STUDY OF A FLOWING-TYPE HEAT TRANSFER INTENSIFIER USED AS PART OF A THERMOELECTRIC SEA WATER DESALINATION SYSTEM
https://doi.org/10.21822/2073-6185-2019-46-3-53-65
Abstract
Objectives To analyse the thermophysical processes in the thermoelectric heat transfer intensifier operating as part of a desalination system based on semiconductor thermoelectric converters.
Method A mathematical model for the design of a desalter containing a thermoelectric heat exchanger, which provides for the use of heat flows by natural thermal conductivity due to so-called heat channels, is proposed. The proposed method of using additional heat sinks on the heat-absorbing side of the device and additional heat sources on the fuel side determines the need for a new mathematical model that differs from the known mathematical models describing heat transfer in the heat transfer flowing-type intensifier.
Results The analysis of modelling results shows that a significant contribution to the temperature field of heat conductors is made when considering the heat transfer over the heat channels. The value of the contribution is the greater, the higher the thermal conductivity of the heat channels and the temperature difference between the heat conductors and the surface of the heat channels. In accordance with their purpose, flow-type thermoelectric heat transfer intensifiers (THTIs) for desalination applications must ensure efficient heat transfer from the cooled fluid flow to the heated fluid flow. The results show that, at a given limited length of the heat exchanger, the use of a thermoelectric battery together with heat channels allows equality of temperatures of heat conductors at the output to be achieved.
Conclusion The modelling results show that, under the operating conditions of the thermal battery in intensifier mode, the length of the heat exchanger shall not exceed the value, at which the temperature of the heat conductor at the outlet becomes equal. The system solution provides the required length of the thermal battery, which allows equality of coolant temperatures to be achieved at the exit from the THTI operation mode. Following the logic of the desalter scheme under consideration, it is obvious that the reduction in the length of the heat exchanger, with all other things being equal, gives a reduction in the mass and size of the device as a whole.
About the Authors
Sh. A. YusufovRussian Federation
70 I. Shamilya Ave., Makhachkala 367026
A. R. Bazaev
Russian Federation
39 A I. Shamilya Ave., Makhachkala 367000
B. A. Bilalov
Russian Federation
70 I. Shamilya Ave., Makhachkala 367026
References
1. Ismailov T.A. Termoelektricheskiye poluprovodnikovyye ustroystva i intensifikatory teploperedachi. - SPb.: Politekhnika. - 2005. - 534 s. [Ismailov T.A. Thermoelectric semiconductor devices and heat transfer intensifiers. - SPb .: Polytechnic. - 2005 . 534 p. (In Russ)]
2. Bulat L.P. Prikladnyye issledovaniya i razrabotki v oblasti termoelektricheskogo okhlazhdeniya v Rossii // Kholodil'naya tekhnika. - 2009. - №7. - S. 34-37. [Bulat L.P. Applied research and development in the field of thermoelectric cooling in Russia // Refrigeration equipment. p2009. pNo. 7. pp. 34-37. (In Russ)]
3. Dreytser G. A., Lobanov I.Ye. Predel'naya intensifikatsiya teploobmena v trubakh za schet iskusstvennoy turbulizatsii potoka //IFZH. 2003. T.76, №1. 46—51 s. [Dreitser G. A., Lobanov I.E. Extreme intensification of heat transfer in pipes due to artificial flow turbulization // IFZh. 2003. Vol. 76, No. 1. pp. 46-51 (In Russ)]
