Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

FREE LONGITUDINAL VIBRATIONS OF A VERTICAL ROD WITH DISCRETE MASSES WITH DAMPING FORCES

https://doi.org/10.21822/2073-6185-2018-45-3-8-17

Abstract

Objectives. The longitudinal oscillations of a vertical rod of a continually discrete system with kinematic seismic disturbances in the form of a stationary random process are considered.

Method. A method for determining the variance of the output process of displacements, using the representation of the input random process as a sum of harmonic deterministic perturbations, is proposed and implemented.

Result. The dependence function of the dispersion of displacements on the longitudinal coordinate is determined. Longitudinal vibrations of vertical rods near the epicenter of earthquakes are dangerous for their strength and stability. The methods of finite differences and coordinate descent allow you to create universal algorithms and computer programs that easily solve complex spectral problems.

Conclusion. To date, research on random vibrations of buildings and structures, as well as regulatory documents, has been devoted to horizontal seismic effects and transverse bending vibrations caused by them. Examples indicate the need to expand the scope of research with the inclusion of other types of vibrations: combinations of longitudinal with transverse, angular, torsional, parametric, etc. This design can be easily adapted to vibrations of rods of variable cross section, to vibrations of continually discrete rods.

About the Authors

H. P. Kulterbaev
H.M. Berbekov Kabardino-Balkaria State University.
Russian Federation

173 Chernyshevsky Str., Nalchik 3360004.

Husen P. Kulterbaev –Dr. Sci. (Technical), Prof., Department of Building construction and mechanics.

 



I. M. Abdul-Salam
H.M. Berbekov Kabardino-Balkaria State University.
Russian Federation

173 Chernyshevsky Str., Nalchik 3360004.

 Abdul-Salam Igab Mazen – undergraduate.


M. M. Payzulaev
Daghestan State Technical University.
Russian Federation

70 I. Shamil Ave, Makhachkala 367026.

Magomed M. Payzulaev – Cand. Sci. (Technical), As. Prof., Head of the Department Resistance of Materials, Theoretical and Construction Mechanics.



References

1. Korchinskiy V.L., Borodin L.A. i dr. Seysmostoykoye stroitel'stvo zdaniy. M., Vysshaya shkola, 1971. -320 s. [Korchinsky V.L., Borodin L.A. and others. Seismic construction of buildings. Moscow, High School, 1971. -320 p. (in Russ.)]

2. Nazarov YU.P. Raschotnyye parametry volnovykh poley seysmicheskikh dvizheniy grunta. –M.: Nauka, 2015. 374 s. [Nazarov Yu.P. The calculated parameters of the wave fields of seismic soil movements. –M .: Science, 2015. 374 p. (in Russ.)]

3. Babakov I.M. Teoriya kolebaniy. M.: Nauka, 1968. 560 s. [Babakov I.M. Theory of oscillations. M .: Science, 1968. 560 p. (in Russ.)]

4. Kul'terbayev KH.P. Kinematicheski vozbuzhdayemyye kolebaniya kontinual'no-diskretnoy mnogoprolotnoy balki // Vestnik Nizhegorodskogo universiteta im. N.I.Lobachevskogo. Trudy KH Vserossiyskogo s"yezda po fundamental'nym problemam teoreticheskoy i prikladnoy mekhaniki. 2011. №4, chast' 2. S. 198 -200. [Kulterbaev Kh.P. Kinematically excited oscillations of a continually-discrete multi-span beam // Bulletin of Nizhny Novgorod University. N.I. Lobachevsky. Works of the X All-Russian Congress on the fundamental problems of theoretical and applied mechanics. 2011. №4, part 2. pp. 198-200. (in Russ.)]

5. SamarskiyA.A.Teoriya raznostnykh skhem. M.: Nauka, Gl. red. fiz.-mat. lit.,1977. - 656 p. [Samarsky, A.A. The theory of difference schemes. M .: Science, Ch. ed. Phys. -Mat. lit., 1977. 656 p. (in Russ.) ]

6. Verzhbitskiy V.M. Osnovy chislennykh metodov. M.: Vysshaya shkola, 2002. 840 s. [Verzhbitsky V.M. Basics of numerical methods. M .: Higher School, 2002. 840 p. (in Russ.)]

7. Klaf Z., Penziyen Dzh. Dinamika sooruzheniy. M.: Stroyizdat, 1979. – 320 s. [Clough Z., Penzien J. Dynamics of structures. M .: stroiizdat, 1979. - 320 p. (in Russ.)]

8. I.V. Kudinov, V.A. Kudinov. Mathematical simulation of the locally nonequilibrium heat transfer in a body with account for its nonlocality in space and time. Journal of Engineering Physics and Thermophysics (2015): Vol. 88, № 2, pp. 406-422.

9. Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York, USA. (2008)

10. Refined beam elements with arbitrary cross-section geometries / E. Carrera, G. Giunta, P. Nali [and others] // Computers and Structures. 2010. V. 88, № 5-6. pp. 283-293.

11. Elishakoff I. Eigenvalues of Inhomogeneous Structures: Unusual Closed-form Solutions. Boca Raton, FL: CRC Press, 2005.

12. Hsu J.C., Lai H.Y., Chen C.K. Free vibration of non-uniform EulerBernoulli beams with general elastically end constraints using Adomian modified decomposition method // Journal of Sound and Vibration. 2008. V. 318. pp. 965-981.

13. Free vibration behavior of exponential functionally graded beams with varying cross-section / A.A Haasen, T. Abdelouahed, A.M. Sid [and others] // Journal of Vibration and Control. 2011. V. 17, № 2. pp. 311-318.

14. Maurini C., Pofiri M., Pouget J. Numerical methods for modal analysis of stepped piezoelectric beams // Journal of Sound and Vibration. 2006. V. 298, № 4-5. pp. 918-933.

15. Zheng T. X., Ji T. J. Equivalent representations of beams with periodically variable crosssections // Engineering Structures. 2011. V. 33, № 3. pp. 706-719.

16. Tejada A. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams: Tech. Rep.: CR-2009-215721: NASA, 2009.

17. Alshorbagy A. E., Eltaher M. A., Mahmoud F. F. Free vibration characteristics of a functionally graded beam by finite element method // Applied Mathematical Modelling. 2011. V. 35, № 1. pp. 412-425.

18. Huang Y., Li X. F. A new approach for free vibration of axially functionally graded beams with non-uniform crosssection // Journal of Sound and Vibration. 2010. V. 329, № 11. pp. 2291 -2303.

19. Mohanty S.C., Dash R.R., Rout T. Free vibration of a functionally graded rotating Timoshenko beam using FEM // International Journal of Advanced Structural Engineering. 2013. V. 16, № 2. pp. 405 -418.

20. Ke L.L., Yang J., Kitipornchai S. An analytical study on the nonlinear vibration of functionally graded beams // Meccanica. 2010. V. 45, № 6. pp. 743-752.

21. Simsek M., Cansiz S. Dynamics of elastically connected doublefunctionally graded beam systems with different boundary conditions under action of a moving harmonic load // Composite Structures. 2012. V. 94, № 9. pp. 2861 -2878.

22. Shahba A., Attarnejad R., Hajilar S. Free vibration and stability of axially functionally graded tapered Euler -Bernoulli beams // Shock and Vibration. 2011. V. 18. pp. 683-696.


Review

For citations:


Kulterbaev H.P., Abdul-Salam I.M., Payzulaev M.M. FREE LONGITUDINAL VIBRATIONS OF A VERTICAL ROD WITH DISCRETE MASSES WITH DAMPING FORCES. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(3):8-17. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-3-8-17

Views: 3524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)