METHODOLOGY FOR ACCOUNTING THE INFLUENCE OF METEOROLOGICAL FACTORS ON THE EFFICIENCY OF APPLICATION OF UNMANNED AERIAL VEHICLES ON THE BASIS OF SYSTEM ANALYSIS
https://doi.org/10.21822/2073-6185-2018-45-2-125-139
Abstract
Objectives The aim of the study is to increase the effectiveness of unmanned aerial vehicles (UAVs) in the context of destabilising meteorological factors on the basis of an identification of links and patterns of unmanned aerial vehicles operating in difficult weather conditions.
Methods In this work, in order to account for the effect of meteorological factors on the effectiveness of unmanned aerial vehicles, the methods of system analysis, mathematical modelling of atmospheric phenomena and processes, as well as probability theory and statistical assessment, were applied.
Result An analysis of open literature sources devoted to the issues of operation and practical application of unmanned aerial vehicles (UAVs) under the influence of environmental factors was carried out. A classification of destabilising influences (DI) affecting the performance of a UAV flight mission is developed and presented. The dynamic probabilistic indicator, which, in characterising the dynamics of UAV functions as a complex technical system is referred to as “time efficiency of the UAV flight mission”, is substantiated. A methodology for estimating the dynamic efficiency indicator of the UAV’s functionality during the performance of a flight mission (FM) underDI conditions is developed on the basisof a probabilistic model of the conflicting interaction between UAV and DI. Strategies for selecting the trajectories of flights around local zones in which UAVs can be influenced by DI are given. To estimate the DI intensity and determine the size of the local disturbance zone, a mathematical model is proposed, whose application makes it possible to improve the UAV functioning under complex meteorological conditions (CMC) by taking into account the information on the space-time variability of dangerous for UAV weather-related phenomena (DWP). In the process of constructing the UAV functioning model, the use of conflict theory methods permitted adequate models for the analysis and evaluation of the dynamic efficiency indicator of the UAV functioning during the performance of FM in DI conditions to be developed, as well as the patterns of meteorological factors influencing the effectiveness of the UAV application to be revealed.
Conclusion The methodology proposed in the article makes it possible to increase the effectiveness of unmanned aerial vehicles (UAVs) under complex meteorological conditions by a time index of 20-30% as compared with traditional approaches.
About the Authors
I. E. KuznetsovRussian Federation
54A Starykh Bolshevikov Str., Voronezh 394064
Ilya E. Kuznetsov – Dr.Sci. (Technical), Prof., Assoc. Prof., Head of the Department of Hydrometeorological Support
A. V. Melnikov
Russian Federation
54A Starykh Bolshevikov Str., Voronezh 394064
Aleksey V. Melnikov - Researcher
E. A. Rogozin
Russian Federation
53 Patriotov Str., Voronezh 394065
Evgeny A. Rogozin - Dr.Sci. (Technical), Prof., Department of Automated Information Systems
O. V. Strashko
Russian Federation
54A Starykh Bolshevikov Str., Voronezh 394064
Oleg V. Strashko – Adjunct, Department of Hydrometeorological Support.
References
1. Reshenie kollegii MChS Rossii “O Vremennykh edinykh tekhnicheskikh trebovaniyakh k robototekhnicheskim kompleksam, bespilotnym letatel'nym apparatam i prikladnomu programmnomu obespecheniyu k nim”. [Elektronnyi resurs]. URL: http: //www.mchs.gov.ru/upload/site1/document_file/FVCQ8zUL4f.pdf (data obrashcheniya 17.01.18). [Decision of the board of the Ministry of Emergency Measures of Russia “On temporary unified technical requirements for robotic systems, unmanned aerial vehicles and their applied software” [Electronic resource]. URL: http: //www.mchs.gov.ru/upload/site1/document_file/FVCQ8zUL4f.pdf (access date 17.01.18). (in Russ.)]
2. Metodicheskie ukazaniya po primeneniyu bespilotnykh letatel'nykhapparatov dlya obsledovaniya vozdushnykh linii elektroperedachii energeticheskikh ob"ektov. Standart organizatsii PAO “FSK EES”. [Elektronnyi resurs]. URL:http://www.fsk-ees.ru/upload/docs/STO_56947007-29.200.10.235-2016.pdf (data obrashcheniya 17.01.18). [Methodical instructions for the use of unmanned aerial vehicles for the inspection of overhead power transmission lines and power facilities. The standard of organization of PAO “FSK EES”. [Electronic resource]. URL:http://www.fsk-ees.ru/upload/docs/STO_56947007-29.200.10.235-2016.pdf (access date 17.01.18). (in Russ.)]
3. Prikaz Mintransa RF ot 31 iyulya 2009 g. N 128 “Ob utverzhdenii Federal'nykh aviatsionnykh pravil “Podgotovka i vypolnenie poletov v grazhdanskoi aviatsii Rossiiskoi Federatsii” (s izmeneniyami i dopolneniyami). [Elektronnyi resurs]. URL: http://base.garant.ru/196235/ (data obrashcheniya 17.01.18). [Order of the Ministry of Transport of the Russian Federation of July 31, 2009 N 128 “On approval of the Federal Aviation Regulations “Preparation and execution of flights of the civil aviation of the Russian Federation” (with amendments and additions). [Electronic resource]. URL: http://base.garant.ru/196235/ (access date 17.01.18). (in Russ.)]