4. Kadirova D. K. Termoelektricheskiy intensifikator teploobmena v trubakh s periodi-cheskimi vystupami // Problemy gidrodinamiki i teploobmena v energeticheskikh ustanovkakh. M.: Izd. MEI. 2003. T.1. 57—60 s. [Kadirova D. K. Thermoelectric intensifier of heat transfer of flow type // Bulletin of DGTU. Technical science. 2017. No2. (In Russ)]
5. Dreitser G. A., Isaev S. A., Lobanov I. E. Calculation of convective heat transfer in pipes with periodic protrusions // Problems of hydrodynamics and heat teploperedachi protochnogo tipa // Vestnik DGTU. Tekhnicheskiye nauki. 2017. №2. [Dreytser G. A., Isayev S. A., Lobanov I. Ye. Raschet konvektivnogo transfer in power plants. M .: Publishing. MPEI. 2003.V.1. pp. 57-60 (In Russ)]
6. Osipov M. I., Olesevich R. K., Olesevich K. A. Eksperimental'noye i chislennoye issledovaniye teplo-obmennykh apparatov shnekovogo tipa //Trudy Vtoroy Rossiyskoy natsional'noy konferentsii po teplomassoobmenu. M.: MEI. 2002. T.6. 159—162 s.; [Osipov M. I., Olesevich R. K., Olesevich K. A. Experimental and numerical study of screw-type heat exchangers // Transactions of the Second Russian National Conference on Heat and Mass Transfer. M .: MPEI. 2002.V.6. pp. 159-162 (In Russ)]
7. Popov I.A., Makhyanov KH.M., Gureyev V.M. Fizicheskiye osnovy i promyshlennoye primeneniye intensifikatsii teploobmena. Pod obshch. Red. YU.F. Gortyshova / Kazan'.2012. Izd. dom «Logos» -559s [Popov I.A., Makhyanov H.M., Gureev V.M. Physical foundations and industrial application of heat transfer intensification. Under the total. Ed. Yu.F. Gortyshova / Kazan. 2012. Ed. Logos house -559p. (In Russ)]
8. Gortyshov YU. F., Olimpiyev V. V., Popov I. A. Effektivnost' promyshlenno effektivnykh in-tensifikatorov teploperedachi (Obzor. Analiz. Rekomendatsii) // Izvestiya RAN, Energetika. 2002. № 3. 102—118 s.; [Gortyshov Yu. F., Olimpiev VV, Popov I. A. Efficiency of industrially effective heat transfer intensifiers (Review. Analysis. Recommendations) // Bulletin of the Russian Academy of Sciences, Energy. 2002. No. 3. pp.102-118 p (In Russ)]
9. Shah, R.K. Compact Heat Exchangers - Recuperators and Regenerators. In Handbook of Energy Efficiency and Renewable Energy. Kreith F., Yogi Goswami D., Chap. 13. eds. CRC Press, Taylor & Francis Group, 2007.
10. Zimparov V. D. Extended performance evaluation criteria for heat transfer surfaces: Heat transfer through ducts with constant wall temperatures // Int. J. Heat Mass Transfer. 2000. v. 43. No.17. pp.3137-3150;
11. Dreitser G. A. Modern problems of cryogenic heat transfer and its enhancement (Generalization of exper-imental results. Practical recommendations and different applications) // Low Temperature and Cryogenic Refrigeration. Dordrecht, Boston, London. Kruger Academic Publications. 2003. pp.201-220;
12. Muhammad Sajid, Ibrahim Hassan, Aziz Rahman. An overview of cooling of thermoelectric devices // School of Mechanical & Manufacturing Engineering (SMME), National University of Sciences & Technology (NUST), Islamabad, Pakistan / Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar. En-ergy. Volume 118, 1 /January 2017, pp. 1035-1043
13. Kazuaki Yazawaa, Ali Shakouria, Terry J. Hendricksb. Thermoelectric heat recovery from glass melt processes // Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA / NASA - Jet Propulsion Laboratory / California Institute of Technology, Pasadena, CA 91109, USA. Volume 185, December 15, 2016, pp. 598-602
