DESCRIPTION AND IDENTIFICATION OF TEMPORAL REGULARITIES FOR FUZZY TIME SERIES WITH APPLICATION OF HYBRID OLS-PATTERNS
https://doi.org/10.21822/2073-6185-2018-45-2-104-113
Abstract
Objectives The aim of the research is to develop the principle of storing data templates to take their temporal natureinto account, making it possible to reduce decision-making times.In order to describe and identify temporal patterns in fuzzy time series behaviour in real time, the task was set to develop a hybrid data structure that allows for a consideration of sequences of fuzzy values formed from clear observable data as well as a determination of the length of these sequences and possible uneven time intervals between the observations.
Methods The article discussesan approach to formalising the description of temporal cause-effect relationships between events occurring at the object location as well as that of its environment, based on a set of singly-connected lists of triplets. Each triplet contains a fuzzy linguistic variable, the duration of its observation and the permitted interval of observation of insignificant data.
Results An algorithm for detecting knowledge base patterns in real time was developed, taking into account the possibility of a time shift in observing long sequences of identical values of the observed value. The possibility of partial data overlapping corresponding to triplets of different patterns is taken into account. The proposed hybrid pattern makes it possible to accelerate the detection of temporal regularities in the data.
Conclusion Scientific results are presented by the developed structure for storing information on temporal regularities in data, based on a singly linked linear list, as well as an algorithm for finding regularities in observational data using a set of OLS-patterns. The advantage of this structure and algorithm in comparison with the known ways of storing and analysing temporal data is a reduction in the amount of memory necessary for storing templates in the knowledge base, as well as the possibility of applying OLS patterns for decisionmaking purposes.
About the Authors
D. V. DultsevRussian Federation
46 Lenina Ave., Barnaul 656038
Denis V. Dultsev –Graduate Student, Department of Computer Science, Computer Engineering and Information Security.
L. I. Suchkova
Russian Federation
46 Lenina Ave., Barnaul 656038
Larisa I.Suchkova – Dr.Sci. (Technical), Prof., Department of Computer Science, Computer Engineering and Information Security.
References
1. Kovalev S.M. Modeli predstavleniya i poiska nechetkikh temporal'nykh znanii v bazakh vremennykh ryadov. Trudy XI Natsional'noi konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiem. Dubna; 2008. [Kovalev S.M. Models for presenting and searching for fuzzy temporal knowledge in time series bases. Proceedings of the 11th National conference on artificial intelligence with international participation. Dubna; 2008. (in Russ.)]
2. Antipov S.G., Vagin V.N., Fomina M.V. Metody diagnostiki dinamicheskikh ob"ektov na osnove analiza vremennykh ryadov. ITNOU: informatsionnye tekhnologii v nauke, obrazovanii i upravlenii. 2017;2(2):3-12. [Antipov S.G., Vagin V.N., Fomina M.V. Methods for diagnosing dynamic objects based on time series analysis. ITNOU: informatsionnye tekhnologii v nauke, obrazovanii i upravlenii. 2017;2(2):3-12. (in Russ.)]
3. Antipov S.G., Fomina M.V. Problema obnaruzheniya anomalii v naborakh vremennykh ryadov. Programmnye produkty i sistemy. 2012;2:78-82. [Antipov S.G., Fomina M.V. The problem of detecting anomalies in sets of time series. Software and systems. 2012;2:78-82. (in Russ.)]
4. Zade L.A. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii. M.: Mir; 1976. 165 s. [Zade L.A. The concept of a linguistic variable and its application to the adoption of approximate solutions. M.: Mir; 1976. 165 p. (in Russ.)]
5. Afanas'eva T.V., Yarushkina N.G. Nechetkoe modelirovanie vremennykh ryadov i analiz nechetkikh tendentsii. Ul'yanovsk: UlGTU; 2009. 299 s. [Afanas'eva T.V., Yarushkina N.G. Fuzzy modeling of time series and analysis of fuzzy trends. Ul'yanovsk: UlGTU; 2009. 299 p. (in Russ.)]
6. Staroverova K.Yu., Bure V.M. Mera razlichiya vremennykh ryadov, osnovannaya na ikh kharakteristikakh. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya. 2017;13(1):51–60. [Staroverova K.Yu., Bure V.M. A measure of the difference in time series based on their characteristics. Vestnik of St. Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes. 2017;13(1):51–60. (in Russ.)]
7. Song Q., Chissom B. Forecasting enrollments with fuzzy time series. Part I. Fuzzy Sets Systems. 1993;54:1–9.
8. Tanaka H., Uejima S., Asai K. Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man and Cybernetics. 1982;12:903-907.
9. Kacprzyk J., Wilbik A., Zadrozny S. Linguistic summarization of time series by using the Choquet integral. Proceedings of 12th Fuzzy systems association world congress (IFSA’2007, Cancun, Mexico, June 18-21, 2007). Theoretical advancesand applications of fuzzy logic. N-Y.: Springer Verlag; 2007.
10. Pedrycz W., Smith M.H. Granular correlation analysis in data mining. Proceedings of IEEE International Fuzzy Systems Conference, Korea. 1999; III:IH-1240.
