THERMOELECTRIC SYSTEM FOR PROVIDING A HEAT REGIME FOR MODULAR ELECTRONIC EQUIPMENT
https://doi.org/10.21822/2073-6185-2019-46-4-53-64
Abstract
Objectives. The article discusses a thermoelectric cooling system (TECS) for ensuring the thermal regime of modular electronic equipment (MEE) located in a cabinet. The main task of the experimental studies is to determine the temperature dependencies of the air-cooled heat-generating elements of a printed circuit board simulator according to TEСS parameters.
Method. In order to conduct experimental studies of a thermoelectric cooling system for printed circuit boards in cassette units using a thermoelectric cooling system, a prototype designed and manufactured in the laboratory was studied on a testing stand.
Result. The directions of constructive solutions for using a TECS device are presented along with a description of the testing stand and procedure. The dependencies of the temperature of the printed circuit board simulator on the heat power taken away by the TECS are considered along with the temperatures of hot and cold junctions, the air flow velocity and the distance between the electronic boards.
Conclusion. The operability of the developed MEE cooling system is confirmed by the experimental studies; the specified cooling method has advantages over conventional forced or natural method and can achieve the temperatures required by the technical operating conditions; when choosing a fan to provide forced circulation of the air flow in the system, it is necessary to take into account the speed of the air flow in the channel; it is necessary to reserve the power of the power supply for the TECS operation in proportion to the power of the heat sources. An important additional point for the functioning of the thermoelectric cooling device is the necessity of ensuring the effective removal of heat from the hot junctions of the thermoelectric module without which it is impossible to use the proposed system.
About the Authors
Sh. A. YusufovRussian Federation
Cand. Sci. (Technical), Ass. Prof., Department of Theoretical and General Electrical Engineering,
70 I. Shamil Ave., Makhachkala 367026
A. M. Ibragimova
Russian Federation
Applicant, Department of Theoretical and General Electrical Engineering,
70 I. Shamil Ave., Makhachkala 367026
S. A. Peredkov
Russian Federation
Post-graduate student, Department of Theoretical and General electrical engineering,
70 I. Shamil Ave., Makhachkala 367026
T. E. Sarkarov
Russian Federation
Dr. Sci.(Technical), Prof., Department of Theoretical and General electrical engineering,
70 I. Shamil Ave., Makhachkala 367026
R. G. Mitarov
Russian Federation
Dr. Sci. (Technical ), Prof., Department of Physics,
70 I. Shamil Ave., Makhachkala 367026
References
1. Ismailov T.A. Termoelektricheskiye poluprovodnikovyye ustroystva i intensifikatory teploperedachi. S-Pb.: Politekhnika, 2005. [Ismailov T.A. Thermoelectric semiconductor devices and heat transfer intensifiers. St. Petersburg: Polytechnic, 2005. (In Russ)]
2. Ismailov T.A., Gadzhiyev KH.M. Okhlazhdeniye radioelektronnykh sistem: uchebnoye posobiye. - Makhachka-la: IPTS DGTU, 2012. – 165 s. [Ismailov T.A., Gadzhiev H.M. Cooling of electronic systems: a training manual. - Makhachka-la: CPI DGTU, 2012. 165 p. (In Russ)]
3. Ismailov T.A., Gadzhiyev KH.M., Nezhvedilov T.D. Termostabilizatsiya mikroelektronnoy apparatury pri pomoshchi poluprovodnikovykh termoelektricheskikh ustroystv. Makhachkala: IPTS DGTU, 2013. 149 s. [Ismailov T.A., Gadzhiev H.M., Nezhvedilov T.D. Thermostabilization of microelectronic equipment using semiconductor thermoelectric devices. Makhachkala: CPI DGTU, 2013. 149 p. (In Russ)]
4. Rashidkhanov A.T., Yusufov SH.A. Sistema obespecheniya teplovogo rezhima shkafa telekommunikatsi-onnogo oborudovaniya / Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekh-nicheskiye nauki. 2017; 44(2):87-96. DOI:10.21822/2073-6185-2017-44-2-87-96 [Rashidkhanov A.T., Yusufov Sh.A. The system for ensuring the thermal regime of the telecommunication equipment cabinet. / Нerald of Dagestan State Technical University. Technical science. 2017; 44 (2): 87-96. DOI: 10.21822/2073-6185-2017-44-2-87-96 (In Russ)]
5. Patent RF № 2203523 Shkaf dlya okhlazhdeniya radioelektronnoy apparatury / Ismailov T.A., Tse-khanskaya T.E., Salmanov N.R., Yusufov SH.A. [RF patent No. 2203523 Cabinet for cooling electronic equipment / Ismailov T.A., Tsekhanskaya T.E., Salmanov N.R., Yusufov Sh.A. (In Russ)]
