Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

DETERMINATION OF THE OPTIMAL DISTRIBUTION OF SUPPORTS IN THE FLOOR SLABS OF IN-DUSTRIAL BUILDINGS USING STOCHASTIC METHODS

https://doi.org/10.21822/2073-6185-2020-47-1-138-146

Abstract

Abstract. Aim. The purpose of the study is to determine the optimal location of supports used in the floor slab of an industrial building.

Method. In order to determine the optimal arrangement of the columns, a Monte Carlo algorithm was used in combination with the finite element method. The calculation was carried out on the basis of the theory of elastic thin plates.

Results. The article presents a solution to the problem of determining the optimal location of a given number of point-supports of a floor slab n from the condition of minimum objective function. For the objective function, the maximum deflection of the slab, the potential energy of deformation and the flow rate of reinforcement were selected as variables. The selection of reinforcement was carried out in accordance with current generally-accepted standards for the design of reinforced concrete structures. The calcu-lations were performed using a program developed by the authors in the MATLAB computing environment. The results are given for n = 3,4,5. The algorithm, which has been modified for a large num-ber of supports n, is presented alongside a comparison of the basic and modified algorithm with n = 25. The possibility of a significant reduction in plate deformations with an irregular arrangement of supports compared to a regular distribution is shown.

Conclusion. A method is proposed for finding the rational locations of point supports for a floor slab for a given quantity from the condition of min-imum deflection, potential strain energy and consumption of reinforcement materials based on the Monte Carlo method. This technique is suitable for arbitrary slab configurations and arbitrary loads. A modification of the algorithm is presented that is suitable for a large number of supports. The test example shows that the maximum deflection can be reduced by 42% when using an irregular support configuration compared to regular column spacing. In the considered examples, the position of all the supports was previously considered unknown, but the developed algorithm easily allows for stationary supports, whose position does not change.

About the Authors

E. A. Efimenko
Don State Technical University
Russian Federation

Assistant

11 Gagarin pl., Rostov-on-Don 344000



M. Yu. Bekkiev
High-Mountain Geophysical Institute
Russian Federation

Dr. Sci., (Technical), Prof., Institute Director

22 Lenin Ave., Nalchik 360003



D. R. Mayilyan
Don State Technical University
Russian Federation

Dr. Sc. (Technical), Prof., Head of the Department

11 Gagarin pl., Rostov-on-Don 344000



A. S. Chepurnenko
Don State Technical University
Russian Federation

Cand. Sc. (Technical), Assoc. Prof.

11 Gagarin pl., Rostov-on-Don 344000



References

1. G.V. Vasil'kov. Evolyutsionnyye zadachi stroitel'noy mekhaniki: sinergeticheskaya paradigm [Evolutionary tasks of structural mechanics: a synergetic paradigm]. Rostov-on-Don: InfoServis, 2003. 179 p.(In Russ.)]

2. G.V. Vasil'kov. Teoriya adaptivnoy evolyutsii mekhanicheskikh system [Theory of adaptive evolution of mechanical systems]. Rostov-on-Don: Terra-Print, 2007. 248 p.(In Russ.)]

3. V.I. Andreev, E.V. Barmenkova, I.A. Potekhin. Way of optimization of stress state of elements of concrete structures. Procedia Engineering. 2016. Vol. 153. pp. 37-44. (In Russ.)]

4. S. Yazyev, M. Bekkiev, E. Peresypkin, M. Turko. Task for a Prestressed Reinforced Concrete Cylinder with Ex-ternal Reinforcement and Cylinder Optimization by Varying the Modulus of Elasticity. Energy Management of Municipal Transportation Facilities and Transport. Springer, Cham, 2017. pp. 869-876. In Russ.)]

5. V. I. Andreev. About one way of optimization of the thick-walled shells. Applied mechanics and materials. Trans Tech Publications, 2012. Vol. 166. pp. 354-358 (In Russ.)]

6. V.I. Andreev. Optimization of thick-walled shells based on solutions of inverse problems of the elastic theory for inhomogeneous bodies. Computer Aided Optimum Design in Engineering. 2012. pp. 189-202. (In Russ.)]

7. I.N. Serpik. Optimization of reinforced concrete structures based on evolutionary search: monograph. Bryansk: Publishing House of BSTU, 2018. 200 p.(In Russ.)]

8. N. Serpik, K. V. Muymarov, S. N. Shvachko. Optimizatsiya zhelezobetonnykh plit s ispol'zovaniyem genetich-eskogo algoritma [Optimization of reinforced concrete slabs using the genetic algorithm]. Structural mechanics and calculation of structures. 2015. No. 1. pp. 30-36. (In Russ.)]

