Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

CALCULATION OF THE DRAINLESS OPERATION MODES OF TYPE «C» VESSEL CRYOGENIC TANKS

https://doi.org/10.21822/2073-6185-2021-48-1-8-17

Abstract

Objective. For autonomous gasification, it is necessary to create river vessels to transport liquefied natural gas and work out the transportation technology. As the most efficient cargo storage system, C-type tanks are selected and operated in a non-drainage mode.

Methods. The existing methodology for determining the level of initial filling of the tank does not consider the storage time of liquefied natural gas, which leads to the forced discharge of the formed liquefied natural gas vapors when the maximum allowable overpressure in the tank is reached. When  upgrading a tanker into a transportation vessel for liquefied natural gas, the authors propose to install two C-type tanks on it. The diameter of the  hemispherical covers is 9 m, the length of the cylindrical part of the tank is 20 m. The maximum permissible overpressure inside the tank is assumed  to be 0.65 MPa. The thickness of the thermal insulation is determined from  the overall dimensions of the hold, considering the condition of ensuring a distance between the hull sidewall and the outer insulation layer of at least
760 mm. The maximum possible thickness of the thermal layer was 1.1 m.

Results. The article proposes a method for determining the optimal tank filling level to achieve a drainless operation mode. The proposed method can achieve the maximum economic efficiency of transportation of liquefied natural gas by eliminating the loss of discharged liquefied natural gas due to long ship crossings and transporting an additional liquefied natural gas  volume for a short changeover. 

Conclusion. As the pressure of liquefied natural gas vapor increases inside the tank, the saturation temperature of the liquid fraction increases, and its density decreases. Thus, the proportion of the liquid volume is constantly increasing, reducing the vapor space of the container. An increase in the mass of liquefied natural gas vapors combined with a decrease in the steam area volume increases the pressure growth rate. When optimizing the initial tank filling level, the amount of liquefied natural gas that will be forced  to be discharged as steam on long legs is determined. Optimization of the operating mode of type C tanks is possible for cases with any thickness of the insulation layer. When performing such calculations, tables  of optimal filling for any range of legs can be created.  

About the Authors

A. Yu. Baranov
Saint Petersburg Research University of Information Technology, Mechanics and Optics
Russian Federation
Dr. Sci. (Technical), Prof., Faculty of Low-Temperature Energy

9 Lomonosov St., St. Petersburg 191002, Russia



L. V. Ivanov
Saint Petersburg Research University of Information Technology, Mechanics and Optics
Russian Federation
Postgraduate Student, Faculty of Low-Temperature Energy

9 Lomonosov St., St. Petersburg 191002, Russia



A. M. Andreev
Saint Petersburg Research University of Information Technology, Mechanics and Optics
Russian Federation
Postgraduate Student, Faculty of Low-Temperature Energy

9 Lomonosov St., St. Petersburg 191002, Russia



References

1. Ivanov L.V., Baranov A.YU., Pluzhnikova Perspektivy ispol'zovaniya vodnogo transporta SPG dlya avtonomnoy gazifikatsii otdalennykh regionov // Gazovaya promyshlennost'. 2020, №2(796). S. 52-58; [Ivanov LV, Baranov A.Yu., Pluzhnikova Prospects for the use of LNG water transport for autonomous gasification of remote regions // Gas Industry. 2020, No. 2 (796). 52-58; (In Russ)]

2. Baranov A. YU., Ivanov L. V., Analiz konstruktsionnykh osobennostey sistem khraneniya gruza dlya tankov dlya modernizatsii proyekta rechnogo tankera klassa reka-more // Morskoy Vestnik. 2019, №3(71). s 18-21; [Baranov A. Yu., Ivanov L. V., Analysis of the structural features of cargo storage systems for tanks to modernize the project of a river-sea tanker // Marine Bulletin - 2019, No. 3 (71). from 18-21. (In Russ)]

3. Katalog produktsii kompanii Woojo Hightech CO., LTD URL:http://woojohightech.com/pdf/woojo-catalogue.pdf (data obrashcheniya 08.06.2020)[ Product catalog of Woojo Hightech CO., LTD URL: http://woojohightech.com/pdf/woojo-catalogue.pdf (access date 06/08/2020) (In Russ)]

4. MARPOL 73/78 Prilozheniye I k konventsii «Pravila predotvrashcheniya zagryazneniya neft'yu» URL: http://docs.cntd.ru/document/499014769 (data obrashcheniya 08.06.2020)[MARPOL 73/78 Appendix I to the Convention “Rules for the Prevention of Oil Pollution” URL: http://docs.cntd.ru/document/499014769 (date of access 08.06.2020 (In Russ)]