11. Novak V., Perfil'eva I.V., Yarushkina N.G., Afanas'eva T.V. Integral'nyi metod prinyatiya reshenii i analiza nechetkikh vremennykh ryadov. Programmnye produkty i sistemy. 2008;4(84):65-68. [Novak V., Perfil'eva I.V., Yarushkina N.G., Afanas'eva T.V. Integral method of decision-making and analysis of fuzzy time series. Software and systems. 2008;4(84):65-68. (in Russ.)]
12. Batyrshin I., Sheremetov L. Perception based time series data mining in intelligent decision making systems. IPEK YOLU. Collection of articles of Azerbaijan University. 2009;2:68-72.
13. Kovalev S.M. Gibridnye nechetko-temporal'nye modeli vremennykh ryadov v zadachakh analiza i identifikatsii slabo formalizovannykh protsessov. Trudy IV-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte” v 4 t. T.1. (Kolomna). M.: Fizmatlit; 2007. S. 26-41. [Kovalev S.M. Hybrid fuzzy-temporal models of time series in problems of analysis and identification of weakly formalized processes. Proceedings of the IVth International Scientific and Practical Conference “Integrated Models and Soft Computing in Artificial Intelligence” in 4 volumes. Vol.1. (Kolomna). M.: Fizmatlit; 2007. P. 26-41. (in Russ.)]
14. Kovalev S.M., Sukhanov A.V. Obnaruzhenie osobykh tipov patternov vo vremennykh ryadakh na osnove gibridnoi stokhasticheskoi modeli. Izvestiya YuFU. Tekhnicheskie nauki. 2014;4(153):142-149. [Kovalev S.M., Sukhanov A.V. Detection of special types of patterns in time series based on a hybrid stochastic model. Izvestiya SFedU. Engineering sciences. 2014;4(153):142-149. (in Russ.)]
15. Kovalev S.M. Metody mnogoshagovogo predskazaniya anomalii v temporal'nykh dannykh. Izvestiya YuFU. Tekhnicheskie nauki. 2013;7(144):85-91. [Kovalev S.M. Methods of multi-step prediction of anomalies in temporal data. Izvestiya SFedU. Engineering sciences. 2013;7(144):85-91. (in Russ.)]
16. Kovalev S.M. Uprezhdayushchee raspoznavanie nechetkikh temporal'nykh patternov v potokovykh dannykh na osnove adaptivnykh markovskikh modelei. XIII natsional'naya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2012 (16-20 oktyabrya 2012 g., Belgorod, Rossiya): trudy konferentsii v 4 t. Belgorod: Izd-vo BGTU; 2012;2:313-322. [Kovalev S.M. Predictive recognition of fuzzy temporal patterns in streaming data based on adaptive Markov models. XIII National conference on artificial intelligence with international participation KII-2012 (October 16-20, 2012, Belgorod, Russia): Proceedings of the conference in 4 volumes. Belgorod: Izd-vo BGTU; 2012;2:313-322. (in Russ.)]
17. Kovalev S.M. Formirovanie assotsiativnykh temporal'nykh pravil v bazakh dannykh vremennykh ryadov na osnove temporal'nykh setevykh modelei. XII natsional'naya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2010 (20-24 sentyabrya 2010 g., Tver', Rossiya): trudy konferentsii v 4 t. M: Fizmatlit; 2010;3:321-329. [Kovalev S.M. Formation of associative temporal rules in time series databases on the basis of temporal network models. XII National Conference on artificial intelligence with international participation KII-2010 (September 20-24, 2010, Tver, Russia): Proceedings of the conference in 4 vol. M: Fizmatlit; 2010; 3:321-329. (in Russ.)]
18. Suchkova L.I. Podkhod k prognozirovaniyu neshtatnykh situatsii v sistemakh monitoringa s ispol'zovaniem patternov povedeniya gruppy vremennykh ryadov. Polzunovskii vestnik. 2013;2:88-92. [Suchkova L.I. Approach to forecasting abnormal situations in monitoring systems using the behavior patterns of a group of time series. Polzunovsky vestnik. 2013;2:88-92. (in Russ.)]
19. Buchatskaya V.V. Obrabotka anomal'nykh znachenii urovnei vremennogo ryada kak etap kompleksnoi otsenki informatsii v podsisteme prognozirovaniya dlya situatsionnogo tsentra. Vestnik Adygeiskogo gosudarstvennogo universiteta. Seriya 4: Estestvenno-matematicheskie i tekhnicheskie nauki. 2013;3(122):105-110. [Buchatskaya V.V. Treatment of the anomalous values of the time series levels as a stage of complex information evaluation in the forecasting subsystem for the situational center. The Bulletin of the Adyghe State University, the series “Natural-Mathematical and Technical Sciences”. 2013; 3(122):105-110. (in Russ.)]
20. Vul'fin A.M., Frid A.I. Neirosetevaya model' analiza tekhnologicheskikh vremennykh ryadov v ramkakh metodologii Data Mining. Informatsionno-upravlyayushchie sistemy. 2011;5:31-38. [Vul'fin A.M., Frid A.I. Neural network model of the analysis of technological time series within the framework of the Data Mining methodology. Information and Control Systems. 2011;5:31-38. (in Russ.)]
Review
For citations:
Dultsev D.V., Suchkova L.I. DESCRIPTION AND IDENTIFICATION OF TEMPORAL REGULARITIES FOR FUZZY TIME SERIES WITH APPLICATION OF HYBRID OLS-PATTERNS. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(2):104-113. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-2-104-113