Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

FIST GEOINFORMATION SYSTEM MODEL USING FOG COMPUTING IN DESTABILIZATION

https://doi.org/10.21822/2073-6185-2021-48-1-76-89

Abstract

Objective. The objective of the study is to develop a model of a geoinformation system functioning in destabilization, as well as indicators that assess the ability of a geoinformation system to perform its functions in destabilization.

Methods. Geographic information systems are becoming an integral part of almost all information and decision-making systems. The research methods are based on a deterministic or stochastic model of destabilization, but the geographic information system is characterized by a non-stochastic model.

Results. It is shown that any task exists in the geoinformation system in the form of consumption of four types of performance: computers, storage devices, communication channels, input/output devices. Based on this, a model of the geoinformation system (FIST – Full Infrastructure of Sources Toolkit) was developed, which allows evaluating the "margin of safety" of the geoinformation system, expressed in the available performance of all four  types. The model considers elements of different degrees of mobility and performance and is suitable for describing classical, cloud, and fog  geoinformation systems. An example of the model operation in  destabilization is given. A theorem on the independence of events of solving  problems for any directed graph is formulated and proved. Based on the model, integral and differential efficiency indicators are proposed. The  integrated indicator characterizes the share of tasks solved over a time  interval; the differential indicator characterizes the "performance margin." 

Conclusion. The developed model and performance indicators can be used to design new and evaluate existing geographic information systems.

About the Author

V. V. Gryzunov
Russian State Hydrometeorological University
Russian Federation
Cand. Sci. (Technical), Assoc. Prof., Department of Information Technologies and Security Systems

3 Metallistov Ave., Saint Petersburg 195027, Russia



References

1. Kudelkin V.A. Opyt integratsii raspredelennykh informatsionnykh sistem / V.A. Kudelkin, V.F. Denisov [Experience of integration of distributed information systems] // IT standard, 2017. No. 1. pp. 24–30. (In Russ).

2. Winchell R.J. Comparing geographic information system–based estimates with trauma center registry data to assess the effects of additional trauma centers on system access / R.J. Winchell, J. Broecker, A.J. Kerwin, B. Eastridge, M. Crandall // Journal of Trauma and Acute Care Surgery, 2020. Vol. 89, Issue 6. pp. 1131–1135. DOI 10.1097/TA.0000000000002943.

3. Stoletov O. V. Geoinformatsionnoye soprovozhdeniye sredizemnomorskoy vetvi Shelkovogo puti / O. V. Stoletov, I. A. Chikharev, O. A. Moskalenko, D. V. Makovskaya [Geoinformation support of the mediterranean branch of the silk road] // InterCarto. InterGis. 2019. Part 25, no. 1. pp. 102–113. DOI 10.35595/2414- 9179-2019-1-25-102-113 (In Russ).

4. Burlov V. Development of a model for the management of environmental safety of the region, taking into account of the GIS capacity / V. Burlov, A. Andreev, F. Gomazov // MATEC Web of Conferences, 2018. 02038 p. DOI 10.1051/matecconf/201819302038.

5. Gryzunov V. V. Struktura zhivuchey seti meteokompleksov transportno- logisticheskikh sistem «Industrii 4.0» / Gryzunov V.V., Nesterova A. O. [Survivable structure of network of meteorological complexes of transport and logistics systems “industry 4.0” ] // Gidrometeorologiya i ekologiya, 2020. No. 59. pp. 111–123. – DOI 10.33933/2074-2762-2020-59-111-123 (In Russ).

6. IEEE Standard Association et al. IEEE 1934-2018-IEEE standard for adoption of open-fog reference architecture for fog computing, 2018.

7. Panidi E. Fog computing perspectives in connection with the current geospatial stand-ards / E. Panidi // International Archives of the Photogrammetry, Remote Sensing & Spatial In-formation Sciences, 2017. Vol. 42. pp. 171–174.

8. Das J. Spatio-Fog: A green and timeliness-oriented fog computing model for geospatial query resolution / J. Das, A. Mukherjee, S. K. Ghosh, R. Buyya // Simulation Modelling Practice and Theory, 2020. Vol. 100. pp. 102043.

9. Sun Y. Multi-objective optimization of resource scheduling in fog com-puting using an improved NSGA-II / Y. Sun, F. Lin, H. Xu // Wireless Personal Communications, 2018. Vol. 102. № 2. pp. 1369–1385. DOI 10.1007/s11277-017-5200-5.

10. Gryzunov V. V. Model' tselenapravlennykh agressivnykh deystviy na informatsionno-vychislitel'nuyu sistemu / V. V. Gryzunov [Model of Purpose Aggressive Actions on the Information-Computing System] // Third International Conference on Human Factors in Complex Technical Systems and Environments (ERGO)s and Environments (ERGO). Available at: https://ieeexplore.ieee.org/document/8443814 (accessed by 23.08.2020). DOI 10.1109/ERGO.2018.8443814 (In Russ).

11. Horoshevskij V. G. Arhitektura vychislitel'nyh system / V. G. Horoshevskij [Architecture of computing systems]. M. : MGTU im. N. Je. Baumana Publ., 2008. 520 p. (In Russ).

12. Gryzunov V. V. Metodika resheniya izmeritel'nykh i vychislitel'nykh zadach v usloviyakh degradatsii informatsionnovychislitel'noy sistemy / V. V. Gryzunov [Problem solving method of measuring and calculating tasks under conditions of data computing system degradation] // Vestnik SibGUTI, 2015. No. 1. pp. 35–44. (In Russ).