5. Mezhdunarodnyy kodeks postroyki i oborudovaniya sudov, perevozyashchikh szhizhennyye gazy nalivom (IGC Code) [International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) (In Russ)]

6. Arkharov A.M. Kriogennyye sistemy: osnovy proyektirovaniya apparatov, ustanovok i sistem. - M.: Mashinostroyeniye, 1999. 556-562 s. [Arkharov A.M. Cryogenic systems: the basics of designing devices, installations and systems. - M .: Mechanical Engineering, 1999 . pp. 556-562 (In Russ)]

7. Baranov A.YU., Valentinova K.A., Ivanov L.V. Modelirovaniye ispareniya szhizhennogo prirodnogo gaza v mobil'nykh rezervuarakh [Baranov A.Yu., Valentinova K.A., Ivanov L.V. Modeling of liquefied natural gas evaporation on mobile reservoirs // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2020. T. 20. No. 4 (128). pp. 595-602. (In Russ)]

8. Yakovlev Ye.I. Teplovyye rezhimy khranilishch szhizhennykh gazov. SPb.: Nedra, 1992. 182 s.[Yakovlev E.I. Thermal regimes of liquefied gas storage facilities. SPb .: Nedra, 1992. 182 p. (In Russ)]

9. DNVGL-CG-0135 Liquefied gas carriers with independent cylindrical tanks of type C - 2016 URL: https://rules.dnvgl.com/docs/pdf/DNVGL/CG/2016-02/DNVGL-CG-0135.pdf (date of treatment 06/08/2020);

10. Egil Rensvik Distibution and use of LNG for a cleaner environment // Presentation on the Network LNG Norway with GO LNG Interreg Project - Bergen, Norway - 2017 URL: http://www.lngcluster.eu/files/Main/files/Egil%20Rensvik_Network%20LNG%20Norway.pdf (date of access 06/08/2020);

11. Lucia Karpatyova LNG Masterplan in a nutshell. Project overview presentation - 2015 URL: http://lngmasterplan.eu/images/2015-12-16_04_LNG_MP_FE_Project_overview_Lucia.Karpatyova.pdf (access date 06/08/2020);

12. Spetsifikatsiya Lenaneft' 621 URL: https://russrivership.ru/public/files/doc357.pdf (data obrashcheniya 08.06.2020 [Lenaneft 621 specification URL: https://russrivership.ru/public/files/doc357.pdf (date of access 06/08/2020). (In Russ)]

13. Soumya Chakraborty - Understanding the design of liquified gas carriers - Naval Architecture, 2019.- URL: https://www.marineinsight.com/navalarchitecture/understandingdesignliquefie dgascarriers/(дата обращения 09.06.2019)

14. International safety guide for inland navigation tankbarges and terminals. (ISGINTT).- Chapter 33: Types of gas carriers,2010, 14 с. 21

15. LNG vessel construction - Advantages of Moss Rosenberg technologyURL: http://www.liquefiedgascarrier.com/mossrosenbergcontainmentsystem.html (дата обращения 09.06.2019)

16. IHI: What is SPB tank?- URL: https://www.ihi.co.jp/offshore/whatisspb_e.htm (дата обращения 09.06.2019)

17. Wursig G.M. LNG fuel tank: benefits and challenges - Managing risk DNV, 2012.-27 c. 21

18. Fleet List Small Scale LNG Carriers - Updated URL: https://smalllng.com/fleetlistsmallscalelngcarriersupdated/(дата обращения 09.06.2019

19. Karistios Leonidas. Smallscale LNG ships: a report into the commercial drivers and technical requirements for seaborn smallscale supply - Southampton, UK: Lloyd's Register Marine, 2018.-32 c.

20. URL: https://www.fkab.com/wpcontent/uploads/sites/3/CoraliusLNG.pdf (дата обращения 09.06.2019) Coralius: 5800 m3 LNG Bunker and feeder vessel.


Review

For citations:


Baranov A.Yu., Ivanov L.V., Andreev A.M. CALCULATION OF THE DRAINLESS OPERATION MODES OF TYPE «C» VESSEL CRYOGENIC TANKS. Herald of Dagestan State Technical University. Technical Sciences. 2021;48(1):8-17. (In Russ.) https://doi.org/10.21822/2073-6185-2021-48-1-8-17

Views: 724


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)