Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

FUNDAMENTALS OF INDEX STRUCTURISATION OF NXN-COMBINATORY CONFIGURATIONS

https://doi.org/10.21822/2073-6185-2018-45-1-139-146

Abstract

Objectives The aim of the research was to develop a new approach to the configuration formation from the elements of nxn-arrays of sets by the permutations of their elements based on the requirement to order the structures of rows and columns according to the index characteristic.

Methods. The proposed method of "index structurisation" of nxn-arrays of sets is based on the functional dependencies of the index values of the surrounding elements, located directly around any of the elements formed by the configuration permutation, from the index values of the element they surround. The configuration formation from elements of nxn-arrays of sets is carried out by permutations of row and column elements according to given indexing rules and based on the functional dependency of the index values of the surrounding elements from the index values of the element they surround.

Results. A new “index structurisation” approach to the organisation of elemental permutations of information arrays characterising the unique definition of the elements of combinatorial configurations of its structural properties by the rules of indexing, is proposed. General requirements are formulated for the represented functional dependencies of the index values of surrounding elements. The notion of the index remoteness coefficients of surrounding elements is introduced and their influence on the structure of configurations formed is investigated. The properties of the configurations formed by the proposed dependencies as well as the scope of their possible application as discrete system and process models are investigated.

Conclusion. The proposed approach to configuration using permutations of elements of nxn-array of sets, based on the "index structurisation" characterising the unique rules of indexing the elements of combinatorial configurations of its structural properties, establishes a basis for index structurisation of combinatorial configurations.

About the Authors

I. P. Kadiev
Branch - National Bank for the Republic of Daghestan Southern Central Administration of the Central Bank of the Russian Federation
Russian Federation

Islamudin P. Kadiev– Leading specialist of the information and analytical department of the Inspectorate of Credit Organizations.

29 Danialova , Makhachkala 367000



P. A. Kadiev
Daghestan State Technical University
Russian Federation

Pashaj A. Kadiev – Cand. Sci. (Technical), Prof.

70 I. Shamilya Ave., Makhachkala 367026



References

1. Riordan Dzh. Vvedenie v kombinatornyi analiz. M.: Mir; 1963. [Riordan Dzh. Introduction to combinatorial analysis. M.: Mir; 1963. (in Russ.)]

2. Rayzer G.Dzh. Kombinatornaya matematika. Moscow: Mir; 1966. [Rayzer G.Dzh. Combinatorial mathematics. Moscow: Mir; 1966. (in Russ.)]

3. Aygner M. Kombinatornaya teoriya. Moscow: Mir; 1982. [Aygner M. Combinatorial theory. Moscow: Mir; 1982. (in Russ.)]

4. Holl M. ―Kombinatorika = Combinatorial Theory‖ pod red. Gel’fanda A.O. i Tarakanova V.E. Moscow: Mir; 1970. [Holl M. ―Combinatorics = Combinatorial Theory‖ Gel’fand A.O. and Tarakanov V.E. (Eds). Moscow: Mir; 1970. (in Russ.)]

5. Stenli R. Perechislitel'naya kombinatorika. M.: Mir; 1990. [Stenley R. Enumerative combinatorics. M.: Mir; 1990. (in Russ.)]

6. Rybnikov K.A. Vvedenie v kombinatornyy analiz. Moscow: Izd. MGU; 1985. [Rybnikov K.A. Introduction to combinatorial analysis. Moscow: MSU; 1985. (in Russ.)]

7. Leont'ev V.K. Izbrannye zadachi kombinatornogo analiza. M.: Izd-vo MGTU im. N.E. Baumana; 2001. 127 s. [Leont'ev V.K. Selected problems of combinatorial analysis. M.: Izd-vo MGTU im. N.E. Baumana; 2001. 127 p. (in Russ.)]

8. Elektronnyi resurs http://www.Google/ru. Algoritmy indeksnoi sortirovki massivov dannykh/ [The electronic resource http://www.Google/ru. Algorithms for index sorting of data arrays/ (in Russ.)]

9. Reingol'd E., Nivergel't Yu., Deo N. Kombinatornye algoritmy. Teoriya i praktika. M.: Mir; 1980. 436 s. [Reingol'd E., Nivergel't Yu., Deo N. Combinatorial algorithms. Theory and practice. M.: Mir; 1980. 436 p. (in Russ.)]

10. Tarakanov V.E. Kombinatornye zadachi i {0,1}matritsy. M.: Nauka; 1985. 190 s. [Tarakanov V.E. ombinatorial problems and {0,1} -matrices. M.: Nauka; 1985. 190 p. (in Russ.)]

11. Vilenkin N.Ya. Kombinatorika. Moscow: Nauka; 1969. [Vilenkin N.Ya. Combinatorics. Moscow: Nauka; 1969. (in Russ.)]

12. Kadiev I.P., Kadiev P.A. Tsiklicheskie metody indeksnoy sortirovki elementov massivov dannykh. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2015; 36:79-83. [Kadiev I.P., Kadiev P.A. Cyclic methods of index sorting of data array elements. Herald of Daghestan State Technical University. Technical Sciences. 2015; 36:7983. (in Russ.)]

13. Kadiev I.P., Kadiev P.A. Sposob zadaniya pravil indeksatsii elementov matrichnykh kombinatornykh konfiguratsiy. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 2016;3(42):93-101. [Kadiev I.P., Kadiev P.A. The method of specifying indexing rules for elements of matrix combinatorial configurations. Herald of Daghestan State Technical University. Technical Sciences. 2016;3(42):93-101. (in Russ.)]

14. Kadiev I.P. Indeksnye metody formirovaniya kombinatornykh konfiguratsii klassa sistem razlichnykh predstavitel'stv. Vestnik DGTU. Tekhnicheskie nauki. 2017;1(44):96-102. [Kadiev I.P. Indexing methods for forming combinatorial configurations of the class of systems of distinct representatives. Herald of Daghestan State Technical University. Technical Sciences. 2017;1(44):96-102. (in Russ.)]

15. Kadiev P.A., Mirzabekov T.M., Kadiev I.P. Programma skremblirovaniya informatsionnogo potoka. Svidetel'stvo o gos. registratsii programmy dlya EVM №201662043, 28.10.2016 [Kadiev P.A., Mirzabekov T.M., Kadiev I.P. The program of information stream scrambling. Certificate of state registration of the computer programme №201662043, October 28, 2016. (in Russ.)]

16. Schrijver A. Chapter 22 ―Transversals‖, chapter 23 ―Common transversals‖ in Combinatorial optimization. Springer; 2003.

17. Svami K.T. Grafy, seti i algoritmy. Pod red. Gorbatova V.A. Moscow: Mir; 1984. 455 s. [Svami K.T. Graphs, Networks, and Algorithms. Gorbatov V.A. (Ed). Moscow: Mir; 1984. 455 p. (in Russ.)]

18. Denes J., Keedwell A. D. Latin Squares and their Applications. Budapest; 1974.

19. Curien P.-L. Categorical combinatory logic. LNCS. 1985;194:139-151.

20. Cardone F., Hindley J.R. History of lambda calculus and combinators. Handbook of the History of Logic, Volume 5. D.M. Gabby and J. Woods (eds). Amsterdam: Elsevier Co.; to appear.


Review

For citations:


Kadiev I.P., Kadiev P.A. FUNDAMENTALS OF INDEX STRUCTURISATION OF NXN-COMBINATORY CONFIGURATIONS. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(1):139-146. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-1-139-146

Views: 662


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)