Increasing the pump energy efficiency of the system for discharging liquefied natural gas from large-capacity storage facilities via design improvement
https://doi.org/10.21822/2073-6185-2021-48-2-9-19
Abstract
Abstract. Objective. To determine the most relevant way to improve the energy efficiency of the system for discharging liquefied natural gas (LNG) from large-capacity storage facilities.
Methods. The method of analysis of existing systems for LNG discharge from storage tanks was used to identify critical (emergency) elements of the system to be improved and possible options of improving structural elements.
Results. The operation of the system for discharging LNG from storage tanks was analysed and its main characteristics were described. Main problems associated with designing and building borehole pumps, as well as goals and tasks of designing new borehole pump structures were studied. The main types of LNG borehole pumps, their varieties, and types of drives were studied to choose the most optimal new option of improving pumps for systems for discharging LNG from storage tanks. Further, it will be necessary to calculate geometric parameters of the hydroturbine and operation modes of its wheel being in connection with the centrifugal pump wheel.
Conclusion. Experience of using storage facilities shows that LNG pumps are the most critical units significantly increasing production risks. Therefore, the LNG borehole pump design improvement was chosen as a method to increase the energy efficiency of the system for discharging LNG from large-capacity storage facilities. Based on the considered advantages and disadvantages of structural elements of the existing LNG borehole pump design, we chose the replacement of the electric pump drive with an alternative one as the most optimal improvement method.
About the Authors
A. Yu. BaranovRussian Federation
Alexander Yu. Baranov, Dr. Sci. (Technical), Prof., Faculty of Low-Temperature Energy
49 Kronverksky Ave., Saint Petersburg 197101
M. I. Davydenko
Russian Federation
Mishel I. Davydenko, PhD student
49 Kronverksky Ave., Saint Petersburg 197101
Ye. V. Sokolova
Russian Federation
Ekaterina V. Sokolova, Senior Lecturer49 Kronverksky Ave., Saint Petersburg 197101
O. A. Filatova
Russian Federation
Olga A. Filatova, Specialist of the 1-st category
4A Makularurny Lane, Units, 120–121, Saint Petersburg 197375
References
1. Rachevskiy B.S. Tekhniko-ekonomicheskaya otsenka proyektov proizvodstva i potrebleniya szhizhennogo prirodnogo gaza // Zhurnal «Povysheniye nadezhnosti i bezopasnosti ob"yektov gazovoy promyshlennosti». 2017. s.225 – 233. [Rachevsky B. S. Technical and economic assessment of projects for the production and consumption of liquefied natural gas / / Journal "Improving the reliability and safety of gas industry facilities". 2017. pp. 225-233. [(In Russ)]
2. Analiticheskiy byulleten' // Neftegazodobyvayushchaya i neftepererabatyvayushchaya promyshlennost': Tendentsii i prognozy. Vypusk №19. 2018. [Analytical bulletin // Oil and gas production and oil refining industry: Trends and forecasts. Issue No. 19. 2018. [(In Russ)]
3. Zvuykovskiy N.A. Sderzhannyy optimizm: Obzor rossiyskikh SPG- proyektov // Oil & Gas Journal Russia. 2016. s.50–54. [Svejkovsky N. And. Cautious optimism: an Overview of Russian LNG projects // Oil & Gas Journal Russia. 2016. pp. 50–54. [(In Russ)]
4. Golubeva I.A., Meshcherin I.V. Proizvodstvo szhizhennogo prirodnogo gaza: vchera, segodnya, zavtra // Mir nefteproduktov. 2016. № 6, s. 4–13. [Golubeva, I. A., I. V. Meshcherin liquefied natural gas Production: yesterday, today, tomorrow // the World of petroleum products. 2016. No. 6, pp. 4-13. [(In Russ)]
