EXPRESS METHODS FOR ANALYSING THERMO-ELECTRIC MATERIALS AND CONVERTER CHARACTERISTICS
https://doi.org/10.21822/2073-6185-2018-45-1-49-59
Abstract
Objectives. Recently, there has been a sharp increase in research interest in thermoelectricity (TE) and its applications. New designs for thermoelectric converters (TEC) are being proposed and a large number of new thermoelectric materials (TEM) with a thermoelectric figure of merit Z = a2s/ k enhanced by the nanotechnological (NT) method are obtained. (Here a, s and k are the coefficient of thermal electromotive force (EMF), the specific electrical conductivity and the thermal conductivity, respectively). As a result, the need for a sharp increase in the labour productivity of researchers working in the thermoelectric (TE) industry has emerged, especially when determining the characteristics of thermoelectric materials and thermoelectric converters, as well as when processing an increased volume of literature data. The aim of the present work is to develop a set of methods for rapid analysis of the characteristics of thermoelectric materials and thermoelectric converters, allowing the labour productivity of researchers working in the TE industry to be increased.
Methods. The problem was solved by selecting well-known methods for studying TEM and TEC, based on nonstationary measurement principles and computer calculations, as well as creating new methods.
Results. The result of the work was an expansion of the capabilities of the established thermal probe and Harman methods used to measure the Z parameter and its components (a, s and k). The Harman method is expanded to multistage modules, allowing for the passive compensation of thermal losses when measuring in air (the switching of thermocouples (TP) in “head to head” mode). Methods for estimating the Eg – the band gap width of the TEM – according to the curves Z = f (T, as well as the calculation of the TEC using the Lenz rule, are developed. A method is proposed for diagnosing the “phonon glass electron crystal” (PGEC) phase (1 ~ lph / a << λe / a/ a) by determining the mean free paths of phonons lph and electrons λe. (Here, a = 3 nm is the shortest interatomic distance). The method of autoelectrochemical alloying of thermoelectric materials, as well as diagnostics of nanostructures (NS), is developed by determining the “physical property-NS identity period x ” dependencies. Examples of the developed technique using for analysing the characteristics of thermoelectric materials and thermoelectric converters are given.
Conclusion The possibility of a sharp increase in the labour productivity of researchers working in the TE industry is indicated. Acknowledgment. The work was carried out according to the state task No. 007-00129-18-00.About the Authors
E. S. AvilovRussian Federation
Evgeniy S. Avilov - Leading Researcher, Cand. Sci.(Technical).
49, Leninskiy Ave., Moscow 119991
M. A. Korzhuev
Russian Federation
Mikhail A. Korzhuev - Leading Researcher, Cand. Sci.(Physical-Mathematical).
49, Leninskiy Ave., Moscow 119991
M. A. Kretova
Russian Federation
Marina A. Kretova – Researcher.
49, Leninskiy Ave., Moscow 119991
References
1. Nolas G.S., Sharp J., Goldsmid H.J. Thermoelectrics. Basic Principles and New Materials Developments. Berlin: Springer; 2001. 293 р.
2. Kaumoto С.K., Mori T. Thermoelectric Nanomaterials. Berlin: Springer; 2013. 387 p.
3. Goldsmid H. J. Introduction to Thermoelectricity. Berlin Heidelberg: Springer-Verlag; 2016. 278 p.
4. Anatychuk L.I. Vstupital'noe slovo na XIV Mezhdunarodnom forume po termoelektrichestvu (17-20 maya 2011, Moskva). Termoelektrichestvo. 2011;2:89 - 93. [Anatychuk L.I. An introductory word at the XIV International Forum on Thermoelectricity (May 17-20, 2011, Moscow). Journal of Thermoelectricity. 2011;2:89 - 93. (in Russ.)]
5. Filin S.O. XVII Mezhdunarodnyi termoelektricheskii forum (17-20 maya 2017, Belfast). Kholodil'nyi biznes. 2017;6:36 - 39. [Filin S.O. XVII International Thermoelectric Forum (May 17-20, 2017, Belfast). Refrigeration business. 2017;6:36 - 39. (In Russ.)]
6. Slack G. New materials and performance limits for thermoelectric cooling. CRC Handbook of Thermoelectrics. (Ed. Rowe D.M.). N.Y., Boca Raton; 1995. P. 407 - 440.
7. Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science. 2002;297:2229 - 2232.
8. Ventkatasubramanian R., Siivola E., Colpitts T., O'Quinn B. Thin-film thermoelectric devices with high roomtemperature figures of merit. Nature. 2001;413(6856):597 - 602.
9. Snyder G.J., Toberer E.S. Complex thermoelectric materials. Nature Materials. 2008;7:105 - 114.
10. Sootsman J.R., Xhung D.Y., Kanatzidis M.G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 2009;47:8616 - 8639.
11. Sgibnev I.V., Kopylov A.P. Termoelektrichestvo. Energiya: ekonomika, tekhnika, ekologiya. 2017;12:31 - 36. [Sgibnev I.V., Kopylov A.P. Thermoelectricity. Energy: economics, technology, ecology. 2017;12:31 - 36. (In Russ.)]
12. Bulat L.P., Pshenai-Severin D.A., Drabkin I.A., Karataev V.V., Osvenskii V.B., Parkhomenko Yu.N., Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Mekhanizmy uvelicheniya termoelektricheskoi effektivnosti v ob"emnykh nanostrukturnykh polikristallov. Termoelektrichestvo. 2011;1:14 - 19. [Bulat L.P., Pshenai-Severin D.A., Drabkin I.A., Karataev V.V., Osvenskii V.B., Parkhomenko Yu.N., Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Mechanisms of increasing thermoelectric efficiency in tridimesional nanostructured polycrystals. Journal of Thermoelectricity. 2011;1:14 - 19. (In Russ.)]
13. Korzhuev M.A., Svechnikova T.E. Termodinamicheskie ogranicheniya poleznoi moshchnosti avtomobil'nykh termoelektricheskikh generatorov i perspektivy ikh ispol'zovaniya na transporte. Termoelektrichestvo. 2013;3:58 - 75. [Korzhuev M.A., Svechnikova T.E. Thermodynamic limitations of the useful power of automotive thermoelectric generators and the prospects for their use in transport. Journal of Thermoelectricity. 2013;3:58 - 75. (In Russ.)]
14. Harman T.C., Honig J.M. Thermoelectric and Thermomagnetic effects and applications. N.Y.: Mc-Grow Hill; 1967. 378 p.
15. Avilov E.S., Korzhuev M.A., Kretova M.A., Mikhailova A.B. Termoelektricheskaya dobrotnost' i magnitotvornaya sposobnost' ―estestvennykh‖ nanostruktur PbBi2(Te1-xSex)4+δ i PbBi4(Te1-xSex)7+δ. Perspektivnye materialy. 2015;12:15 - 26. [Avilov E.S., Korzhuev M.A., Kretova M.A., Mikhailova A.B. The thermoelectric figure of merit and the magnetic capacity of the "natural" nanostructures of PbBi2(Te1-xSex)4+δ and PbBi4(Te1-xSex)7+δ. Perspektivnye Materialy. 2015;12:15 - 26. (In Russ.)]
16. Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Osobennosti zonnoi struktury sloistykh kristallov semeistva [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…). Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.57-63. [Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Features of the band structure of layered crystals of the family [(Ge, Sn, Pb) (Te, Se)]m[(Bi, Sb)2(Te, Se)3]n (m, n = 0, 1, 2 ...). Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.57-63. (In Russ.)]
17. Korzhuev M.A., Avilov E.S., Nichezina I.Yu. Nonstandard Harman response at the separate measurement of stages of multicascade thermoelectric modules. JEMS. 2011;40(5):733- 737.
18. Korzhuev M.A. Termoelektricheskie nanostruktury. Za i protiv. Termoelektrichestvo. 2013;5:11 - 24. [Korzhuev M.A. Thermoelectric nanostructures. Pros and cons. Journal of Thermoelectricity. 2013;5:11 - 24. (in Russ.)]
19. Kiseleva N.N., Dudarev V.A., Korzhuev M.A. Baza dannykh po shirine zapreshchennoi zony neorganicheskikh veshchestv i materialov. Materialovedenie. 2015;7:3 - 8. [Kiseleva N.N., Dudarev V.A., Korzhuev M.A. Database on the bandgap width of inorganic substances and materials. Materialovedenie. 2015;7:3 - 8. (In Russ.)]
