Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

FEATURES OF STRESSES AT THE APEX OF AN ELASTIC WEDGE, SUPPORTED BY A THIN FLEXIBLE COATING ON THE SIDES

https://doi.org/10.21822/2073-6185-2019-46-3-159-166

Abstract

Objectives To study the problem of determining the degree of stress at the apex of a wedge-shaped area in cases where the sides (or one of them) are covered with a thin flexible coating.

Method It is assumed that the coating is not stretchable. On the other side of the wedge-shaped area, the same coating is assumed to be present; it is either fixed, stress-free or in smooth contact with a rigid base. Mathematically, the problem is reduced to the task of determining the roots of characteristic transcendental equations arising from the existence of a nontrivial solution to the system of linear homogeneous equations.

Results Values for the specific characteristics of the radial component of a stress tensor are determined for different combinations of boundary conditions and solution angles. In particular, the angles at which the singular behaviour of stresses occurs are determined. The case is considered when a special boundary condition is given on the edge surface, simulating the overlay. Characteristic equations are obtained to determine the index of the degree dependency of the asymptotic solution in its vicinity for four variants of boundary conditions. In two cases, transcendental equations are obtained, which are solved numerically.

Conclusion Calculations of the first positive roots of the equations depending on the angle of the edge solution and Poisson's ratio are presented. The values of the angles, at which the singular behaviour of stresses occurs, are determined. In the case of a combination of boundary conditions (III – IV), the singular stress behaviour is observed for the angle ???? = ????/8, while in the case of (III – III) this value is equal to ????/4. 

About the Authors

B. V. Sobol'
Don State Technical University
Russian Federation

Dr. Sci. (Technical), Prof., Department of Information Technologies

1 Gagarin Square, Rostov-on-Don 344010



A. N. Soloviev
Don State Technical University
Russian Federation

 Dr. (Physics and Mathematical)), Prof., Head of the Department of Theoretical and Applied Mechanics

1 Gagarin Square, Rostov-on-Don 344010



M. M. Payzulaev
Daghestan State Technical University
Russian Federation

Cand. Sci. (Technical), Seniorlecturer, Department of Resistance of Materials, Theoretical and Building Mechanics

70 I. Shamil Ave., Makhachkala 367026



E. V. Rashidova
Don State Technical University
Russian Federation

Cand. Sci. ( Physics and Mathematical), Prof., Department of Information Technologies

1 Gagarin Square, Rostov-on-Don 344010



G. M. Murtazaliev
Daghestan State Technical University
Russian Federation
70 I. Shamil Ave., Makhachkala 367026


References

1. Aksentyan O.K. Osobennosti napryazhenno-deformirovannogo sostoyaniya plity v okrestnosti rebra. – Prikladnaya matematika i mekhanika. - 1967, t.31, vyp.1. [Aksentyan O.K. Features of the stress-strain state of the plate in the vicinity of the rib. - Applied mathematics and mechanics. 1967, t.31, Issue 1. (In Russ)]

2. Parton V.Z., Perlin P.I. Metody matematicheskoy teorii uprugosti - M.: Nauka, 1981. 688 s. [Parton V.Z., Perlin P.I. Methods of the mathematical theory of elasticity - M .: Nauka, 1981. 688 p. (In Russ)]

3. Maz'ya V.G., Plamenevskiy B.A. O koeffitsiyentakh v asimptotike resheniy ellipticheskikh krayevykh zadach v oblastyakh s konicheskimi tochkami. - Math. Nachr. 1977, t.76. [Mazya V.G., Plamenevsky B.A. On coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. - Math. Nachr. 1977, Vol. 76. (In Russ)]

4. Kalandiya A.I. Matematicheskiye metody dvumernoy uprugosti. - M.: Nauka, Gl. red. fiz-mat litera-tury. 1973. –304 s. [ Kalandia A.I. Mathematical methods of two-dimensional elasticity. - M.: Science, Ch. ed. physical mat literature tours. 1973. 304 p. (In Russ)]

5. Belokon' A.V. - Kolebaniya i volny v poluogranichennykh i ogranichennykh telakh: dissertatsiya ... dok-tora fizikomatematicheskikh nauk: 01.02.04. - Rostov-na -Donu, 1987. - 450 s.: il. Mekhanika deformiruyemogo tverdogo tela [Belokon A.V. - Oscillations and waves in semi-limited and limited bodies: dissertation ... Doctors of physical and mathematical sciences: 02/01/04. - Rostov-on-Don, 1987 . 450 p.: Ill. Mechanics of a deformable solid (In Russ)]

6. B. Sobol, A. Soloviev, A. Krasnoschekov. (2015). The transverse crack problem for elastic bodies stiffened by thin elastic coating. - ZAMM. Z. Angew. Math. Mech - No. 11. - pp. 1302-1314.

