Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

Modeling working processes of the marine thruster of the PMM-2M ferry-bridge machine

https://doi.org/10.21822/2073-6185-2020-47-3-16-25

Abstract

Objective. The article deals with aspects of modeling the working processes occurring in marine thrusters of amphibious vehicles, taking into account the specifics of their operation. Methods. The methods of 3D modeling of propellers in CAD and CAE packages are applied, which can determine and optimize the parameters of ongoing work processes with reliable accuracy. Results. A mathematical construct is proposed that allows calculating the characteristics of marine thrusters of amphibious vehicles. The propeller is designed to provide more thrust compared to the original design, making it possible to increase the speed of movement on the water and reduce the radius of circulation when moving through the water. The calculated version of the propeller provides an increase in thrust by 36%, allows developing a high speed on the water, and significantly reduces the radius of circulation of the ferry-bridge machine when maneuvering on the water. Conclusion. The proposed option for increasing the speed and maneuverability of ferry vehicles on the water is the most effective and least expensive; a promising direction for further research to achieve maximum efficiency is the creation and verification of software, hardware, and methodological complexes for modeling the joint operation of the "marine thruster - hull - power plant" system.

About the Authors

A. V. Mesropyan
Ufa State Aviation Technical University (USATU)
Russian Federation

Arsen V. Mesropyan - Dr. Sci. (Technical), Prof., Head of the Department of Theoretical Mechanics.
12 K. Marx St., Ufa 450008.



E. A. Platonov
Ufa State Aviation Technical University (USATU)
Russian Federation

Evgenij A. Platonov - computer's operator Department of Applied Hydromechanics.
12 K. Marx St., Ufa 450008.



R. R. Rakhmatullin
Ufa State Aviation Technical University (USATU)
Russian Federation

Radmir R. Rakhmatullin - Postgrad. (PhD) Student, Department of Applied Hydromechanics.
12 K. Marx St., Ufa 450008.



References

1. Stepanov A. P. Inzhenernye perepravochno-desantnye sredstva SSSR i Rossii // Tekhnika i vooruzhenie: vchera, segodnya, zavtra. 2001. №10. s. 1-13. [Stepanov A. P. Engineering ferry and landing equipment of the USSR and Russia // Equipment and weapons: yesterday, today, tomorrow. 2001. No. 10. pp. 1-13. (In Russ.)]

2. Antonenko S. V. Sudovye dvizhiteli: uchebnoe posobie. Vladivostok: Iz-vo DVGTU, 2007. 126 s. [Antonenko S.V. Ship movers: a training manual. Vladivostok: Because of DVGTU, 2007. 126 p. (In Russ.)]

3. Emel'yanenko N. F. Hodkost' vodoizmeshchayushchih morskih sudov: uchebnoe posobie. - Vladivostok. Iz-vo Dal'rybvtuz, 2004. 249 s. [Emelianenko N. F. The propulsion of displacement ships: a training manual. - Vladivostok. Because of Dalrybvtuz, 2004. 249 p. (In Russ.)]

4. Veretennikov A. I. Osobennosti rascheta soprotivleniya dvizheniyu boevoj kolesnoj mashiny na plavu / A. I. Veretennikov, YU. M. Mushchinskij, A. V. Nefyodov // Mekhanika ta mashinobuduvannya. 2009. №2. S. 11-16. [Veretennikov A.I. Features of calculating the resistance to the movement of a combat wheeled vehicle afloat / A.I. Veretennikov, Yu. M. Mushchinsky, A.V. Nefyodov // Mechanics and machine-building. 2009. No. 2. pp. 11-16. (In Russ.)]

5. Simulation of amphibious vehicle water resistance based on fluent / Zhangxia Guo, et. al. // International Conference on Materials Engineering and Information Technology Applications. 2015. Vol.10, No. 1. pp. 485-489.

6. Nakisa M. RANS simulation of viscous flow around hull of multipurpose amphibious vehicle / М. Nakisa, А. Maimin, А. Yasser, F. Behrouzi, A. Tarmizi // International Journal of Mechanical and Mechatronics Engineering. 2014. Vol. 8, No. 2. pp. 298-302.

7. Simulation of amphibious vehicle water resistance based on fluent / Xiaochun Pan, et. al. // International Conference on Materials Engineering and Information Technology Applications. 2015. pp. 485-489.

8. Filatov V. V. Gidrodinamicheskoe issledovanie perspektivnoj bystrohodnoj amfibijnoj mashiny malogo klassa // Vestnik grazhdanskih inzhenerov. 2017. №2 (61). S. 219-223. [Filatov V.V. Hydrodynamic study of a promising high-speed amphibious small-class machine // Bulletin of Civil Engineers. 2017. No. 2 (61). pp. 219-223. (In Russ.)]

