Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

NONLINEAR BEHAVIOR CALCULATION ALGORITHM FOR THIN-WALLED SYSTEMS

https://doi.org/10.21822/2073-6185-2019-46-2-176-184

Abstract

Objectives The emergence of modern high-strength materials leads to the creation of thin-walled structures in various fields of technology. To obtain the necessary information about their behavior under load, one should analyze all the characteristic features encountered at all stages of their loading - at the initial (initial) stage of their operation, taking into account one or more types of nonlinearities, find possible critical states and, depending on the type of stability loss, study the nature of the initial stage of postcritical deformation. Based on an algorithm combining approximate analytical and numerical methods, the article solves the model problem — studying the behavior of a thin-walled spherical shell under load.

Method. The study is based on solving the nonlinear problem of determining the stress-strain state at the initial - axisymmetric stage of work; critical (bifurcation) load values; analysis of the nature of post-bifurcation behavior. The work uses a variant of the general theory of stability and postcritical behavior of structures previously developed by V.T. Coiter.

Result. The solution of such a general problem associated with discontinuous phenomena is carried out on the basis of mathematical ideas formulated in the theory of branching solutions of nonlinear equations. The values of the coefficients characterizing the initial stage of the post-bifurcation behavior of the shells and, from a practical point of view, the relations between the critical and limiting values of the loads are obtained. It is shown that depending on the area of the shell surface part loaded by the distributed load, the nature of the initial stage of postcritical deformation changes not only quantitatively, but also qualitatively.

Conclusion. The most effective in solving problems associated with discontinuous phenomena are combinations of approximate analytical ones - catastrophe theory and numerical methods that do not require complex, timeconsuming and significant amounts of computation. Analysis of the initial stage of the postbifurcation behavior of structures allows us to assess the degree of danger of reaching a critical state, which is achieved by taking into account the values of the corresponding reliability coefficients in the calculations. 

About the Authors

G. M. Murtazaliev
Daghestan State Technical University
Russian Federation

Dr. Sci. (Technical), Prof., Head of the Department Resistance of Materials, Theoretical and Construction Mechanics,

70 I. Shamil Ave., Makhachkala 367026



M. M. Payzulaev
Daghestan State Technical University
Russian Federation

Cand. Sci. (Technical), As. Prof., Head of the Department Resistance of Materials, Theoretical and Construction Mechanics,

70 I. Shamil Ave., Makhachkala 367026



References

1. Arnol'd V.I. Teoriya katastrof. Moskva: Lenand, 2016 s.134. [Arnold V.I. Catastrophe theory. Moscow: Lenand, 2016 p.134. (In Russ)]

2. Bazhenov V. G., Gonik Ye. G., Kibets A. I., Shoshin D. V. Ustoychivost' i predel'nyye sostoyaniya uprugoplasticheskikh sfericheskikh obolochek pri staticheskikh i dinamicheskikh nagruzheniyakh / Prikl. mekh. i tekhn. fiz. 2014 t. 55 № 1. S. 13-22. [Bazhenov V. G., Gonik E. G., Kibets A. I., Shoshin D. V. Stability and limit states of elastic-plastic spherical shells under static and dynamic loading / Prikl. fur. and tech. physical 2014 vol. 55 No. 1. pp. 13-22. (In Russ)]

3. Borodin A.I., Novikova N.N., Shash N.N. Primeneniye sinergeticheskikh metodov i teorii katastrof // Zhurnal “Effektivnoye antikrizisnoye upravleniye”. vypusk №2(89)/2015.s 84-90. [Borodin A.I., Novikova N.N., Shash N.N. The use of synergetic methods and catastrophe theory // Journal “Effective Anti-Crisis Management”. Issue No. 2 (89) / 2015.pp 84-90. (In Russ)]

4. Ganeyeva M. S., Moiseyeva V. Ye. Nelineynyy izgib i ustoychivost' sfericheskikh i ellipsoidal'nykh obolochek pri neosesimmetrichnom nagruzhenii / Probl. prochn. i plastich. 2013 № 75 ch. 2. S. 105-114. [Ganeeva M. S., Moiseeva V. E. Non-linear bending and stability of spherical and ellipsoidal shells under non-axisymmetric loading / Probl. durable and plastic. 2013 No. 75, part 2, pp. 105-114. (In Russ)]

5. Malykh K. S., Novichkov A. A., Pridat'ko I. S. Ustoychivost' sfericheskikh obolochek s uchetom nachal'nykh nepravil'nostey formy / Molodezh'. Tekhnika. Kosmos: Trudy 6 Obshcherossiyskoy molo-dezhnoy nauchnotekhnicheskoy konferentsii, Sankt-Peterburg, 19-21 marta, 2014. 2014. S. 62-64. [Malykh K. S., Novichkov A. A., Pridatko I. S. Stability of spherical shells taking into account the initial irregularities of the form / Youth. Equipment. Space: Proceedings of the 6th All-Russian Youth Scientific and Technical Conference, St. Petersburg, March 19-21, 2014. 2014. pp. 62-64. (In Russ)]