20. Kretova M.A., Korzhuev M.A. Otsenka shiriny zapreshchennoi zony ryada novykh termoelektricheskikh materialov. FTP. 2017;51(7):940 - 943. [Kretova M.A., Korzhuev M.A. Estimation of the width of the forbidden band of a number of new thermoelectric materials. Fizika i technika poluprovodnikov. 2017;51(7):940 - 943. (In Russ.)]
21. Kretova M.A., Korzhuev M.A., Avilov E.S. Elektrokhimicheskie issledovaniya protsessov legirovaniya med'yu sloistykh kristallov semeistva [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…). FTP. 2017;51(7):937 -939. [Kretova M.A., Korzhuev M.A., Avilov E.S. Electrochemical studies of the copper doping of layered crystals of [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…) family. Fizika i technika poluprovodnikov. 2017;51(7):937 -939. (In Russ.)]
22. Korzhuev M.A., Katin I.V. Diagnostics of the phase ―phonon glas – electron crystals‖ (PGEC) in thermoelectric materials. Physics, chemistry and application of nanostructures. New Jersey - London: Word Scientific; 2015. P. 107-110.
23. Korzhuev M.A., Katin I.V. Vyrozhdenie fazy ―fononnoe steklo-elektronnyi kristall‖ (FSEK) v sloistykh kristallakh semeistva [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…). Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.134 - 139. [Korzhuev M.A., Katin I.V. The degeneracy of the phase ―phonon glass-electronic crystal‖ (PGEC) in layered crystals of the [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2 …) family. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.134 - 139. (In Russ.)]
24. Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Ob ustoichivosti ―iskusstvennykh‖ i ―estestvennykh‖ nanostruktur termoelektricheskikh materialov na osnove Bi2Te3. Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.51 - 56. [Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. On the stability of "artificial" and "natural" nanostructures of thermoelectric materials based on Bi2Te3. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. S.51 - 56. (In Russ.)]
25. Korzhuev M.A., Mikhailova A.B., Kretova M.A., Avilov E.S. Analiz kristallicheskoi struktury splavov semeistva [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…) v ramkakh teorii plotneishikh sharovykh upakovok. FTP. 2017;51(8):1011 - 1013. [Korzhuev M.A., Mikhailova A.B., Kretova M.A., Avilov E.S. Analysis of the crystal structure of the alloys of the [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…) family in the frames of theory of dense sphere packing. Fizika i technika poluprovodnikov. 2017;51(8):1011 - 1013. (In Russ.)]
26. Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Termoelektricheskie svoistva i magnitotvornaya sposobnost' termopar na osnove ―estestvennykh‖ nanostruktur - sloistykh kristallov semeistva [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…). Termoelektriki i ikh primeneniya. SPb.: Izdvo VVM; 2017. S.146 – 151. [Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Thermoelectric properties and magnetic capacity of thermocouples based on ―natural‖ nanostructures - layered crystals of the [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2…) family. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.146 – 151. (In Russ.)]
27. Lents E.Kh. Izbrannye trudy. M.: Izd-vo AN SSSR; 1950. S.361 - 449. [Lents E.Kh. Selected works. M.: Izd-vo AN SSSR; 1950. P.361 - 449. (In Russ.)]
28. Korzhuev M.A. Pravilo Lentsa dlya termoelektricheskikh preobrazovatelei energii, rabotayushchikh v rezhime maksimal'noi moshchnosti. Termoelektriki i ikh primeneniya. SPb: PIYaF; 2015. S.447- 452. [Korzhuev M.A. The Lenz rule for thermoelectric energy converters operating in maximum power mode. Thermoelectrics and their applications. SPb: PIYaF; 2015. P.447- 452. (In Russ.)]
29. Korzhuev M.A. Ispol'zovanie pravila Lentsa dlya ekspress - raschetov teplovykh i elektricheskikh tsepei termoelektricheskikh modulei. Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.226-231. [Korzhuev M.A. Using the Lenz rule for express calculations of thermal and electrical circuits of thermoelectric modules. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.226-231. (In Russ.)]
Review
For citations:
Avilov E.S., Korzhuev M.A., Kretova M.A. EXPRESS METHODS FOR ANALYSING THERMO-ELECTRIC MATERIALS AND CONVERTER CHARACTERISTICS. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(1):49-59. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-1-49-59