Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
https://doi.org/10.21822/2073-6185-2021-48-2-124-132
Abstract
Objective. In most cases, when determining the stress-deformed state of three-layer structures, it is assumed that bearing layers obey the Kirchhoff-Love hypothesis, while a filler obey the Neit (vanderNeit), or “broken line”, hypothesis. But in many cases, the results of our research show that this is not always accurate.
Methods. It is proposed to solve the three-dimensional problem of determining the stress-deformed state of a three-layer structure using cubic functions of the law of aggregate deformation distribution along the normal line, obtained on the basis of the law of deformation compatibility at “filler – bearing layer” boundaries and the construction of boundary conditions in joint zones.
Results. Equilibrium equations of a three-layer beam obtained on the basis of this hypothesis are shown in Table 1. The given partial differential equations are of the 12th order and we transformed them into homogeneous equations of the 1st order to simplify the solution. This solution is implemented using the mathematical modelling software package Mаple 5.4.
Conclusion. The work of the filler in the direction of OX axis has a certain value, which affects the overall stress state of the three-layer structure (in existing hypotheses, it is zero).
About the Authors
O. M. UstarkhanovRussian Federation
70 I. Shamilya Ave., Makhachkala 367026
Kh. M. Muselemov
Russian Federation
Khairulla M.Muselemov, Cand.Sci. (Technical), Assoc. Prof., Department of Building Structures and Hydraulic Structures
70 I. Shamilya Ave., Makhachkala 367026
Kh. M. Gapparov
Russian Federation
Khizri M. Gapparov, Postgraduate Student, Department of Building Materials and Engineering Networks
70 I. Shamilya Ave., Makhachkala 367026
References
1. Aleksandrov A.YA., Trofimov E.P. Mestnaya ustoychivost' trekhsloynykh plastin s sotovym zapolnitelem pri prodol'nom szhatii// Raschety elementov aviatsionnykh konstruktsiy. M.: Mashinostroyeniye, T.4, 1965. S.3-72. [Aleksandrov A.Ya., Trofimov E.P. Local stability of three-layer plates with honeycomb filler under longitudinal compression // Calculations of elements of aviation structures. M .: Mechanical Engineering, Vol. 4, 1965. рр. 3- 72. ( In Russ)]
2. Bolotin V.V. K teorii sloistykh plit// Izv. AN SSSR. Mekhanika i mashinostroyeniye. M., 1963. №3, s. 65-72. [Bolotin V.V. On the theory of layered plates // Izv. Academy of Sciences of the USSR. Mechanics and mechanical engineering. M., 1963. No. 3, pр. 65-72. ( In Russ)]
3. Bolotin V.V., Novichkov YU.N. Mekhanika mnogosloynykh konstruktsiy// M.: Mashinostroyeniye, 1980. 375s. [Bolotin V.V., Novichkov Yu.N. Mechanics of multilayer structures // M .: Mashinostroenie, 1980.375p. ( In Russ)]
4. Grigolyuk E.I., Lozhkin O.B. Osesimmetrichnyy krayevoy effekt v nesushchikh mnogosloynykh obolochkakh vrashcheniya// Sovetskaya prikladnaya mekhanika, 11(6), 1975. S. 582-589. [Grigolyuk E.I., Lozhkin O.B. Axisymmetric edge effect in load-bearing multilayer shells of revolution // Soviet Applied Mechanics, 11 (6), 1975. рр. 582-589. ( In Russ)]
5. Grigolyuk E.I. /Uravneniya trekhsloynykh obolochek s legkim zapolnitelem// Izv. AN SSSR. STN, №1, 1957 [Grigolyuk E.I. / Equations of three-layer shells with a light filler // Izv. Academy of Sciences of the USSR. STN, No. 1, 1957. ( In Russ)]
6. Kobelev V.N., Ustarkhanov O.M., Batdalov M.M. Uchet nelineynosti deformirovaniya nesushchikh sloyev pri raschete trekhsloynykh tsilindricheskikh obolochek// Nekotoryye problemy sozdaniya progressivnoy tekhniki i tekhnologii proizvodstva. Makhachkala, 1998. S.65-67. [Kobelev V.N., Ustarkhanov O.M., Batdalov M.M. Taking into account the nonlinearity of the deformation of the bearing layers when calculating three-layer cylindrical shells // Some problems of creating progressive equipment and production technology. Makhachkala, 1998.рр. 65-67. ( In Russ)]
7. Kobelev V.N., Potopakhin V.A. Dinamika mnogosloynykh obolochek// Rostov. Izd-va. Rostovskogo universiteta, 1985. 160s. [Kobelev V.N., Potopakhin V.A. Dynamics of multilayer shells // Rostov. Publishing house. Rostov University, 1985.160р. ( In Russ)]
8. Muselemov KH. M. Napryazhenno-deformirovannoye sostoyaniye trokhsloynykh balok s uchotom vliyaniya kleyevogo shva i temperatury: Diss. . kand. tekhn. nauk. Makhachkala, 2013. [Muselemov Kh. M. Stress-strain state of three-layer beams taking into account the effect of the glue seam and temperature: Diss. Cand. tech. sciences. Makhachkala, 2013. (In Russ)]
9. Panin V.F., Gladkov YU.A. Konstruktsii s zapolnitelem: Spravochnik. M.: Mashinostroyeniye, 1991. 271s. [Panin V.F., Gladkov Yu.A. Placeholder constructs: Reference. M .: Mechanical Engineering, 1991. 271р. ( In Russ)]
10. Ustarkhanov O.M. «Voprosy prochnosti trekhsloynykh konstruktsiy s regulyarnym diskretnym zapolnitelem»: Diss. d−ra tekhn nauk. Rostov-na-Donu. 2000. [Ustarkhanov O.M. "Problems of strength of three-layer structures with a regular discrete filler": Diss. Doctor of Technical Sciences. Rostov-on-Don. 2000. ( In Russ)]
11. Gerard G. Torsional instability of a long sandwich cylinder // Proceeding of First National Congress of Applied Mechanics, ASME, 1952.
12. Reissner, E. Finite deflection of sandwich plates, J. Aer. Sci. 15, No. 7, V.75, 1948. рр. 272-275.
13. Reissner, E. Finite deflection of sandwich plates, J. Aer. Sci. 15, No. 2, 1950. рр. 423-428.
14. Stein M., Mayers J.A. Small-deflections theory for curved sandwich plates NAGA - Technical Report. 1008, 1951.
Review
For citations:
Ustarkhanov O.M., Muselemov Kh.M., Gapparov Kh.M. Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler. Herald of Dagestan State Technical University. Technical Sciences. 2021;48(2):124-132. (In Russ.) https://doi.org/10.21822/2073-6185-2021-48-2-124-132