13. Kalinin V. N. Teoreticheskie osnovy sistemnyh issledovanij : kratkij avtorskij kurs lekcija dlja ad`junktov akademii / V. N. Kalinin [Theoretical foundations of system research : a short author's course of lectures for adjuncts of the Academy]. –SPb.: VKA im. A. F. Mozhajskogo Publ., 2011. 278 p. (In Russ).

14. Mesarovich M. Teorija mnogourovnevyh ierarhicheskih system / M. Mesarovich, D. Mako, I. Takahara [Theory of multilevel theoretical systems]. M. : Mir Publ., 1973. 344 p. (In Russ).

15. Chekired D. A. Industrial IoT data scheduling based on hierarchical fog computing : A key for enabling smart factory / D. A. Chekired, L. Khoukhi, H. T. Mouftah // IEEE Transactions on Industrial Informatics, 2018. Issue 14, no. 10. pp. 4590–4602. DOI 10.1109/TII.2018.2843802.

16. Cypkin Ja. Z. Osnovy teorii avtomaticheskih system / Ja. Z. Cypkin [Fundamentals of the theory of automatic systems]. – M.: Nauka Publ., 1977. 560 p. (In Russ).

17. Monahov O. G. Parallel'nye sistemy s raspredelennoj pamjat'ju : struktury i organizacija vzaimodejstvij / O. G. Monahov, Je. A. Monahova [Parallel systems with distributed memory : structures and organization of interactions]. – Novosibirsk : SO RAN Publ., 2000. 242 p. (In Russ).

18. Gryzunov V. V. Analiticheskaya model' tselostnoy informatsionnoy sistemy / V. V. Gryzunov [The analytical model of the whole information system] // Doklady TUSUR, 2009. No. 1 (19), part 1. pp. 226–230. (In Russ).

19. Dobronravov V. V. Osnovy mehaniki negolonomnyh system / V. V. Dobronravov [Fundamentals of mechanics of nonholonomic systems]. – M. : Vysshaja shkola Publ., 1970. 270 p. (In Russ).

20. Kompleks bespilotnoj vozdushnoj razvedki [Elektronnyy resurs] [Unmanned aerial reconnaissance complex [Electronic resource]]. – Available at : https://dfnc.ru/katalog-vooruzhenij/bpla/orlan-10 (accessed 20.08.2020) (In Russ).

21. GOST R 51275-2006. Zashhita informacii. Ob`ekt informatizacii. Faktory, vozdejstvujushhie na informaciju [Elektronnyy resurs] [GOST R 51275-2006. Information protection. About ect Informatization. Factors affecting information [Electronic resource]]. – Available at : http://docs.cntd.ru/document/1200057516 (accessed 20.08.2020) (In Russ).

22. Gryzunov V.V. The estimation of the survivability of heterogeneous structure // Vestnik SibGUTI. 2011. № 1. pp.28-35. (In Russ).

23. Fajzullin R. V. Metodika formirovaniya dopustimykh variantov organizatsionnogo sostava i struktury avtomatizirovannoy sistemy upravleniya kiberbezopasnost'yu [Elektronnyy resurs] / R. V. Fajzullin, Sh. Hering, K. A. Vasilenko [Methodology for the formation of acceptable options for the organizational composition and structure of an automated cybersecurity management system [Electronic resource] ] // Modelirovanie, optimizacija i informacionnye tehnologii, 2020. Iss. 8, no. 1 (28). pp. 39–40. Access mode: https://moit.vivt.ru/wpcontent/uploads/2020/02/FaizullinSoavtors_1_20_1.pdf (accessed 27.08.2020). DOI 10.26102/2310-6018/2020.28.1.025 (In Russ).

24. Selifanov V. V. Pokazatel' effektivnosti upravleniya zashchitoy informatsii v geoinformatsionnykh sistemakh / V. V. Selifanov et al. [Performance indicator management information protection in geoinforma tion systems] // Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 2018. No. 10. pp. 176–181. (In Russ).

25. Mel'nik Je. V. Primeneniye kontseptsii "tumannykh" vychisleniy pri proyektirovanii vysokonadezhnykh informatsionnoupravlyayushchikh sistem / Je. V. Mel'nik, A. B. Klimenko [A fog-computing concept applying for high-reliable management informa tion system design] // Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 2020. No. 2. pp. 273–283. (In Russ).

26. Jia B. Double-matching resource allocation strategy in fog computing networks based on cost efficiency / B. Jia et al. // Journal of Communications and Networks, 2018. Iss. 20, No. 3. pp. 237–246. DOI 10.1109/JCN.2018.000036.

27. Burlov V. System integration of security maintenance processes in knowledge management / V. Burlov, A. Andreev, F. Gomazov, N. Somga-Bichoga // Proceedings of the European Conference on Knowledge Management, ECKM, 2018. pp. 112–122.


Review

For citations:


Gryzunov V.V. FIST GEOINFORMATION SYSTEM MODEL USING FOG COMPUTING IN DESTABILIZATION. Herald of Dagestan State Technical University. Technical Sciences. 2021;48(1):76-89. (In Russ.) https://doi.org/10.21822/2073-6185-2021-48-1-76-89

Views: 505


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)