EDGE STATE METHOD IN MECHANICS PROBLEMS CONCERNING ANISOTROPIC THIN PLATES
https://doi.org/10.21822/2073-6185-2018-45-2-18-30
Abstract
Objectives The aims of the study are to expand the edge state method for solving bending and torsion problems concerning anisotropic thin plates, develop the theory of construction of the bases of spaces of interior and edge states based on a general approximate solution to the plate bending problem, formulate the relationships determining the desired elastic state and implement the developed theory in solving specific problems.
Methods The fulfilment of the tasks is assumed to be based on the edge state method. The state spaces comprising the methodological basis are formed according to the fundamental system of Weierstrass polynomials.
Results An isomorphism of interior and edge state spaces is demonstrated, allowing a correspondence between the elements of these spaces to be unambiguously established. The isomorphism of spaces allows the process of finding the internal state to be reduced to the study of the edge state isomorphic to it. The mechanical characteristics are represented in the form of a Fourier series. In the case of the first and second fundamental mechanics problems, the Fourier coefficients are represented by scalar products having an energy implication: in the space of edge states, this consists in the work of external forces; in the space of internal states, it is the internal energy of elastic deformation. In the case of mixed mechanical problems, the search for an elastic state in the terms of the edge state method is reduced to solving an infinite system of algebraic equations.
Conclusion The solution of the first-tested basic problem of bending with torsion for a rectangular fibreglass plate with corresponding conclusions is given, as well as the problems of torsion for a plate of nontrivial form. Commentaryis provided concerning the unreasonableness of the solution of the second fundamental problem, as well as the problem with mixed boundary conditions for a rectangular plate where twisting and bending forces are defined simultaneously on the one face, while the opposite face is squeezed. Both explicit and indirect signs of the convergence of the solution to the problem are presented along with a graphical visualisation of the results.
About the Author
D. A. IvanychevRussian Federation
30 Moskovskaya Str., Lipetsk 398600
Cand. Sci. (Physical and Mathematical), Assoc. Prof., Department of
«General Mechanics».
References
1. Ambartsumyan S.A. Teoriya anizotropnykh plastin. M.: Nauka; 1967. 268 s. [Ambartsumyan S.A. Theory of anisotropic plates. M.: Nauka; 1967. 268 p. (in Russ.)]
2. Ivanychev D.A. Metod granichnykh sostoyanii v zadachakh izgiba anizotropnykh plastin. Sbornik trudov Mezhdunarodnoi konferentsii “Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki”. Voronezh: Izdatel'sko-poligraficheskii tsentr Voronezhskogo gosudarstvennogo universiteta; 2010. 443 s. [Ivanychev D.A. The method of edge states in problems of bending of anisotropic plates.Proceedings of International conference “Relevant issues of applied mathematics, computer science and mechanics”. Voronezh: Publishing and Printing Center of Voronezh State University; 2010. 443 p. (in Russ.)]
3. Ivanychev D.A. Issledovanie izgiba anizotropnykh tonkikh plit metodom granichnykh sostoyanii. Materialy mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki”. Tula: Izdvo TulGU; 2011. 272 s. [Ivanychev D.A. Investigation of the bending of anisotropic thin plates by the edge state method. Proceedings of International scientific conference “Modern issues of mathematics, mechanics and computer science”. Tula: Izd-vo TulGU; 2011. 272 p. (in Russ.)]
4. Ivanychev D.A. Reshenie zadach izgiba anizotropnykh plastinok metodom granichnykh sostoyanii. Materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Molodezh' i nauka: real'nost' i budushchee”. Tom IV: Estestvennye i prikladnye nauki. Nevinnomyssk: NIEUP; 2011. 562 s. [Ivanychev D.A. Solution of the bending problems of anisotropic plates by the edge state method.Proceedings of IV International scientific-practical conference “Youth and Science: Reality and the Future”. Vol. IV: Natural and Applied Sciences. Nevinnomyssk: NIEUP; 2011. 562 p. (in Russ.)]
