Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

IDENTIFICATION OF AIR RADAR TARGETS USING THE DOPPLER EFFECT FROM A HEATED JET ENGINE

https://doi.org/10.21822/2073-6185-2018-45-2-31-41

Abstract

 Objectives The aim of the study is to develop a methodology for identifyingaircraft by the deflections of an electromagnetic radar beam by a heated jet engine.

 Methods Atoms of the crystal lattice of the metallic parts of the operating jet engine will be in a state of chaotic Brownian motion due to heating. The electromagnetic beam, falling on these atoms, will change its frequency in accordance with the Doppler effect, by means of which the spectral electromagnetic radiation component will expand in direct proportion to the magnitude of the engine temperature. When determining the width of the spectral line of the direction-finding radio emission, it is possible to accurately identify the temperature of the aircraft in order to avoid false targets.

Results When locating aircraft having a working jet engine, it is possible not only to determine the coordinates of the target, but also to identify the heated engine. Due to the use of high-precision methods for identifying heated sections, the direction-finding targets may be classified, the spatial orientation of both the aircraft itself and its control planes to be determinedand the direction of the thrust vector control of the jet engine calculated.

Conclusion The application of an innovative technique for direction-finding air targets will allow the radar targets to be identified with high accuracy against the background of active and passive interferences. In addition, when analysing the information on the magnitude and direction of the jet engine thrust and the position of the aircraft controls, it is possible to determine not only the coordinates of the direction-finding object, but also to proactively identify the manoeuvres to be performed.

About the Authors

P. Sh. Adalaeva
Daghestan State Technical University
Russian Federation

70 I. Shamilya Ave., Makhachkala 367026

Patimat Sh.Adalaeva – Graduate Student, Department of Radio Engineering, Telecommunications and Microelectronics.





T. G. Aigumov
Daghestan State Technical University
Russian Federation

70 I. Shamilya Ave., Makhachkala 367026

Timur G.Aigumov – Cand. Sci. (Economics), Аssoc. Prof., Department of Software, Computing and Automated Systems.





S. V. Magomedova
Daghestan State Technical University
Russian Federation

70 I. Shamilya Ave., Makhachkala 367026

Sabina V. Magomedova – Graduate Student, Department of Radio Engineering, Telecommunications and Microelectronics.





T. A. Chelushkina
Daghestan State Technical University
Russian Federation

70 I. Shamilya Ave., Makhachkala 367026

Tatyana A.Chelushkina – Cand. Sci. (Technical), Senior Lecturer, Department of Theoretical and General Electrical Engineering.





References

1. Belyakov E.S., Kostrova T.G., Antuf'ev R.V., Kostrov V.V. Ustroistvo ustraneniya neodnoznachnykh izmerenii dal'nosti do tselei, nakhodyashchikhsya za predelami rabochei zony radiolokatsionnoi stantsii. Patent RU №2358284. MPK: G01S 13/08. Opubl. 10.06.2009. Byul. № 16. [Belyakov E.S., Kostrova T.G., Antuf'ev R.V., Kostrov V.V. The device for eliminating ambiguous measurements of distance to targets outside the radar's working area. Patent RU No. 2358284. MPK: G01S 13/08. Publ. 10.06.2009. Bul. № 16. (in Russ.)]

2. Belyaev B.G., Golubev G.N., Zhibinov V.A., Shchekotov Yu.P. Sposob radiolokatsionnogo obnaruzheniya i soprovozhdeniya ob"ektov i RLS dlya ego realizatsii. Patent RU №2149421. MPK: G01S 13/04. Opubl. 20.05.2000. Byul. №14. [Belyaev B.G., Golubev G.N., Zhibinov V.A., Shchekotov Yu.P. The method of radar detection and tracking of objects and radar for its implementation. Patent RU No. 2149421. MPK: G01S 13/04. Publ. 20.05.2000. Bul. № 14. (in Russ.)]

3. Mitrofanov D.G., Silaev N.V., Maiorov D.A., Tuluzakov V.G., Nemtsov A.V. Sposob izmereniya radial'noi skorosti vozdushnoi tseli v rezhime perestroiki chastoty ot impul'sa k impul'su po sluchainomu zakonu pri ponizhennom otnoshenii signal-shum. Patent RU №2389039. MPK: G01S 13/58. Opubl. 20.05.2010. Byul. № 13. [Mitrofanov D.G., Silaev N.V., Maiorov D.A., Tuluzakov V.G., Nemtsov A.V. A method for measuring the radial velocity of an air target in the regime of frequency tuning from pulse to pulse in a random way with a reduced signal-to-noise ratio. Patent RU No. 2389039. MPK: G01S 13/58. Publ. 20.05.2010. Bul. № 13 (in Russ.)]

4. Bashev V.V., Grachev O.D., Zachepitskii A.A., Zyablov N.E., Kokuroshnikov S.M., Malkov M.A. Podvizhnaya nazemnaya dvukhkoordinatnaya RLS krugovogo obzora metrovogo diapazona. Patent RU № 2341813. MPK: G01S 13/04. Opubl. 20.12.2008. Byul. № 35. [Bashev V.V., Grachev O.D., Zachepitskii A.A., Zyablov N.E., Kokuroshnikov S.M., Malkov M.A. Movable terrestrial two-coordinate radar system of a circular survey of meter range. Patent RU № 2341813. MPK: G01S 13/04. Publ. 20.12.2008. Bul. № 35. (inRuss.)]

