Dynamic inverse piezo-effect problem for a long piezoceramic thermoelastic cylinder
https://doi.org/10.21822/2073-6185-2020-47-4-57-68
Abstract
Objective. The objective of this work is to solve an unrelated dynamic problem of thermoelectroelasticity for a long hollow piezoceramic cylinder under the action of an electric load on its surfaces in the form of a potential difference.
Methods. The mathematical formulation of the considered problem of thermoelectroelasticity includes a system of non-selfadjoint differential equations. At the first stage, the authors consider the associated inverse piezoelectric effect problem without taking into account the influence of the temperature field, and at the next stage, study the hyperbolic heat conduction problem (Lord–Shulman theory) for a given (defined) electroelastic field.
Result. A new closed solution to the dynamic inverse piezoelectric effect problem for a long piezoceramic thermoelastic cylinder is constructed. The case of the action of a dynamic electric load in the form of a potential difference on its front surfaces is considered. The ambient temperature and the law of convection heat transfer (3-kind boundary condition) are set. The calculated relations obtained using the generalized method of finite integral transformations allow determining the stress-strain state and thermoelectric fields induced in a piezoceramic element under an arbitrary electrical external influence.
Conclusion. The constructed solution allows determining the stress-strain state and electric field in a piezoceramic cylinder, as well as analyzing the effect of the induced temperature field on the electroelastic state of the system under consideration using the hyperbolic Lord–Shulman theory of thermal conductivity. Analysis of the numerical results allows concluding that there are insignificant energy losses associated with heating the electroelastic system. The developed calculation algorithm is used in the design of non-resonant and resonant piezoelectric measuring devices.
About the Author
M. A. KalmovaRussian Federation
Kalmova Maria Aleksandrovna, senior lecturer of the department of structural mechanics, engineering geology, foundations and foundations
244 Molodogvardeyskaya St., Samara 443001
References
1. Bobtsov A.A. Ispolnitelnyie ustroystva i sistemyi dlya mikroperemescheniy. SPb GU ITMO, 2011. 131 s. [Bobtsov A.A. Actuators and systems for micromovements. - SPb GU ITMO, 2011. 131 p. (In Russ)]
2. Dzhagurov R.G. Pezoelektronnyie ustroystva vyichislitelnoy tehniki, sistem kon-trolya i upravleniya. SPb.: Politehnika, 1994. 608 s. [Dzhagurov R.G. Piezoelectronic devices of computer technology, control and management systems. SPb .: Polytechnic, 1994. 608 p.(In Russ)]
3. Yevseychik Y.B., Medvedev K.V. Sensitivity of the hydroacoustic pressure sensor // Hydraulics and hydraulic engineering. Scientific and technical Sat. Kiev: NTU. 2008. Issue. 62 . рр. 10-16
4. Yanchevskiy I.V. Upravlenie kolebaniyami izgiba kruglogo asimmetrichnogo bi-morfnogo pezopreobrazovatelya s razreznyimi elektrodami // Probl. mashinostroeniya. 2012. T.15, № 2. S. 37-43 [Yanchevsky I.V. Control of bending vibrations of a circular asymmetric bi-morphic piezoelectric transducer with split electrodes // Probl. mechanical engineering. 2012. T.15, No. 2. рр. 37-43 (In Russ)]
5. Abedi M., Jafari–Talookolaei R., Valvo P. A new solution method for free vibration analysis of rectangular laminated composite plates with general stacking sequences and edge restraints // Computers & Structures. 2016. Vol. 175. рр. 144-156.
6. Berndt E.A., Sevostianov I. Action of a smooth flat charged punch on the piezoelectric half-space possessing symmetry of class // International Journal of Engineering Science. 2016. Vol. 103. рр. 77-96.
7. Abbas I.A., Youssef H.M. Finite element analysis of two–termoperature generalized magneto-thermoelasticity/ Arch Appl Mech. 2009.79. 917–925.
8. He T. et al. A generalized electromagneto–thermoelastic problem for an infinitely long solid cylinder / European Journal of Mechanics A–Solids. 24 (2005).рр.349–359.
9. Youssef H.M. Theory of two–temperature generalized thermoelasticity/ IMA J.Appl.Math. 71(3) (2006)/383–390.
10. Firsanov V.V., Nguen, Le Hung. Napryazhenno–deformirovannoe sostoyanie proiz-volnyih obolochek s uchetom termoelektricheskogo vozdeystviya na osnove utochnennoy teorii // Teplovyie protsessyi v tehnike. 2010. – №3. рр.110–117.
11. Abbas I.A., Zenkour A.M. LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder/ Composite Structures. 96. (2013) 89–96.
