THE SELECTION OF GEOMETRIC CHARACTERISTICS FOR CIRCULAR MULTI-LAYERED PIEZOELECTRIC PLATES
https://doi.org/10.21822/2073-6185-2018-45-3
Abstract
Objectives. For the most efficient conversion of electrical energy into mechanical vibrations, there is a need for an in-depth analysis of the connectivity of physical fields of different nature in multilayer structures.
Method. The solution is carried out by the method of finite integral transforms, using successively the Fourier – Bessel transform along the radial coordinate and the generalized transform along the axial variable. In this case, each time the standardization procedure is preliminarily performed (reduction of the boundary conditions to a form, which allows to apply the corresponding transformation).
Result. A mathematical model for the calculation of bimorphic plates is developed. Multi-layer solid rigid and hinged structures are considered, in which the principle of reverse piezoelectric effect is used. Closed solutions of non-stationary axisymmetric problems of the electroelasticity theory for multilayer structures by the method of finite integral transformations are constructed. Based on the analysis of the numerical results of the calculation, practical recommendations for the design of piezoceramic transducers of resonance and nonresonance classes are presented. An algorithm has been developed for optimizing the operation of the structures under consideration by selecting their geometrical dimensions and the material used, which makes it possible to most effectively convert the applied electrical load into mechanical displacements.
Conclusion. The presented results make it possible to clarify the assumptions about the nature of the distribution of the electric field, which should be used when designing bimorph structures of other configurations, which can only be calculated using applied theories for thin plates.
About the Authors
O. V. RatmanovaRussian Federation
244 Molodogvardeyskaya Str., Samara 443100.
Olesya V. Ratmanova – Lecturer, Department of Building Mechanics and Structural Resistance.
D. A. Shlyakhin
Russian Federation
244 Molodogvardeyskaya Str., Samara 443100.
Dmitiy A. Shlyakhin - Dr. Sci. (Technical), Prof., Department of Building Mechanics and Structural Resistance.References
1. Podvodnyye elektroakusticheskiye preobrazovateli. Spravochnik/ Pod red. V.V. Bogorodskogo. – L.: Sudostroyeniye, 1983. –248 s. [Underwater electroacoustic transducers. Handbook / Ed. V.V. Bogorodsky. - L .: Shipbuilding, 1983. –248 p. (in Russ)]
2. Sharapov V. Piezoceramic sensors. –Springer Verlag, 2010. – 498 p.
3. Dzhagurov R.G. P'yezoelektronnyye ustroystva vychislitel'noy tekhniki, sistem kontrolya i upravle-niya. SPb.:
4. Politekhnika, 1994. 608 s. [Dzhagurov R.G. Piezoelectronic devices of computer technology, control systems and control. SPb .: Polytechnic, 1994. 608 p. (in Russ)]
5. Domarkas V.I., Kazhis R-I.YU. Kontrol'no-izmeritel'nyye p'yezoelektricheskiye preobrazovateli. Vil'nyus: Mintis, 1975. 255 s. [Domarkas, VI, Kazhis R-I.Yu. Piezoelectric transducers. Vilnius: Minthis, 1975. 255 p. (in Russ)]
6. Gabbert U., Tzou H.S. Smart Structures and Structronic Systems. London, Kluwer Academic Pub, 2001, 384 p.
7. Novozhilov YU.V. Elektrodinamika/ YU.V. Novozhilov, YU.A. Yappa. –M.: Nauka, 1978, –352s. [Novozhilov Yu.V. Electrodynamics / Yu.V. Novozhilov, Yu.A. Yappa –М .: Science, 1978, –352с. (in Russ)]
8. Grinchenko V.T., Ulitko A.F., Shul'ga N.A. Mekhanika svyazannykh poley v elementakh konstruktsiy. Kiyev: Nauk. dumka,1989. 279 s. [Grinchenko V.T., Ulitko A.F., Shulga N.A. Mechanics of related fields in structural elements. Kiev: Sciences. Dumka, 1989. 279 s. (in Russ)]
9. V. Tsaplev, R. Konovalov, K. Abbakumov. Disk bimorph-type piezoelectric energy harvester, J. of Power and Energy Eng. №3(2015) rr. 63-68.
10. Smits J.G., Dalke S.I., Cooney T.K., The constituent equations of piezoelectric bimorphs// Sensors and Actuators A, 1991, no.28, pp. 41–61.
