finite element method in static, dynamics and stability of constructions. Moscow: 2005. Izd-vo ASV. 247 p. (in Russ.)]
13. Agapov V.P., Aydemirov K.R. Raschet zhelezobetonnykh ferm metodom konechnykh elementov s uchetom fizicheskoy nelineynosti. Chast' 1. Nauchnoe obozrenie. 2016; 2:31-34. [Agapov V.P., Aydemirov K.R. Calculation of reinforced concrete trusses by finite element method taking into account physical nonlinearity. Part 1. Science Review. 2016; 2:31-34. (in Russ.)]
14. Agapov V.P., Aydemirov K.R. Raschet zhelezobetonnykh ferm metodom konechnykh elementov s uchetom fizicheskoy nelineynosti. Chast' 2. Nauchnoe obozrenie. 2016; 2:22-27. [Agapov V.P., Aydemirov K.R. Calculation of reinforced concrete trusses by finite element method taking into account physical nonlinearity. Part 2. Science Review. 2016; 2:22-27. (in Russ.)]
15. Agapov V.P., Aydemirov K.R. Raschet zhelezobetonnykh ferm metodom konechnykh elementov s uchetom geometricheskoy nelineynosti. Promyshlennoe i grazhdanskoe stroitel'stvo. 2016; 11:4-8. [Agapov V.P., Aydemirov K.R. Calculation of reinforced concrete trusses by finite element method taking into account geometrical nonlinearity. Industrial and civil engineering. 2016; 11:4-8. (in Russ.)]
16. Galishnikova V.V. Postanovka zadach geometricheski nelineynogo deformirovaniya prostranstvennykh ferm na osnove metoda konechnykh elementov. Vestnik VolgGASU, seriya: Stroitel'stvo i arkhitektura. 2009; 14(33):50-58. [Galishnikova V.V. Problem posing in geometrically nonlinear deformation of spatial trusses on the basis of the finite element method. Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2009; 14(33):50-58. (in Russ.)]
17. Kheydari A., Galishnikova V.V. Faktory, vliyayushchie na kriticheskuyu nagruzku i rasprostranenie mestnoy poteri ustoychivosti setchatykh obolochek. Vestnik RUDN. 2013; 1:118- 133. [Kheydari A., Galishnikova V.V. Factors influencing the critical load and the spread of local loss of stability of reticulated shells. RUDN Journal of Engineering Researches. 2013; 1:118-133. (in Russ.)]
18. Chernov Yu.T. K raschetu sistem s vyklyuchayushchimisya svyazyami. Stroitel'naya mekhanika i raschet sooruzheniy. 2010; 4:53-57. [Chernov Yu.T. To the calculation of systems with switched off connections. Structural Mechanics and Analysis of Constructions. 2010; 4:53-57. (in Russ.)]
19. Iwicki P., Krajewski M. 3D Buckling Analysis of a Truss with Horizontal Braces. Mechanics and Mechanical Engineering. 2013; 17(1):49-58.
20. Missoum S., Gurdal Z., Gu W. Optimization of nonlinear trusses using a displacement-based approach. Struct Multidisc Optim. 2002; 23:214-221.
21. Coarita E., Flores L. Nonlinear analysis of structures cable – truss. IACSIT International Journal of Engineering and Technology. 2015; 7(3).
22. Duriš R., Murín J. A nonlinear truss finite element with varying stiffness. Applied and Computational Mechanics. 2007; 1:417-426.
23. Moharrami H., Mazloumi M.R. Analysis of structures including compression-only and tension-only members. European Congress on Computational Methods in Applied Sciences and Engineering Eccomas. Barcelona; 2000.
24. Commitee Euro-International De Beton. Ceb-Fip_Model Cod, 1990. London: Thomas Telford House; 1993.
Review
For citations:
Agapov V.P., Aidemirov K.R. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(1):127-137. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-1-127-137