5. Antashev A.B., Antashev V.B.,Antashev D.A.,Antashev P.V. Sposob obrabotki signala. Patent RU № 2302077. MPK: H04B 1/04. Opubl. 27.06.2007. Byul. № 18. [Antashev A.B., Antashev V.B.,Antashev D.A.,Antashev P.V. Method of signal processing. Patent RU № 2302077. MPK: H04B 1/04. Publ. 27.06.2007. Bul. № 18. (in Russ.)]

6. Antashev A.B., Antashev V.B., Antashev D.A., Antashev P.V., Dement'ev R.S. Sposob obnaruzheniya signala. Patent RU № 2326401. MPK: G01S 13/34, H04D 7/00. Opubl. 10.06.2008. Byul. № 16. [Antashev A.B., Antashev V.B., Antashev D.A., Antashev P.V., Dement'ev R.S. Method of signal detection. Patent RU № 2326401. MPK: G01S 13/34, H04D 7/00. Publ. 10.06.2008. Bul. № 16. (in Russ.)]

7. Voprosy perspektivnoi radiolokatsii. Pod red. M. Sokolova. M.: Radiotekhnika; 2003. 512 s. [Questions of perspective radiolocation. Ed. M. Sokolov. M.: Radiotekhnika; 2003. 512 p. (in Russ.)]

8. Perunov Yu.M., Kupriyanov A.I. Radioelektronnaya bor'ba: radiotekhnicheskaya razvedka. M.: Vuzovskaya kniga; 2016. 190 s. [Perunov Yu.M., Kupriyanov A.I. Electronic warfare: radio technical intelligence.M.: Vuzovskaya kniga; 2016. 190 p. (in Russ.)]

9. Radzievskii V.G., Trifonov P.A. Obrabotka sverkhshirokopolosnykh signalov i pomekh. M.: Radiotekhnika; 2009. 288 s. [Radzievskii V.G., Trifonov P.A. Processing ultra-wideband signals and interferences. M.: Radiotekhnika; 2009. 288 p. (in Russ.)]

10. Panychev S.N., Pitolin V.M., Samotsvet N.A. Universal'nyi pokazatel' dlya otsenki effektivnosti maskiruyushchikh i imitatsionnykh pomekh. Radiotekhnika. 2016;6:26-30. [Panychev S.N., Pitolin V.M., Samotsvet N.A. Universal indicator for assessing the effectiveness of masking and imitating interferences. Radioengineering. 2016;6:26-30. (in Russ.)]

11. Litvinov N.N., Lavrent'ev A.M. Analiz. Vozmozhnosti maskirovki zondiruyushchikh signalov radiolokatsionnykh stantsii gruppirovki protivovozdushnoi oborony. Vestnik Vozdushno-kosmicheskoi oborony. 2017;1(13):38-43. [Litvinov N.N., Lavrent'ev A.M. Possibilities of masking sounding signals of radar stations of air defense grouping. Aerospace Defense Herald. 2017;1(13):38-43. (in Russ.)]

12. Golovkov A.A., Minakov V.G. Sintez soglasuyushche-fil'truyushchikh ustroistv amplitudno-fazovykh manipulyatorov pri vklyuchenii upravlyaemogo elementa posledovatel'no istochniku signala. Telekommunikatsii. 2005;3:33-37. [Golovkov A.A., Minakov V.G. Synthesis of matching-filtering devices of amplitude-phase manipulators when the controlled element is switched on in series with the signal source. Telecommunications. 2005;3:33-37. (in Russ.)]

13. Golovkov A.A., Golovkov V.A. Parametricheskii sintez amplitudno-fazovykh modulyatorov s razlichnymi variantami vklyucheniya nelineinogo elementa otnositel'no rezistivnogo chetyrekhpolyusnika. Radiotekhnika i elektronika. 2013;8:609-618. [Golovkov A.A., Golovkov V.A. Parametric synthesis of amplitude-phase modulators with different variants of switching of a nonlinear element with respect to a resistive four-terminal network. Radiotekhnika i elektronika. 2013;8:609-618. (in Russ.)]

14. Golovkov A.A., Semenov A.A. Matematicheskoe i skhemotekhnicheskoe modelirovanie amplitudnofazovykh modulyatorov s ispol'zovaniem rezistivnogo soglasuyushchego ustroistva pri posledovatel'nom soedinenii trekhpolyusnogo nelineinogo elementa i tsepi obratnoi svyazi. Nelineinyi mir. 2013;6(11):417-422. [Golovkov A.A., Semenov A.A. Mathematical and circuit simulation of amplitude-phase modulators using a resistive matching device with a series connection of a three-pole nonlinear element and a feedback loop. Nonlinear World. 2013;6(11):417-422. (in Russ.)]