9. Hrenov I. O. Metod rascheta sily soprotivleniya dvizheniyu na vode amfibijnyh kolesnyh i gusenichnyh mashin s ispol'zovaniem programmnogo kompleksa ANSYS CFX // ZHurnal avtomobil'nyh inzhenerov. 2018. №1. S. 3133. [Khrenov I.O. A method for calculating the resistance to water movement of amphibious wheeled and tracked vehicles using the ANSYS CFX software package // Journal of Automotive Engineers. 2018. No. 1. pp. 31-33. (In Russ.)]

10. Piyush A. Stability and drag analysis of wheeled amphibious vehicle using CFD and model testing techniques // Applied Mechanics and Materials Vols. 592-594. 2014. pp. 1210-1219.

11. Nakisa M. Hydrodynamic resistance analysis of new hull design for multipurpose amphibious vehicle applying with finite volume method / М. Nakisa, А. Maimin, А. Yasser, F. Behrouzi, A. Tarmizi // Journal Teknologi (Sciences & Engineering0 74:5. 2015. pp. 73-76.

12. Guo Z., Pan Y., Zhang H., Wang Y. Numerical simulation of an amphibious vehicle sailing resistance / Z. Guo, Y. Pan, H. Zhang, Y. Wang // Internal Journal of Computer Science Issues. 2013. Vol. 10, Issue 1, No. 1.]) p. 3336.

13. Hejfec L. L. Grebnye vinty dlya katerov - 2-e izd., pererab. i dop. L.: Sudostroenie, 1980. 200s. [Kheifets L. L. Propellers for boats - 2nd ed., Revised. and add. L.: Shipbuilding, 1980. 200 p. (In Russ.)]

14. Basin A. M. Rukovodstvo po raschetu i proektirovaniyu grebnyh sudov vnutrennego plavaniya. L.: Iz-vo «Transport», 1977. 269 s. [Basin A.M. Guidelines for the calculation and design of rowing inland navigation vessels. L.: Publishing house of the Transport, 1977. 269 p. (In Russ.)]

15. Stepanov A. P. Proektirovanie amfibijnyh mashin - M.: Megalion, 2007. 420 s. [Stepanov A.P. Design of amphibious machines - M .: Megalion, 2007. 420 p. (In Russ.)]

16. Korol' YU. M. Modelirovanie raboty grebnogo vinta v nasadke v kosom nabegayushchem potoke / YU. M. Korol', A. S. Brazhko // Zbirnik naukovih prac' nuk. 2013. №1. S. 30-36. [Korol Yu. M. Modeling the operation of the propeller in the nozzle in an oblique oncoming flow / Yu. M. Korol, A. S. Brazhko // Zbirnik naukovyh prts nuk. 2013. No 1. pp. 30-36. (In Russ.)]

17. Martirosov G. G. Proektirovanie vodohodnyh dvizhitelej s grebnymi vintami dlya amfibijnyh mashin. - M.: MADI, 2006. 87 s. [Martirosov G. G. Design of navigable propellers with propellers for amphibious machines. M .: MADI, 2006. 87 p. (In Russ.)]

18. Abdulin A. YA. Osobennosti chislennogo modelirovaniya rabochego processa vodometnyh dvizhetelej / A. YA. Abdulin, A. V. Mesropyan // Vestnik UGATU. 2013. №3 (56). S. 130-137. [Abdulin A. Ya. Features of the numerical modeling of the working process of water-jet propulsors / A. Ya. Abdulin, A.V. Mesropyan // Bulletin of USATU. 2013. No3. (56). pp. 130-137. (In Russ.)]

19. Ghassemi H. Calculations of the Hydrodynamic Characteristics of a Ducted Propeller Operating in Oblique Flow /H. Ghassemi, S. Majdfar, H. Foroudzan // Ship Science & Technology. 2017. Vol. 10, No. 20. рp. 31-40.

20. Ghassemi H. Hydrodynamic prediction of the ducted propeller by CFD solver / H. Ghassemi, S. Majdfar, H. Foroudzan, A. Ashrafi // Journal of Marine Science and Technology. 2017. Vol. 25, No. 3. рp. 268-275.


Review

For citations:


Mesropyan A.V., Platonov E.A., Rakhmatullin R.R. Modeling working processes of the marine thruster of the PMM-2M ferry-bridge machine. Herald of Dagestan State Technical University. Technical Sciences. 2020;47(3):16-25. (In Russ.) https://doi.org/10.21822/2073-6185-2020-47-3-16-25

Views: 660


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)