Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

THERMOELECTRIC HEAT EXCHANGER - HEAT TRANSMISSION INTENSIFIER FOR MAINTAINING A THERMAL REGIME IN ELECTRONIC SYSTEMS

https://doi.org/10.21822/2073-6185-2020-47-1-48-57

Abstract

Abstract. Aim. The article presents a thermoelectric heat exchanger / heat transfer intensifier design for ensuring the thermal regime of electronic equipment located in external installations.

Method. Methods for modelling heat exchange processes were applied.

Result. A thermoelectric system is proposed, consisting of a heat exchanger / heat transfer intensifier component located in an external installation. In structural terms, the external installation comprises a compartment disposing electronic heatgenerating components, in which are located channels for ventilating external air, while a second compartment contains elements that require to be sealed from external influences, in cluding contact with external cooling air. A mathematical model is provided for determining the temperature of air flows from the heatexchange surfaces of a thermoelectric system (TES), as well as the limiting length of a thermoelectric system to achieve equal output temperature at given supply currents of thermoelectric batteries.

Conclusion. On the basis of the conducted studies, it is concluded that a longer thermoelectric system for ensuring the intensification mode corresponds to an increased difference in the temperature of the coolant at the inlet. The temperature of the air flow at the outlet becomes lower with a further increase in length due to the thermoelectric heat exchanger entering the operating mode of the thermoelectric refrigeration unit.

About the Author

Sh. A. Yusufov
Daghestan State Technical University, 70 I. Shamil Ave., Makhachkala 367026
Russian Federation
Cand. Sci. (Technical), Ass. Prof.


References

1. Ismailov T.A., Gadzhiyev KH.M. Okhlazhdeniye radioelektronnykh sistem: uchebnoye posobiye. - Makhachkala: IPTS DGTU, 2012. – 165 s. [Ismailov T.A., Gadzhiev H.M. Cooling of electronic systems: a training manual. - Makhachkala: CPI DGTU, 2012 . 165 p. (In Russ.)]

2. Ismailov T.A., Gadzhiyev KH.M., Nezhvedilov T.D. Termostabilizatsiya mikroelektronnoy apparatury pri pomoshchi poluprovodnikovykh termoelektricheskikh ustroystv.- Makhachkala: IPTS DGTU, 2013. – 149 s. [Is-mailov T.A., Gadzhiev H.M., Nezhvedilov T.D. Thermostabilization of microelectronic equipment using semi-conductor thermoelectric devices. - Makhachkala: CPI DGTU, 2013. 149 p. (In Russ.)]

3. Rashidkhanov A.T., Yusufov SH.A. Sistema obespecheniya teplovogo rezhima shkafa telekommunikatsionnogo oborudovaniya. / Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekh-nicheskiye nauki. 2017;44(2):87-96. DOI:10.21822/2073-6185-2017-44-2-87-96 [Rashidkhanov A.T., Yusufov Sh.A. The system for ensuring the thermal regime of the telecommunication equipment cabinet. / Herald of Daghestan State Tech-nical University. Technical science. 2017; 44 (2): 87-96. DOI: 10.21822 / 2073-6185-2017-44-2-87-96. (In Russ.)]

4. Ismailov T.A. Termoelektricheskiye poluprovodnikovyye ustroystva i intensifikatory teplopere-dachi. S-Pb.: Politekhnika, 2005. [Ismailov T.A. Thermoelectric semiconductor devices and heat transfer intensifiers. St. Petersburg: Polytechnic, 2005. . (In Russ.)]

5. Yusufov SH.A., Ibragimova A.M., Peredkov S.A., Sarkarov T.E., Mitarov R.G. Termoelektricheskaya sistema dlya obespecheniya teplovogo rezhima modul'nogo elektronnogo oborudovaniya. Vestnik Dagestanskogo gosu-darstvennogo tekhnicheskogo universiteta. Tekhnicheskiye nauki. 2019;46(4):53-64. https://doi.org/10.21822/2073-6185-2019-46-4-53-64 [Yusufov Sh.A., Ibragimova A.M., Peredkov S.A., Sarka-rov T.E., Mitarov R.G. Thermoelectric system to ensure the thermal regime of modular electronic equipment. Herakd of the Daghestan State Technical University. Technical Science. 2019; 46 (4): 53-64. https://doi.org/10.21822/2073-6185-2019-46-4-53-64. (In Russ.)]

6. Patent RF № 2203523 Shkaf dlya okhlazhdeniya radioelektronnoy apparatury / Ismailov T.A., Tse-khanskaya T.E., Salmanov N.R., Yusufov SH.A. [RF patent No. 2203523 Cabinet for cooling electronic equipment / Ismailov T.A., Tsekhanskaya T.E., Salmanov N.R., Yusufov Sh.A. (In Russ.)]