9. G. Tamrazyan. Optimization of parameters of reinforced concrete plates under different boundary conditions [Op-timizatsiya parametrov zhelezobetonnykh plastin pri raznykh krayevykh usloviyakh]. News of universities. Con-struction and architecture, 1986. No. 2. pp. 46-49. (In Russ.)]

10. F. Ahmadi-Nedushan, A. Hojjatli. Optimum cost design of reinforced concrete slabs using neural dynamics mod-el. Engineering Applications of Artificial Intelligence, 2005. Vol. 18. No. 1. pp. 65-72. (In Russ.)]

11. A.G. Tamrazyan, E.A. Filimonova Struktura tselevoy funktsii pri optimizatsii zhelezobetonnykh plit s uchetom konstruktsionnoy bezopasnosti [The structure of the objective function in the optimization of reinforced concrete slabs taking into account structural safety]. Promyshlennoye i grazhdanskoye stroitel'stvo. 2013. No. 9. Pp. 14-15.

12. A.G. Tamrazyan, E.A. Filimonova Optimal'noye proyektirovaniye zhelezobetonnykh plit perekrytiy po kriteriyu minimal'noy stoimosti [Optimal design of reinforced concrete floor slabs by the criterion of minimum cost]. Promyshlennoye i grazhdanskoye stroitel'stvo. 2016. No. 7. pp. 35-40. (In Russ.)]

13. A.G. Tamrazyan, E.A. Filimonova. Optimizatsiya zhelezobetonnoy plity perekrytiya po kriteriyu minimal'noy stoimosti s uchetom analiza riska [Optimization of reinforced concrete floor slabs according to the criterion of minimum cost, taking into account risk analysis]. Promyshlennoye i grazhdanskoye stroitel'stvo. 2014. No. 9. pp. 19-22. (In Russ.)]

14. A.G. Tamrazyan, E.A. Filimonova Kriterii formirovaniya kompleksnoy tselevoy funktsii zhelezobetonnoy plity s uchetom analiza riska [Criteria for the formation of a complex objective function of a reinforced concrete slab tak-ing into account risk analysis]. Vestnik MGSU. 2013. No. 10. pp. 68-74. (In Russ.)]

15. E.A. Filimonova. Metodika poiska optimal'nykh parametrov zhelezobetonnykh konstruktsiy s uchetom riska ot-kaza [Methods of searching for optimal parameters of reinforced concrete structures taking into account the risk of failure]. Vestnik MGSU. 2012. No. 10. pp. 128-133.(In Russ.)]

16. T.P. Romanova. Nesushchaya sposobnost' i optimizatsiya trekhsloynykh zhelezobetonnykh kol'tsevykh plastin, opertykh po vnutrennemu konturu [Bearing capacity and optimization of three-layer reinforced concrete ring plates supported on the inner contour]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2015. No. 3. pp. 114-132. (In Russ.)]

17. T.G. Zurayev. Metod opredeleniya parametrov ravnoprochnoy konsol'noy plastiny peremennoy tolshchiny pri za-dannykh dopuskayemykh napryazheniyakh, nagruzkakh i konstruktivnykh ogranicheniyakh [The method of de-termining the parameters of an equal-strength cantilever plate of variable thickness at specified permissible stress-es, loads and design constraints]. Uchenyye zapiski TSAGI. 1974. No. 1. pp. 60-65.(In Russ.)]

18. V. A. Yarov, Ye. V. Prasolenko. Proyektirovaniye kruglykh monolitnykh plit perekrytiy ratsional'noy struktury s ispol'zovaniyem topologicheskoy i parametricheskoy optimizatsii [Designing round monolithic floor slabs of ra-tional structure using topological and parametric optimization]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2011. No. 3. рp. 89-102. (In Russ.)]

19. V. A. Yarov, Ye. V. Prasolenko. Monolitnyye rebristyye perekrytiya kruglykh v plane vysotnykh zdaniy [Mono-lithic ribbed ceilings round in terms of high-rise buildings]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2010. No. 3. рp. 117-126. (In Russ.)]

20. N.P. Abovskiy et al. Inzhenernyye aspekty optimizatsii konstruktsiy [Engineering aspects of structural optimiza-tion]. Problemy optimal'nogo proyektirovaniya sooruzheniya: doklady I Vserossiyskoy konferentsii. Novosibirsk: NGASU. 2008. pp. 30-39. (In Russ.)]


Review

For citations:


Efimenko E.A., Bekkiev M.Yu., Mayilyan D.R., Chepurnenko A.S. DETERMINATION OF THE OPTIMAL DISTRIBUTION OF SUPPORTS IN THE FLOOR SLABS OF IN-DUSTRIAL BUILDINGS USING STOCHASTIC METHODS. Herald of Dagestan State Technical University. Technical Sciences. 2020;47(1):138-146. (In Russ.) https://doi.org/10.21822/2073-6185-2020-47-1-138-146

Views: 494


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)