12. Vatulyan A.O., Kiryutenko A.Yu., Nasedkin A.V. Ploskie volnyi i fundamentalnyie resheniya v lineynoy termoelektrouprugosti // PMTF. –1996. –T.37. –№5. – S.135–142 [Vatulyan A.O., Kiryutenko A.Yu., Nasedkin A.V. Plane waves and fundamental solutions in linear thermoelectroelasticity // PMTF. 1996. T.37. №5. рр.135–142 (In Russ)]
13. Vatulyan A.O., Nesterov S.A. Dinamicheskaya zadacha termoelektrouprugosti dlya funktsionalno-gradientnogo sloya// Vyichislitelnaya mehanika sploshnyih sred. 2017. T.10. №2. S.117–126 [Vatulyan A.O., Nesterov S.A. Dynamic problem of thermoelectroelasticity for a functional-gradient layer // Computational mechanics of continuous media. 2017. Т.10. №2. pp.117–126 (In Russ)]
14. Belyankova T.I., Kalinchuk V.V. K modelirovaniyu prednapryazhennogo termoelekt-rouprugogo poluprostranstva s pokryitiem // Izv. RAN. MTT. 2017. № 1. S. 117–135 [Belyankova T.I., Kalinchuk V.V. On modeling a prestressed thermoelectroelastic half-space with a coating. Izv. RAS. MTT. 2017. No. 1. рр. 117-135 (In Russ)]
15. Vatulyan A.O., Ryinkova A.A. Ob odnoy modeli izgibnyih kolebaniy pezoelektri-cheskih bimorfov s razreznyimi elektrodami i ee prilozheniyah// Izv. RAN. MTT. 2007. №4. S. 114–122 [Vatulyan A.O., Rynkova A.A. On one model of bending vibrations of piezoelectric bimorphs with split electrodes and its applications // Izv. RAN. MTT. 2007. No. 4. рр. 114–122 (In Russ)]
16. Bardzokas D.I. Matematicheskoe modelirovanie v zadachah mehaniki svyazannyih po-ley. T.II: Staticheskie i dinamicheskie zadachi elektrouprugosti dlya sostavnyih mnogo-svyaznyih tel. – M.: Komkniga, 2005. 376 s. [Bardzokas D.I. Mathematical modeling in problems of mechanics of coupled fields. Vol. II: Static and dynamic problems of electroelasticity for compound multi-connected bodies. M .: Komkniga, 2005. 376 p. (In Russ)]
17. Shlyahin D.A. Vyinuzhdennyie osesimmetrichnyie kolebaniya pezokeramicheskoy ton-koy bimorfnoy plastinyi // Izv. RAN. MTT. 2013. №2. S. 77–85 [Shlyakhin D.A. Forced axisymmetric vibrations of a piezoceramic thin bimorph plate // Izv. RAS. MTT. 2013. №2. рр. 77–85. (In Russ)]
18. Shlyahin D.A. Vyinuzhdennyie osesimmetrichnyie kolebaniya tolstoy krugloy zhestko zakreplennoy pezokeramicheskoy plastinyi // Izv. RAN. MTT. 2014. №4. S. 90-100 [Shlyakhin D.A. Forced axisymmetric vibrations of a thick circular rigidly fixed piezoceramic plate // Izv. RAS. MTT. 2014. №4. рр. 90–100. (In Russ)]
19. Kovalenko A.D. Vvedenie v termouprugost. –Kiev: Nauk. dumka, 1965. –204 s. [Kovalenko A.D. Introduction to thermoelasticity. Kiev: Nauk. dumka, 1965. 204 p. (In Russ)]
20. Grinchenko V.T., Ulitko A.F., Shulga N.A. Mechanics of linked fields in structural elements. Kiev: Nauk. dumka, 1989. 279 р.
21. Senitskiy Yu.E. Metod konechnyih integralnyih preobrazovaniy – obobschenie klassicheskoy protseduryi razlozheniya po sobstvennyim vektor-funktsiyam // Izv. Sara-tovskogo un–ta. Novaya seriya. Matem., mehan., informatika, 2011. № 3(1). S. 61–89. [Senitsky Yu.E. The method of finite integral transformations is a generalization of the classical procedure for expansion in eigenvector functions // Izv. Saratovsky University. New series. Mat., Mechan., Informatics, 2011. No. 3 (1). рр. 61-89. (In Russ)]
22. Kamke E. Spravochnik po obyiknovennyim differentsialnyim uravneniyam. M.: Nauka,1965. 703 s. [Kamke E. Handbook of ordinary differential equations. M .: Nauka, 1965. 703 р. (In Russ)]
Review
For citations:
Kalmova M.A. Dynamic inverse piezo-effect problem for a long piezoceramic thermoelastic cylinder. Herald of Dagestan State Technical University. Technical Sciences. 2020;47(4):57-68. (In Russ.) https://doi.org/10.21822/2073-6185-2020-47-4-57-68