7. Patent RF №369860. Ustroystvo okhlazhdeniya apparatury / Voronin G.I., Antonov YU.V., Fedorov V.N., Chizhikov YU.V., Dryn' V.P. [RF patent No. 369860. Equipment cooling device / Voronin G.I., Antonov Yu.V., Fedorov V.N., Chizhikov Yu.V., Drin V.P. (In Russ.)]

8. Patent RF №1755398 Ustroystvo dlya okhlazhdeniya teplovydelyayushchey apparatury. / Sidorin V.I. [RF patent №1755398 A device for cooling fuel equipment. / Sidorin V.I. (In Russ.)]

9. Patent RF №1287699 Ustroystvo dlya okhlazhdeniya teplovydelyayushchey apparatury. /Abrosimov A.I. [RF pa-tent No. 1287699 A device for cooling fuel equipment. / Abrosimov A.I. (In Russ.)]

10. Patent RF №1595321 Ustroystvo dlya okhlazhdeniya teplovydelyayushchey apparatury. / Kalishin N.A., Kolesni-kov A.A., Maksimova M.A., Ul'yanov N.A. [RF patent No. 1595321 Device for cooling fuel equipment. / Kalish-in N.A., Kolesnikov A.A., Maksimova M.A., Ulyanov N.A. (In Russ.)]

11. Razrabotka i modelirovaniye mikrokanal'nykh sistem okhlazhdeniya [Tekst]: monografiya / D.A. Ko-novalov, I.G. Drozdov, D.P. Shmatov, S.V. Dakhin, N.N. Kozhukhov //Voronezh: VGTU, 2013. – 222 s. [Development and modeling of microchannel cooling systems [Text]: monograph / D.A. Konovalov, I.G. Drozdov, D.P. Shma-tov, S.V. Dakhin, N.N. Kozhukhov // Voronezh: VSTU, 2013. 222 p. (In Russ.)]

12. Proyektirovaniye i ispytaniya okhladiteley silovykh poluprovodnikovykh priborov [Tekst] / C.A. Panfilov V.M. Kalikanov, YU.A. Fomin, A.S. Savanin// // Pribory i sistemy Upravleniye, kontrol', diagnostika. 2008 №3. S. 41-43. [Design and testing of power semiconductor device coolers [Text] / C.A. Panfilov, V.M. Kalikanov, Yu.A. Fomin, A.S. Savanin // Devices and Systems. Management, control, diagnostics, 2008. No. 3. рр. 41-43. (In Russ.)]

13. Arnaud, L., Ludovic, G., Mouad, D., Hamid, Z., & Vincent, L. (2014). Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle. Energies, 7(8), 5273–5290. doi:10.3390/en7085273

14. Chen, G.; Dresselhaus, M.S.; Esfarjani, K.; Ren, Z.F.; Zebarjadi. M. Perspectives on thermoelectrics: From fun-damentals to device applications. Energy Environ. Sci. 2012.

15. Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecoeur, Ph. Efficiency at maximum power of thermally coupled heat engines. Phys. Rev. E 2012, 85, 041144.

16. Das, R. (2013). The Rise of Thermoelectrics. Retrieved February 17, 2014, from Energy Harvesting Journal: http://www.energyharvestingjournal.com/articles/the-rise-of-thermoelectrics-471 00005925.as

17. Haddad, C., Perilhon, C., Danlos, A., Francois, M.-X., & Descombes, G. (2014). Some Efficient Solutions to Recover Low and Medium Waste Heat: Competitiveness of the Thermoacoustic Technology. Energy Procedia, 50, 1056–1069. doi:10.1016/j.egypro.2014.06.125

18. Washington, DC.: DOE Vehicle Technologies Office. Retrieved from http://energy.gov/sites/prod/files/2014/07/f17/ace082_cleary_2014_o.pdf

19. Jovovic, V. (2014). Thermoelectric Waste Heat Recovery Program for Passenger Vehicles. In 2014 Annual Mer-it Review and Peer Evaluation Meeting. Washington, DC.: DOE Vehicle Technologies Office. Retrieved from http://energy.gov/sites/prod/files/2014/07/f17/ace080_barnhart_2014_o.pdf


Review

For citations:


Yusufov Sh.A. THERMOELECTRIC HEAT EXCHANGER - HEAT TRANSMISSION INTENSIFIER FOR MAINTAINING A THERMAL REGIME IN ELECTRONIC SYSTEMS. Herald of Dagestan State Technical University. Technical Sciences. 2020;47(1):48-57. (In Russ.) https://doi.org/10.21822/2073-6185-2020-47-1-48-57

Views: 534


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)