15. GLONASS. Printsipy postroeniya i funktsionirovaniya. Pod red. A.I. Perova, V.N. Kharisova. M.: Radiotekhnika; 2010. 688 s. [GLONASS. Principles of construction and functioning. Eds. A.I. Perov, V.N. Harisov. M.: Radiotekhnika; 2010. 688 p. (in Russ.)]

16. Podkorytov A.N. Vysokotochnoe opredelenie koordinat potrebitelya v global'nykh navigatsionnykh sputnikovykh sistemakh c ispol'zovaniem utochnennoi efemeridno-vremennoi informatsii. Vestnik Moskovskogo aviatsionnogo instituta. 2011;3(18):233-239. [Podkorytov A.N. High-precision determination of customer coordinates in global navigation satellite systems using refined ephemeris time information. Vestnik Moskovskogo aviatsionnogo instituta. 2011;3(18):233-239. (in Russ.)]

17. Podkorytov A.N. Vysokotochnoe mestoopredelenie v absolyutnom rezhime v GNSS s ispol'zovaniem razresheniya tselochislennoi neodnoznachnosti psevdofazovykh izmerenii. Trudy MAI. № 59. [Podkorytov A.N. High-precision positioning in absolute mode in GNSS using the resolution of integer ambiguity of pseudo-phase measurements. Trudy MAI. № 59. (in Russ.)]

18. Nikitin D.P., Valaitite A.A. Analiz kachestva vysokotochnoi efemeridno-vremennoi informatsii dlya opredeleniya koordinat nizkoorbital'nykh kosmicheskikh apparatov. Elektrosvyaz'. 2016;11:18-24. [Nikitin D.P., Valaitite A.A. Analysis of the quality of high-precision ephemeris time information for determining the coordinates of low orbital spacecraft. Electrosvyaz. 2016;11:18-24. (in Russ.)]

19. Nikitin D.P., Valaitite A.A. Algoritm vysokotochnogo absolyutnogo mestoopredeleniya po signalam GNSS dlya nizkoorbital'nykh kosmicheskikh apparatov. Elektrosvyaz'. 2016;11:12-17. [Nikitin D.P., Valaitite A.A. Algorithm of high-precision absolute location based on GNSS signals for low-orbit spacecraft. Elektrosvyaz. 2016;11:12-17. (in Russ.)]

20. Kulikov S.V., Gudaev R.A., Baldychev M.T., Gaichuk Yu.N. Reshenie zadachi raspoznavaniya izluchayushchikh ob"ektov na osnove podkhoda k otozhdestvleniyu ikh diagramm napravlennosti. Naukoemkie tekhnologii. 2015;12:26-30. [Kulikov S.V., Gudaev R.A., Baldychev M.T., Gaichuk Yu.N. The solution of the problem of recognition of radiating objects on the basis of the approach to the identification of their directivity diagrams. Science Intensive Technologies. 2015;12:26-30. (in Russ.)]

21. Rogov D.A., Babishkin A.A., Gudaev R.A., Chistyakov S.V. Algoritm raspoznavaniya tipa izluchayushchego ob"ekta na osnove spektral'nogo portreta v vozdushno-kosmicheskom prostranstve na osnovanii ispol'zovaniya spektral'nogo portreta. Trudy VKA imeni A.F.Mozhaiskogo. 2016;654:38-42. [Rogov D.A., Babishkin A.A., Gudaev R.A., Chistyakov S.V. Algorithm for recognizing the type of a radiating object based on a spectral portrait in airspace based on the use of a spectral portrait. Trudy VKA imeni A.F.Mozhaiskogo. 2016;654:38-42. (in Russ.)]

22. Fedotov N.G. Teoriya priznakov raspoznavaniya obrazov na osnove stokhasticheskoi geometrii i funktsional'nogo analiza. M.: Fizmatlit; 2010. 304 s. [Fedotov N.G. Theory of features of pattern recognition based on stochastic geometry and functional analysis. M.: Fizmatlit; 2010. 304 p. (in Russ.)]

23. Sobolev V.S., Feshenko A.A. Accurate Cramer-Rao bounds for a lLaser Doppler anemometer. IEEE transactions on instrumentation and measurement. 2006;55(2):659-665.

24. Parkinson B., Spilker J. Global Positioning System: Theory and Practice. V. I, II. Washington, DC: American Institute of Aeronautics and Astronautics; 1996.

25. Leandro R.F. Precise point positioning with GPS: a new approach for positioning, atmospheric studies, and signal analysis. Department of Geodesy and Geomatics Engineering, University of New Brunswick. 2009.

26. Publication on Geodesy 68ESA’s Earth Observation Programmes: Advancing Earth Science through New Sensing Technology. (Access date 30.06.2018). URL: http://earthzine.org/2007/10/29/esas-earthobservation-programmes-advancing-earth-science-through-new-sensing-technology.


Review

For citations:


Adalaeva P.Sh., Aigumov T.G., Magomedova S.V., Chelushkina T.A. IDENTIFICATION OF AIR RADAR TARGETS USING THE DOPPLER EFFECT FROM A HEATED JET ENGINE. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(2):31-41. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-2-31-41

Views: 724


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)