6. Murtazaliyev G.M. Metody teorii katastrof v zadachakh ustoychivosti obolochek. DGTU. Makhachkala 2004. 200s. [Murtazaliev G.M. Methods of catastrophe theory in problems of shell stability. DSTU. Makhachkala 2004.200s. (In Russ)]

7. Murtazaliyev G.M., Payzulayev M.M., Guseynova S.V. Geometricheskiye obrazy teorii katastrof v ne-lineynykh zadachakh //Teoriya sooruzheniy: dostizheniya i problemy: cb. statey po materialam vserossiyskoy nauchnoprakticheskoy konf., 19-20 noyabrya 2012g. Makhachkala/ DGTU. – Makhachkala: Izd-vo DGTU, 2012. 126s. [Murtazaliev G.M., Payzulaev M.M., Huseynova S.V. Geometric images of catastrophe theory in non-linear problems // Theory of constructions: achievements and problems: cb. articles on the materials of the All-Russian scientific and practical conference., November 19-20, 2012. Makhachkala / DSTU. - Makhachkala: Publishing house of DSTU, 2012.126p. (In Russ)]

8. Murtazaliyev G.M., Payzulayev M.M. Metody teorii katastrof v mekhanike konstruktsiy //Teoriya so-oruzheniy: dostizheniya i problemy: cbornik statey po materialam II Vserossiyskoy nauchno-prakticheskoy konferentsii, 27- 28 noyabrya 2015g. Makhachkala/ DGTU. – Makhachkala: Tipografiya RIZO-PRESS, 2015.-132s. [Murtazaliev G.M., Payzulaev M.M. Methods of catastrophe theory in structural mechanics // Theory of Constructions: Achievements and Problems: Collection of articles based on materials of the II All-Russian Scientific and Practical Conference, November 27-28, 2015. Makhachkala / DSTU. - Makhachkala: Printing house RIZOPRESS, 2015. 132p. (In Russ)]

9. Ostreykovskiy V. A. Analiz ustoychivosti i upravlyayemosti dinamicheskikh sistem metodami teorii katastrof: Uchebnoye posobiye dlya studentov vuzov. — Moskva: Izdatel'stvo "Vysshaya shkola", 2005. 327s. [Ostreykovsky V. A. Analysis of the stability and controllability of dynamic systems by the methods of catastrophe theory: a manual for university students. - Moscow: Higher School Publishing House, 2005. 327p. (In Russ)]

10. Petrov V. V., Krivoshein I. V. Vliyaniye neodnorodnosti materiala na ustoychivost' nelineyno de-formiruyemykh pologikh obolochek dvoyakoy krivizny / Vestn. SGTU. 2014 № 4. S. 20-25. [Petrov VV, Krivoshein IV. Influence of material heterogeneity on the stability of nonlinearly deformable shallow shells of double curvature / Vestn. SSTU. 2014 No. 4. pp. 20-25. (In Russ)]

11. Pikul' V. V. Ustoychivost' obolochek / Probl. mashinostr. i avtomatiz.- 2012 № 2 C. 81-87. [Pikul V.V. Stability of the shells / Probl. machine building and automation. 2012 No. 2 pp. 81-87. (In Russ)]

12. Semko V. V., Krivoshein I. V. / Modelirovaniye vliyaniya vida granichnykh usloviy na ustoychivost' nelineyno deformiruyemykh pologikh obolochek / Matematicheskiye metody v tekhnike i tekhnologiyakh (MMTT-26): Sbornik trudov 26 Mezhdunarodnoy nauchnoy konferentsii, Nizhniy Novgorod, 27-30 maya, 2013. pp. 53-55. (In Russ)]

13. Semko V. V., Krivoshein I. V. / Modelirovaniye vliyaniya vida granichnykh usloviy na ustoychivost' nelineyno deformiruyemykh pologikh obolochek / Matematicheskiye metody v tekhnike i tekhnologiyakh (MMTT-26): Sbornik trudov 26 Mezhdunarodnoy nauchnoy konferentsii, Nizhniy Novgorod, 27-30 maya, 2013. S. 53-55. [Semko V.V., Krivoshein I.V. / Modeling the influence of the type of boundary conditions on the stability of nonlinearly deformable shallow shells / Mathematical Methods in Engineering and Technology (MMTT-26): Proceedings of the 26th International Scientific Conference, Nizhny Novgorod, 27- May 30, 2013.pp. 53-55. (In Russ)]


Review

For citations:


Murtazaliev G.M., Payzulaev M.M. NONLINEAR BEHAVIOR CALCULATION ALGORITHM FOR THIN-WALLED SYSTEMS. Herald of Dagestan State Technical University. Technical Sciences. 2019;46(2):176-184. (In Russ.) https://doi.org/10.21822/2073-6185-2019-46-2-176-184

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)