5. Ivanychev D.A., Buzina O.P. Issledovanie napryazhenno-deformirovannogo sostoyaniya anizotropnykh plastinok metodom granichnykh sostoyanii. Sbornik trudov “Mekhanika. Nauchnye issledovaniya i uchebno-metodicheskie razrabotki”. BelGUT: Gomel, Belarus; 2014. [Ivanychev D.A., Buzina O.P. Investigation of the stress-strain state of anisotropic plates by the edge states method.Collection of works “Mechanics. Scientific research and educational methodical developments”. BelGUT: Gomel, Belarus; 2014. (in Russ.)]
6. Ivanychev D.A. Izgib anizotropnykh plastinok.Sb. nauch. trudov mezhdunar. nauch.- tekhn. konf. “Problemy i perspektivy razvitiya mashinostroeniya”. Chast' 2. Lipetsk: Izd-vo LGTU; 2016. 356 s. [Ivanychev D.A.Bending of anisotropic plates.Proceedings of the International scientific-technical conference “Problems and perspectives of the development of machine-building”. Part 2. Lipetsk: Izd-vo LGTU; 2016. 356 p. (in Russ.)]
7. Ivanychev D.A. Metod granichnykh sostoyanii v zadachakh teorii anizotropnoi uprugosti. Saarbrucken: LAP LAMBERT Academic Publishing; 2011. 99 s. [Ivanychev D.A. The method of edge states in problems of the theory of anisotropic elasticity. Saarbrucken: LAP LAMBERT Academic Publishing; 2011. 99 p. (in Russ.)]
8. Kosmodamianskii A.S. Napryazhennoe sostoyanie anizotropnykh sred s otverstiyami i polostyami. Izdatel'skoe ob"edinenie “Vishcha shkola”; 1976. 200 s. [Kosmodamianskii A.S. Stress state of anisotropic media with holes and cavities. Publishing Association “Vishcha shkola”; 1976. 200 p. (in Russ.)]
9. Lekhnitskii S.G. Anizotropnye plastinki. M.: GITTL; 1957. 463 s. [Lekhnitskii S.G. Anisotropic plates. M.: GITTL; 1957. 463 p. (in Russ.)]
10. Lekhnitskii S.G. Teoriya uprugosti anizotropnogo tela. M.: Nauka; 1977. 416 s. [Lekhnitskii S.G. Theory of elasticity of an anisotropic body. M.: Nauka; 1977. 416 p. (in Russ.)]
11. Lekhnitskii S.G. O nekotorykh voprosakh, svyazannykh s teoriei izgiba tonkikh plit. Prikladnaya matematika i mekhanika. 1938; II(2): 181 – 210. [Lekhnitskii S.G. On some questions connected with the theory of the bending of thin plates. 1938;II(2): 181 – 210. (in Russ.)]
12. Maksimenko V.N., Podruzhin E.G. Izgib konechnykh anizotropnykh plastin, soderzhashchikh gladkie otverstiya i skvoznye krivolineinye razrezy. Sib. zhurn. industr. matem. 2006;9(4): 125–135. [Maksimenko V.N., Podruzhin E.G. Bending of finite anisotropic plates containing smooth holes and through curved sections. Journal of Applied and Industrial Mathematics. 2006;9(4): 125–135. (in Russ.)]
13. Maksimenko V.N., Podruzhin E.G. Fundamental'nye resheniya v zadachakh izgiba anizotropnykh plastin. Prikladnaya mekhanika i tekhnicheskaya fizika. 2003; 44(4):135-143. [Maksimenko V.N., Podruzhin E.G.Fundamental solutions in problems of bending of anisotropic plates.Journal of Applied Mechanics and Technical Physics. 2003; 44(4):135-143. (in Russ.)]
14. Nedorezov P.F. Chislennoe issledovanie napryazhenno-deformirovannogo sostoyaniya v zadachakh izgiba tonkoi anizotropnoi pryamougol'noi plastinki. Izv. Sarat. un-ta. Nov.ser. Ser. Matematika. Mekhanika. Informatika. 2009; 9(4):143-148. [Nedorezov P.F. Numerical investigation of a stress-strain state in bending problems of a thin anisotropic rectangular plate. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics. 2009.9(4):143-148.(in Russ.)]