4. Mel'nikov A.V., Gaidai V.A., Rogozin E.A. Postroenie optimal'noi traektorii poleta bespilotnogo letatel'nogo apparata pri vypolnenii zadachi poiska. Vestnik Voronezhskogo instituta MVD Rossii. 2017;1:52–62. [Mel'nikov A.V., Gaidai V.A., Rogozin E.A. The construction of the optimal flight path of an unmanned aerial vehicle when performing a search task. The bulletin of Voronezh Institute of the Ministry of Internal Affairs of Russia. 2017;1:52–62. (in Russ.)]
5. Maksimov A.N. Boevye kompleksy bespilotnykh letatel'nykh apparatov. Nauchno-metodicheskie rekomendatsii. Izdanie VVIA imeni professora N.E. Zhukovskogo. 2005. 236 s. [Maksimov A.N. Combat complexes of unmanned aerial vehicles. Scientific and methodical recommendations. Izdanie VVIA imeni professora N.E. Zhukovskogo. 2005. 236 p. (in Russ.)]
6. Moiseev G.V., Moiseev V.S. Osnovy teorii sozdaniya i primeneniya imitatsionnykh bespilotnykh aviatsionnykh kompleksov. Seriya “Sovremennaya prikladnaya matematika i informatika”. Kazan': Redaktsionno-izdatel'skii tsentr; 2013. 208 s. [Moiseev G.V., Moiseev V.S. Fundamentals of the theory of the creation and application of imitation unmanned aerial systems. Series “Modern Applied Mathematics and Informatics”. Kazan: GBU “Republican Center for Monitoring the Quality of Education”; 2013. 208 p. (in Russ.)]
7. Moiseev V.S. Prikladnaya teoriya upravleniya bespilotnymi letatel'nymi apparatami. Seriya “Sovremennaya prikladnaya matematika i informatika”. Kazan': GBU “Respublikanskii tsentr monitoringa kachestva obrazovaniya; 2013. 768 s. [Moiseev V.S. Applied theory of control of unmanned aerial vehicles.Series “Modern Applied Mathematics and Informatics”. Kazan: GBU “Republican Center for Monitoring the Quality of Education”; 2013. 768 p. (in Russ.)]
8. Narovlyanskii G.Ya. Aviatsionnaya klimatologiya. L.: Gidromet. izd-vo; 1968. S. 110–112. [Narovlyanskii G.Ya. Aeronautical climatology. L.: Gidromet. izd-vo; 1968. P. 110–112. (in Russ.)]
9. Pozdnyakova V.A. Prakticheskaya aviatsionnaya meteorologiya. Ekaterinburg: Ural'skii UTTs GA; 2010. S. 150. [Pozdnyakova V.A. Practical aeronautical meteorology. Ekaterinburg: Ural'skii UTTs GA; 2010. P. 150. (in Russ.)]
10. Gorbunov A.A., Galimov A.F. Vliyanie meteorologicheskikh faktorov na primenenie i bezopasnost' poleta bespilotnykh letatel'nykh apparatov s bortovym retranslyatorom radiosignala. Vestnik SanktPeterburgskogo universiteta GPS MChS Rossii. 2016;1:7–15. [Gorbunov A.A., Galimov A.F. Influence of meteorological factors on the use and safety of flight of unmanned aerial vehicles with on-board radio signal transponder. Vestnik Sankt-Peterburgskogo universiteta GPSMChSRossii. 2016;1:7–15. (in Russ.)]
11. Biradar A. S. Wind estimation and effects of wind on waypoint navigation of UAVs. A thesis presented in partial fulfillment of the requirements for the Master of Science degree. Arizona State University. May 2014. 12. Seleckэ M., Vбтa P., Rollo M., Meiser T. Wind corrections in flight path planning. International Journal of Advanced Robotic Systems. 2013;10:1-9.
12. Stojcsics D., Molnar A. Autonomous takeoff and landing control for small size unmanned aerial vehicles. Computing and Informatics. 2013;32:1117–1130.
13. Langelaan J.W. Alley N., Neidhoefer J. Wind field estimation for small unmanned aerial vehicles. AIAA guidance, navigation and control conference. Toronto: American Institute of Aeronautics and Astronautics; paper 2010-8177.
14. Druzhinin V.V., Kontorov D.S., Kontorov M.D. Vvedenie v teoriyu konflikta. M.: Radio i svyaz'; 1989. 288 s. [Druzhinin V.V., Kontorov D.S., Kontorov M.D. Introduction to the theory of conflict. M.: Radio i svyaz'; 1989. 288 p. (in Russ.)]
15. Tikhonov V.I., Mironov M.A. Markovskie protsessy. M.: Sov. Radio; 1977. [Tikhonov V.I., Mironov M.A. Markov processes. M.: Sov. Radio; 1977. (in Russ.)]