14. Ahmed El-Desouky, Michael Carter, Matthieu A. Andre, Philippe M. Bardet, Saniya LeBlanc. Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devic-es // Department of Mechanical & Aerospace Engineering, The George Washington University, USA. Progress in Materials Science. Volume 83, October 2016, pp. 330-382
15. Chhatrasal Gaynera, Kamal K. Kara. Recent advances in thermoelectric materials // Advanced Nanoengineer-ing Materials Laboratory, Materials Science Program, Indian Institute of Technology Kanpur, Kanpur 208016, India / Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India. Applied Energy. Volume 168, April 15, 2016, pp. 65-74
16. T. Zhang. New thinking on modeling of thermoelectric devices // Institute of Northern Engineering, College of Engineering and Mines, University of Alaska Fairbanks, 306 Tanana Drive, Duckering Building, Fairbanks, AK 99775, USA / Renewable and Sustainable Energy Reviews. Volume 38, October 2014, pp. 903-916
17. Elena Otilia Viijogheb, Diana Enescua, Elena Otilia Viijogheb. A review on thermoelectric cooling parameters and performance // Department of Electronics, Telecommunications and Energy, Valahia University of Targoviste, Unirii Avenue 18-20, 130082 Targoviste, Dambovita, Romania / Department of Automatics, Informatics and Electrical Engineering, Valahia University of Targoviste, 130082 Targoviste, Dambovita, Romania. Applied Thermal Engineering. Volume 66, Issues 1-2, May 2014, pp. 15-24
18. Dongliang Zhao, Gang Tan. A review of thermoelectric cooling: Materials, modeling and applications // University of Wyoming, Department of Civil and Architectural Engineering, 1000 E. University Avenue, Dept. 3295, Laramie, WY 82071, USA. Applied Thermal Engineering. Volume 23, Issue 8, June 2003, pp. 913935
19. S. B. Riffat, Xiaoli Ma. Thermoelectrics: a review of present and potential applications // Institute of Build-ing Technology, School of the Built Environment, The University of Nottingham, University Park, Nottingham NG7 2RD, UK. Applied Thermal Engineering. Volume 64, Issues 1-2, March 2014, pp. 252-262.
20. J. Steven Browna, Piotr A. Domanskib. Review of alternative cooling technologies// Department of Mechanical Engineering, Catholic University of America, 620 Michigan Avenue, NE, Washington, DC 20064, USA/ National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA. Applied Thermal Engineering. Volume 63, Issue 1, 5 February 2014, pp. 33-39.
21. Fabio A.S. Mota, Mauro A.S.S. Ravagnani, E.P. Carvalho. Optimal design of plate heat exchangers// Chemical Engineering Graduate Studies Program, State University of Maringa, Av. Colombo, 5790 Maringa, PR, Brazil.
22. Mazen M. Abu-Hader. Plate Heat Exchangers: Recent Achievements // Faculty of Chemical Engineering, Faculty of Engineering Technology, Ltd.-Balka Applied University Address: P. O. Box: 9515 Al-weibedah, 11191, Amman, Jordan. Renewable and Sustainable Energy Reviews. Volume 15, Issue 9, December 2011, pp. 4855-4875.
23. Pavlova I. B. Metody termodinamicheskogo analiza effektivnosti teploenergeticheskikh ustanovok / I. B. Pavlova. — M. : Izd-vo MGTU im. N. E. Baumana, 2011. 112 s. [Pavlova, I. B. Methods of thermodynamic analysis of the efficiency of heat power plants / I. B. Pavlova. M.: Publishing House of MSTU. N.E. Bauman, 2011.112 p. (In Russ)]
Review
For citations:
Yusufov Sh.A., Bazaev A.R., Bilalov B.A. STUDY OF A FLOWING-TYPE HEAT TRANSFER INTENSIFIER USED AS PART OF A THERMOELECTRIC SEA WATER DESALINATION SYSTEM. Herald of Dagestan State Technical University. Technical Sciences. 2019;46(3):53-65. (In Russ.) https://doi.org/10.21822/2073-6185-2019-46-3-53-65