11. Vatul'yan A.O. Ob odnoy modeli izgibnykh kolebaniy p'yezoelektricheskikh bimorfov s razreznymi elektrodami i yeye prilozheniye // Izv. RAN. MTT, 2007, №4. S.114–122. [Vatulyan A.O. On a Model of Flexural Oscillations of Piezoelectric Bimorphs with Split Electrodes and its Application, Izv. RAS. MTT, 2007, №4. P.114 -122. (in Russ)]
12. Tsaplev V., Konovalov R., Abbakumov, K. Disk Bimorph-Type Piezoelectric Energy Harvester// Journal of Power and Energy Engineering, 2015, no. 3, pp. 63-68. doi: org/10.4236/jpee.2015. 34010.
13. Petrishchev O. N. i dr. Issledovaniye parametrov dinamicheskogo napryazhenno–deformirovannogo so-stoyaniya asimmetrichnykh bimorfnykh p'yezokeramicheskikh elementov// Vísnik CHDTU, 2013, №4. C. 38 -48. [Petrishchev O.N., et al. Investigation of the parameters of the dynamic stress – strain state of asymmetric bimorph piezoceramic elements // Visnyk CHDTU, 2013, No.4. C. 38-48. (in Russ)]
14. Yanchevskiy I.V. Minimizatsiya progibov elektrouprugoy bimorfnoy plastiny pri impul'snom nagruzhenii // Problemy vychislitel'noy mekhaniki i prochnosti konstruktsiy. Khar'kov, 2011, vyp. 16. S. 303–313. [Yanchevsky I.V. Minimizing the deflections of an electroelastic bimorph plate under pulsed loading // Problems of computational mechanics and structural strength. Kharkov, 2011, no. 16. pp. 303–313. (in Russ)]
15. Shlyakhin D.A. Vynuzhdennyye osesimmetrichnyye kolebaniya p'yezokeramicheskoy tonkoy bimorfnoy plastiny // Izv. RAN. MTT, 2013, №2. S.77 –85. [Shlyakhin D.A. Forced axisymmetric oscillations of a piezoceramic thin bimorph plate // Izv. RAS. MTT, 2013, №2. P.77 –85. (in Russ)]
16. Bardzokas D.I. Rasprostraneniye voln v elektrouprugikh sredakh/ D.I. Bardzokas, B.A. Kudryavtsev, N.A. Senik. – M.: Komkniga, 2003. –336 s. [Bardzokas D.I. Wave propagation in electro-elastic media / D.I. Bardzokas, B.A. Kudryavtsev, N.A. Senik. - M .: Combook, 2003. –336 p. (in Russ)]
17. Sneddon I.N. Preobrazovaniya Fur'ye/ I. N. Sneddon. –M.: Izd–vo inostr. lit., 1955. –668 s. [Sneddon I.N. Fourier transforms / I.N. Sneddon. –М .: Publishing house inostr. Lit., 1955. –668 p. (in Russ)]
18. Senitskiy YU.E. Issledovaniye uprugogo deformirovaniya elementov konstruktsiy pri dinamicheskikh vozdeystviyakh metodom konechnykh integral'nykh preobrazovaniy/ Saratov: Izd -vo Sarat. un–ta,1985. 174 s. [Senitsky Yu.E. Investigation of elastic deformation of structural elements under dynamic actions by the method of finite integral transformations / Saratov: Sarat Publishing House. Un – one, 1985. 174 s. (in Russ)]
19. Shlyakhin D.A. Vynuzhdennyye osesimmetrichnyye izgibnyye kolebaniya tolstoy krugloy zhestko zakrep -lennoy plastiny// Vestnik Samarsk. gos. un–ta. Yestestvennonauchn. seriya. 2011, №8(89). S.142–152. [Shlyakhin D.A. Forced axisymmetric bending vibrations of a thick round rigidly fixed plate. Vestnik Samarsk. state un – one Natural Science series. 2011, No. 8 (89). Pp. 142–152. (in Russ)]
20. Shlyakhin D. A., Kazakova O.V. A dynamic axially symmetric goal and its extended solution for a fixed rig-id circular multi-layer plate// Procedia Engineering (2016) Volume 153, pp. 662-666 DOI information: 10.1016/j.proeng.2016.08.219.
21. Shlyakhin D.A. Utochnennoye resheniye dinamicheskoy zadachi elektrouprugosti dlya bimorfnoy plasti-ny// Vestnik KRSU. 2016. Tom 16. №5. S.108-113. [Shlyakhin D.A. Refined solution of the dynamic problem of electroelasticity for a bimorphous plate. Vestnik KRSU. 2016. Volume 16. №5. P.108 -113. (in Russ)].
Review
For citations:
Ratmanova O.V., Shlyakhin D.A. THE SELECTION OF GEOMETRIC CHARACTERISTICS FOR CIRCULAR MULTI-LAYERED PIEZOELECTRIC PLATES. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(3):18-28. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-3