16. Metodicheskie ukazaniya po primeneniyu bespilotnykh letatel'nykh apparatov dlya obsledovaniya vozdushnykh linii elektroperedachi i energeticheskikh ob"ektov. Standart organizatsii PAO “FSK EES” STO 56947007- 29.200.10.235-2016. 2016.[Methodical instructions for the use of unmanned aerial vehicles for the survey of overhead transmission lines and power facilities. The standard of organization of PAO “FSK EES” STO 56947007- 29.200.10.235-2016. 2016. (in Russ.)]
17. Nadezhnost' i effektivnost' v tekhnike: Spravochnik: V 10 t. T. 3. Effektivnost' tekhnicheskikh sistem. Pod red. V.S. Avduevskogo i dr. M.: Mashinostroenie; 1988. 328 s. [Reliability and efficiency in engineering: Handbook: In 10 vol. V. 3. Efficiency of technical systems. Ed. V.S. Avduevsky et al. M.: Mashinostroenie; 1988. 328 p. (in Russ.)]
18. Nguyen H.T.T., Meleshenko P.A., Semenov M.E., Kuznetsov I.E, Gorlov V.A., Klinskikh A.F. Fresh look at Lorenz-like system. 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai; 2016. P. 2255-2259.
19. Potashnik E.L., Kuznetsov A.D. Matematicheskoe modelirovanie oblachnykh protsessov: uchebnoe posobie. Sankt-Peterburg: Izdatel'stvo Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta; 2010. 444 s. [Potashnik E.L., Kuznetsov A.D. Mathematical modeling of cloud processes: a tutorial. Sankt-Peterburg: Izdatel'stvo Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta; 2010. 444 p. (in Russ.)]
20. Shapovalov V.A., Prodan K.A., Mashukov I.Kh. Modelirovanie parametrov oblakov pri glubokoi konvektsii. Doklady Vserossiiskoi konferentsii po fizike oblakov i aktivnym vozdeistviyam na gidrometeorologicheskie protsessy. Nal'chik; 2011. S. 100–108. [Shapovalov V.A., Prodan K.A., Mashukov I.Kh. Modeling of cloud parameters for deep convection. Reports of the All-Russian conference on the physics of clouds and active effects on hydrometeorological processes. Nalchik; 2011. P. 100–108. (in Russ.)]
21. Kogan E.L., Mazin I.P., Sergeev B.N., Khvorost'yanov V.I. Chislennoe modelirovanie oblakov. M.: Gidrometeoizdat; 1984. 186 s. [Kogan E.L., Mazin I.P., Sergeev B.N., Khvorost'yanov V.I. Numerical modeling of clouds.M.: Gidrometeoizdat; 1984. 186 p. (in Russ.)]
22. Rodzhers R.R. Kratkii kurs fiziki oblakov. Pod red. I.P. Mazina. Leningrad: Gidrometeoizdat; 1979. 231 s. [Rodzhers R.R. A short course in the physics of clouds. Ed. I.P. Mazin. Leningrad: Gidrometeoizdat; 1979. 231 p. (in Russ.)]
23. Matveev L.T. Fizika atmosfery. Pod red. V.G. Morachevskogo. SPb.: Gidrometeoizdat; 2000. 779 s. [Matveev L.T. Physics of the atmosphere. Ed. V.G. Morachevsky. SPb.: Gidrometeoizdat; 2000. 779 p. (in Russ.)]
24. Kuznetsov I.E., Semenov M.E., Kanishcheva O.I., Meleshenko P.A. On the interaction of electromagnetic waves with charged aerosol particles in atmosphere. 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai; 2016. P. 3542-3545, DOI: 10.1109/PIERS.2016.7735367.
25. Marchuk G.I. Metody vychislitel'noi matematiki. M.: Nauka; 1977. 352 s. [Marchuk G.I. Methods of computational mathematics. M.: Nauka; 1977. 352 p. (in Russ.)]
26. Kuznetsov I.E., Strashko O.V., Sitnikov N.M. Dinamicheskaya model' prostranstvenno-vremennogo raspredeleniya meteorologicheskikh parametrov v usloviyakh konvektivno-neustoichivoi atmosfery pri ispol'zovanii izmerenii s BLA. Sbornik trudov 4 TsNII “Modelirovanie parametrov atmosfery v raketno-kosmicheskoi tekhnike”. Korolev.2017;135:81-86. [Kuznetsov I.E., Strashko O.V., Sitnikov N.M. Dynamic model of spatiotemporal distribution of meteorological parameters in conditions of convective-unstable atmosphere using measurements with UAV.Proceedings of the 4th CNII “Modeling the parameters of the atmosphere in rocket and space technology”. Korolev.2017;135:81-86. (in Russ.)]
Review
For citations:
Kuznetsov I.E., Melnikov A.V., Rogozin E.A., Strashko O.V. METHODOLOGY FOR ACCOUNTING THE INFLUENCE OF METEOROLOGICAL FACTORS ON THE EFFICIENCY OF APPLICATION OF UNMANNED AERIAL VEHICLES ON THE BASIS OF SYSTEM ANALYSIS. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(2):125-139. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-2-125-139