7. B. Sobol, A. Soloviev, E. Rashidova, P. Vasiliev. (2018). Equilibrium state of the internal crack in the infi-nite elastic wedge with thin coating. - ZAMM. Z. Angew. Math. Mech., - No. 98. - pp. 659-674. doi: 10.1002 / zamm.201700246.

8. Aleksandrov V.M., Mkhitaryan S.M. Kontaktnyye zadachi dlya tel s tonkimi pokrytiyami i prosloyka-mi. - M.: Nauka, 1983. – 488 s. [Alexandrov V.M., Mkhitaryan S.M. Contact tasks for bodies with thin coatings and interlayers. M .: Nauka, 1983 . 488 p. (In Russ)]

9. Kim, C.I., Ru, C.-Q., & Schiavone, P. (2013). A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Mathematics and Mechanics of Solids, No. 18 (1). pp. 59–66. doi: 10.1177 / 1081286511435227.

10. Kim, C.I., Schiavone, P. \ & Ru, C.Q. (2013). Effects of boundary reinforcement on local singular fields in linearly elastic materials. - Archives of Mechanics, No. 65 (4). pp. 289-300.

11. Elastic-plasticfracture analyses for pipelinegirthwelds with 3D semiellipticalsurfacecrackssubjectedtolargeplasticbending / Y.M. Zhang, D.K. Yi, Z.M. Xiao, Z.H. Huang, S B. Kumar // Int. J. ofPressureVesselsandPiping. 2013 . Vol. 105-106. pp. 90-102. DOI: 10.1016 / j.ijpvp.2013.03.03.009

12. Chiodo M.S. G., Ruggieri C. J and CTOD assessmentprocedureforcircumferentialsurfacecracksinpipe-sunderbending // Eng. Fract. Mech 2010. Vol. 77 (3). pp. 415-436. DOI: 10.1016 / j.engfracmech.2009.10.00.00

13. Madia M., Arafan D., Zerbst U. Referenceloadsolutionsforplateswithsemiellipticalsurfacecrackssubjectedtobiaxialtensileloading // Int. J. ofPressureVesselsandPiping. p 2014 . Vol. 119. pp. 19- 28. DOI: 10.1016 / j.ijpvp.2014.02.02.004

14. Atroshchenko E., Potapenko S., Glinka G. Stressintensityfactorfor a semi-ellipticalcracksubjectedtoanarbitrarymode I loading // MathematicsandMechanicsofSolids. p2014 p Vol. 19 (3). pp. 289-298. DOI: 10.1177 / 1081286512463573

15. Predan J., Mocilnik V., Gubeljak N. Stressintensityfactorsforcircumferentialsemi-ellipticalsurfacecracksin a hollowcylindersubjectedtopuretorsion // Eng. Fract. Mech p 2013 p Vol. 105. pp 152-168. DOI: 10.1016 / j.engfracmech.2013.03.03.033

16. Linearandnon-linearanalysesforsemi-ellipticalsurfacecracksinpipesunderbending / B. Mechab, B. Seri-er, B.B. Bouiadjra, K. Kaddouri, X. Feaugas // Int. J. ofPressureVesselsandPiping. p2011. p Vol. 88 (1). pp. 57-63. DOI: 10.1016 / j.ijpvp.2010.11.001


Review

For citations:


Sobol' B.V., Soloviev A.N., Payzulaev M.M., Rashidova E.V., Murtazaliev G.M. FEATURES OF STRESSES AT THE APEX OF AN ELASTIC WEDGE, SUPPORTED BY A THIN FLEXIBLE COATING ON THE SIDES. Herald of Dagestan State Technical University. Technical Sciences. 2019;46(3):59-166. (In Russ.) https://doi.org/10.21822/2073-6185-2019-46-3-159-166

Views: 543


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)