5. David A. Coyle, Vinod H. Patel Process and pump services in the LNG industry. 2018. pp.179-185.
6. Wahl F.A. LNG pumps for floating units//Proceedings LNG17. Poster Session. Houston, Texas. USA. 2013.
7. Sokolov Ye.V., Klyukvin O.N. Otchet o patentnykh issledovaniyakh po OKR «Razrabotka nasosnogo oborudovaniya dlya sistem perekachivaniya szhizhennogo prirodnogo gaza» OAO «LGM». 2012. [Sokolov E. V., Klyukvin O. N. Report on patent research on ROC " Development of pumping equipment for pumping systems of liquefied natural gas "of JSC "LGM". 2012. [(In Russ)]
8. Sokolov Ye.V., Solodchenkov V.F. Opyt razrabotki nasosnogo oborudovaniya dlya sistem perekachivaniya szhizhennogo prirodnogo gaza // Zhurnal «Sudostroyeniye». 2016. s.45-50. [Sokolov E. V., Solodchenkov V. F. Experience in developing pumping equipment for pumping systems of liquefied natural gas / / Journal "Shipbuilding". 2016. pp. 45-50. [(In Russ)]
9. Proyekt Baltiyskogo SPG na sayte «Gazproma» [Elektronnyy resurs]. – Rezhim dostupa: http://www.gazprom.ru/about/production/projects/lng/baltic-lng [The Baltic LNG project on the Gazprom website [Electronic resource]. - Access mode: http://www.gazprom.ru/about/production/projects/lng/baltic-lng[(In Russ)]
10. Teregulov, R.K. Perfection of technologies for production and storage of liquefi ed natural gas: Candidate thesis (engineering) // Ufa State Petroleum Technological University. 2009.
11. Rush S., Hall L. Tutorial on cryogenic submerged electric motor pump 2018. pp.57-62.
12. Weisser G.L. Modern Submersible Pumps for Cryogenic Liquids // Word Pump, January. 2004.
13. Osipov P.Ye. Gidravlika, gidravlicheskiye mashiny i i gidroprivod: Uch. Posobiye. 3-ye izd., pererab. i dop. - M.: Lesnaya promyshlennost'. 2011. [Osipov P. E. Hydraulics, hydraulic machines and hydraulic drive: Teaching manual. 3rd ed., reprint. and add. - M.: Forest industry. 2011. [(In Russ)]
14. Weisser G.L. Modern Submersible Pumps for cryogenic liquids // Word Pump. 2014.
15. Yelin V.M., Soldatov K.N., Sokolovskiy S.M. Nasosy i kompressory 2-ye izd., pererab. i dop. // M: Gostoptekhizdat. 2015. 98 s. [Elin V. M., Soldatov K. N., Sokolovsky S. M. Pumps and compressors 2nd ed., pererab. and add. / / M: Gostoptehizdat. 2015. 98 p. [(In Russ)]
16. Hylton E.H. State of the Art Submerged cryogenic motor pump and turbine generators // Proceeding of Gastech. Conference, Houston, Texas. 2010.
17. Durnov P.I. Nasosy i kompressory. // M: Mashgiz. 2014. 938 s. [Durnov P. I. Pumps and compressors. // M: Mashgiz. 2014. 938 p. [(In Russ)]
18. Cullen D., Rush S., Madison J. Radial and axial diffusers for submerged electric motor-driven pumps // Word Pumps. 2010.
19. Rasshiritel'naya turbina, rabotayushchaya na osnove kriogennoy zhidkosti [Elektronnyy resurs]. – Rezhim dostupa: https://findpatent.ru/patent/259/2592691.html [Expansion turbine operating on the basis of cryogenic liquid [Electronic resource]. - Access mode: https://findpatent.ru/patent/259/2592691.html [(In Russ)]
20. Rush S. Effects of Unbalanced magnetic pull in cryogenic submerged electric motor pumps // Proceedings of the Vibration in fluids machinery conference. 2012.
Review
For citations:
Baranov A.Yu., Davydenko M.I., Sokolova Ye.V., Filatova O.A. Increasing the pump energy efficiency of the system for discharging liquefied natural gas from large-capacity storage facilities via design improvement. Herald of Dagestan State Technical University. Technical Sciences. 2021;48(2):9-19. (In Russ.) https://doi.org/10.21822/2073-6185-2021-48-2-9-19