15. Pen'kov V.B., Pen'kov V.V. Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki. Dal'nevostochnyi matematicheskii zhurnal. 2001; 2(2):115-137. [Pen'kov V.B., Pen'kov V.V. The method of edge states for solving linear mechanics problems. Far Eastern Mathematical Journal. 2001;2(2):115-137. (in Russ.)]
16. Pen'kov V.V. Metod granichnykh sostoyanii v zadachakh lineinoi mekhaniki. Diss… k. f-m. n. Tula; 2002. 83 s. [Pen'kov V.V. The method of edge states in problems of linear mechanics. Candidate of physics and mathematical sciences thesis. Tula; 2002. 83 p. (in Russ.)]
17. Pen'kov V.B., Pen'kov V.V. Metod granichnykh sostoyanii dlya osnovnoi smeshannoi zadachi lineinogo continuuma. Tezisy dokladov Vserossiiskoy konferentsii. Tula: TulGU; 2000. P. 108-110. [Pen'kov V.B., Pen'kov V.V. The method of edge states for the basic mixed problem of a linear continuum. Abstracts of All-Russian conference. Tula: TulGU; 2000. P. 108-110. (in Russ.)]
18. Podruzhin E.G. Prilozhenie metoda singulyarnykh integral'nykh uravnenii k zadacham izgiba anizotropnykh plastin s mnogosvyaznym konturom. Dis… d. t. n. Novosibirsk; 2007. 272 s. [Podruzhin E.G. Application of the method of singular integral equations to the problems of the bending of anisotropic plates with a multiply connected contour. Doctor of technical sciences thesis. Novosibirsk; 2007. 272 p. (in Russ.)]
19. Romakina O.M., Shevtsova Yu.V. Metod splain-kollokatsii i ego modifikatsiya v zadachakh staticheskogo izgiba tonkoi ortotropnoi pryamougol'noi plastinki. Izv. Sarat. un-ta. Nov.ser. Ser. Matematika. Mekhanika. Informatika. 2010; 10(1):78-82. [Romakina O.M., Shevtsova Yu.V. Spline collocation method and its modification in static bending problems of a thin orthotropic rectangular plate. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics. 2010; 10(1):78-82. (in Russ.)]
20. Ryabchikov P.E. Napryazhenno-deformirovannoe sostoyanie anizotropnykh plastin slozhnoi formy pri izgibe. Dissertatsiya ... k. f.-m. n. Novosibirsk; 2007. 124 s. [Ryabchikov P.E. Stress-strain state of anisotropic plates of complex shape with bending. Candidate of physics and mathematical sciences thesis. Novosibirsk; 2007. 124 p. (in Russ.)]
21. Satalkina L.V. Narashchivanie bazisa prostranstva sostoyanii pri zhestkikh ogranicheniyakh k energoemkosti vychislenii. Sbornik tezisov dokladov nauchnoi konferentsii studentov i aspirantov Lipetskogo gosudarstvennogo tekhnicheskogo universiteta. Lipetsk: LGTU; 2007. P. 130 – 131. [Satalkina L.V. Extension of the basis of the state space under tight constraints to the energy consumption of computations. Abstracts of scientific conference of students and post-graduate students of Lipetsk State Technical University. Lipetsk: LSTU; 2007. P. 130 – 131. (in Russ.)]
22. Treshchev A.A., Pen'kov V.V. Metod granichnykh sostoyanii: smeshannaya zadacha. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii“Aktual'nye problemy stroitel'stva i stroitel'noi industrii”.Tula: Tul'skii poligrafist; 2001. P.76. [Treshchev A.A., Pen'kov V.V. Method of edge states: a mixed problem. Materialy International scientific and technical conference “relevant issues of construction and construction industry”. Tula: Tul'skii poligrafist; 2001. P.76. (in Russ.)]
Review
For citations:
Ivanychev D.A. EDGE STATE METHOD IN MECHANICS PROBLEMS CONCERNING ANISOTROPIC THIN PLATES. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(2):18-30. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-2-18-30