6. Patent RF №369860. Ustroystvo okhlazhdeniya apparatury / Voronin G.I., Antonov YU.V., Fedo-rov V.N., Chizhikov YU.V., Dryn' V.P. [RF patent No. 369860. Equipment cooling device / Voronin G.I., Antonov Yu.V., Fedorov V.N., Chizhikov Yu.V., Drin V.P. (In Russ)]
7. Patent RF №1755398 Ustroystvo dlya okhlazhdeniya teplovydelyayushchey apparatury. / Sidorin V.I. [RF patent №1755398 Device for cooling heat-generating equipment. / Sidorin V.I. (In Russ)]
8. Patent RF №1287699 Ustroystvo dlya okhlazhdeniya teplovydelyayushchey apparatury. /Abrosimov A.I. [RF patent No. 1287699 A device for cooling fuel equipment. / Abrosimov A.I. (In Russ)]
9. Patent RF №1595321 Ustroystvo dlya okhlazhdeniya teplovydelyayushchey apparatury. / Kalishin N.A., Kolesnikov A.A., Maksimova M.A., Ul'yanov N.A. [RF patent No. 1595321 A device for cooling heat-generating equipment. / Kalishin N.A., Kolesnikov A.A., [Maksimova M.A., Ulyanov N.A. (In Russ)]
10. Khanov G. V. Al'ternativnyy sposob okhlazhdeniya protsessorov v komp'yutere / G. V. Khanov, Ye. B. Belkina // Ekologiya i zhizn' : sb. st. XVIII mezhdunar. nauch.-prakt. konf., aprel' 2010 g. / Privolzh-skiy Dom znaniy [i dr.]. – Penza, 2010. – C. 137–139. [Khanov, G.V. An alternative method of cooling processors in a computer / G.V. Khanov, E. B. Belkina // Ecology and life: collection of books. Art. XVIII international scientific-practical Conf., April 2010 / Volga House of Knowledge [et al.]. Penza, 2010 pp. 137–139. (In Russ)]
11. Razrabotka i modelirovaniye mikrokanal'nykh sistem okhlazhdeniya [Tekst]: monografiya / D.A. Ko-novalov, I.G. Drozdov, D.P. Shmatov, S.V. Dakhin, N.N. Kozhukhov //Voronezh: VGTU, 2013. – 222 s. [Development and modeling of microchannel cooling systems [Text]: monograph / D.A. Konovalov, I.G. Drozdov, D.P. Shmatov, S.V. Dakhin, N.N. Kozhukhov // Voronezh: VSTU, 2013 . 222 p. (In Russ)]
12. Proyektirovaniye i ispytaniya okhladiteley silovykh poluprovodnikovykh priborov [Tekst] / C.A. Panfilov, V.M. Kalikanov, YU.A. Fomin, A.S. Savanin // Pribory i sistemy. Upravleniye, kon-trol', diagnostika, 2008. – № 3. – S. 41-43. [Design and testing of power semiconductor device coolers [Text] / C.A. Panfilov, V.M. Kalikanov, Yu.A. Fomin, A.S. Savanin // Devices and Systems. Management, control, diagnostics, 2008. No. 3. pp. 41-43. (In Russ)]
13. Arnaud, L., Ludovic, G., Mouad, D., Hamid, Z., & Vincent, L. (2014). Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle. Ener-gies, 7 (8), 5273- 5290. doi: 10.3390/en7085273
14. Cleary, M. (2014). Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery. In 2014 Annual Merit Review and Peer Evaluation Meeting. Washington, DC .: DOE Vehicle Technologies Office. Retrieved from http://energy.gov/sites/prod/files/2014/07/f17/ace082_cleary_2014_o.pdf
15. Das R. (2013). The Rise of Thermoelectrics. Retrieved February 17, 2014, from Energy Harvesting Jour-nal: http://www.energyharvestingjournal.com/articles/the-rise-of-thermoelectrics-47100005925.as
16. Haddad C., Périlhon C., Danlos A., François M.-X., & Descombes, G. (2014). Some Efficient Solutions to Recover Low and Medium Waste Heat: Competitiveness of the Thermoacoustic Technology. Energy Procedia, 50, 1056-1069. doi: 10.1016 / j.egypro.2014.06.125
17. Jovovic V. (2014). Thermoelectric Waste Heat Recovery Program for Passenger Vehicles. In 2014 Annual Merit Review and Peer Evaluation Meeting. Washington, DC.: DOE Vehicle Technologies Office. Retrieved from http://energy.gov/sites/prod/files/2014/07/f17/ace080_barnhart_2014_o.pdf
18. Chen G .; Dresselhaus, M.S .; Esfarjani, K .; Ren, Z.F .; Zebarjadi. M. Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 2012.
19. Hadjistassou C .; Kyriakides, E .; Georgiou, J. Designing high efficiency segmented thermoelectric genera-tors. Energy Convers. Manag. 2013, 66, 165-172.
20. Apertet Y .; Ouerdane, H .; Goupil, C .; Lecoeur, Ph. Efficiency at maximum power of thermally coupled heat engines. Phys. Rev. E 2012, 85, 041144.
Review
For citations:
Yusufov Sh.A., Ibragimova A.M., Peredkov S.A., Sarkarov T.E., Mitarov R.G. THERMOELECTRIC SYSTEM FOR PROVIDING A HEAT REGIME FOR MODULAR ELECTRONIC EQUIPMENT. Herald of Dagestan State Technical University. Technical Sciences. 2019;46(4):53-64. (In Russ.) https://doi.org/10.21822/2073-6185-2019-46-4-53-64