INHOMOGENEOUS STRESS-DEFORMED STATE OF AN ELASTIC CYLINDRICAL BODY TAKING INTO ACCOUNT ITS MATERIAL INTERNAL STRUCTURE
https://doi.org/10.21822/2073-6185-2018-45-1-8-11
Abstract
Objectives. An investigation of the stress-deformed state of a poroelastic cylindrical body under uniform radial compression.
Methods. Mathematical modeling based on the phenomenological approach for the description of porous media, as well as within the framework of geometrically linear relations of the theory of elasticity.
Results. A mathematical model is constructed to describe the inhomogeneous stress-deformed state of a cylindrical body for materials having a porous structure under elastic operation of a fully compressed matrix. The deformation of the porous medium under uniformly distributed compressive loads is divided into two interrelated stages: the elastic deformation of the porous compressible medium and the elastic deformation of a fully compressed matrix for which further incompressibility is a defining property. The problem of determining the stress-deformed state of a cylindrical body at each stage of deformation is solved within the framework of a planar deformation. This does not take into account effects associated with the fact that the cylindrical body under consideretion has a finite height. Relations determining the stress and displacement fields at each stage of deformation are obtained. The dependency of external loads is determined for which the initial porosity of the material reaches zero throughout the entire body. The graphical dependencies of the stress components on the coordinate are constructed for the different values of initial pore solution and other physical-mechanical and other material and structural geometric parameters.
Conclusion. The constructed analytical dependencies describe the inhomogenous distribution of stress and displacement fields at the deformation stage of materials having a porous structure and a cylindrical body with a fully compressed matrix. These relations are consistent with the general physical concepts of the processes under consideration and allow for a limiting transition to known solutions.
About the Authors
A. E. BuntovRussian Federation
Alexey E. Buntov – Captain, Senior Researcher.
Starykh Bolshevikov Str., 54а, Voronezh 394064
D. V. Gotsev
Russian Federation
Dmitriy V. Gotsev – Dr. Sci. (Physical and Mathematical), Prof., Department of Mathematics.
Starykh Bolshevikov Str., 54а, Voronezh 394064
References
1. Bulychev N.S. Mekhanika podzemnykh sooruzhenii. M.: Nedra; 1982. 270 s. [Bulychev N.S. Mechanics of underground constructions. M.: Nedra; 1982. 270 p. (In Russ.)]
2. Katsaurov I.N. Mekhanika gornykh porod. M.: Nedra; 1981. 161 s. [Katsaurov I.N. Mechanics of rocks. M.: Nedra; 1981. 161 p. (In Russ.)]
3. Alimzhanov M.T. Problemy ustoichivosti ravnovesiya v zadachakh geomekhaniki. Uspekhi mekhaniki. 1990;13(3):2157. [Alimzhanov M.T. Equilibrium stability issues in the problems of geomechanics. Uspekhi mekhaniki. 1990;13(3):21-57. (In Russ.)]
4. Gotsev D.V., Enenko I.A., Sporykhin A.N. Lokal'naya neustoichivost' gorizontal'nykh vyrabotok mnogougol'noi formy v uprugo-vyazko-plasticheskikh massivakh. Prikladnaya mekhanika i tekhnicheskaya fizika. 2005;46(2):141-150. [Gotsev D.V., Enenko I.A., Sporykhin A.N. Local instability of horizontal mines of polygonal shape in elastic-viscous-plastic massifs. Journal of Applied Mechanics and Technical Physics. 2005;46(2):141-150. (In Russ.)]
5. Gotsev D.V., Sporykhin A.N. Metod vozmushchenii v zadachakh ustoichivosti podkreplennykh gornykh vyrabotok. Voronezh: Voronezhskii gosudarstvennyi universitet; 2010. 299 s. [Gotsev D.V., Sporykhin A.N. The perturbation method in the problems of the stability of reinforced mines. Voronezh: Voronezh State University; 2010. 299 p. (In Russ.)]
6. Gotsev D. V., Buntov A.E. Ustoichivost' monolitnoi krepi vertikal'noi gornoi vyrabotki s uchetom nachal'noi poristosti materiala i neuprugoi raboty szhatogo skeleta. Vest. Sam. gos. tekhn. un-ta. Ser Fiz.-mat. nauki. 2016;20(3):457 - 474. [Gotsev D. V., Buntov A.E. Stability of a monolithic support of vertical mining with regard to the initial porosity of the material and the inelastic work of the compressed skeleton. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2016;20(3):457 - 474. (In Russ.)]
7. Gotsev D. V., Buntov A.E., Perunov N.S. Matematicheskaya model' protsessa deformirovaniya krepi vertikal'noi gornoi vyrabotki s uchetom nachal'noi poristosti materiala i uprugovyazkoplasticheskikh svoistv szhatogo skeleta. Problemy prochnosti i plastichnosti. 2016;78(3):289 - 299. [Gotsev D. V., Buntov A.E., Perunov N.S. A mathematical model of the deformation process of the vertical mining support with with regard to the initial porosity of the material and the elastic– viscous–plastic properties of the compressed skeleton. Problems of strength and plasticity. 2016;78(3):289 - 299. (In Russ.)]
8. Guz' A.N. Osnovy teorii ustoichivosti gornykh vyrabotok. Kiev: Nauk. dumka; 1977. 204 s. [Guz' A.N. Fundamentals of the theory of stability of mines. Kiev: Nauk. dumka; 1977. 204 p. (In Russ.)]
9. Sadovskaya O.V., Sadovskii V.M. Matematicheskoe modelirovanie v zadachakh mekhaniki sypuchikh sred. M.: FIZMATLIT; 2008. 368 s. [Sadovskaya O.V., Sadovskii V.M. Mathematical modeling in problems of mechanics of loose media. M.: FIZMATLIT; 2008. 368 p. (In Russ.)]
10. Dokunin O.S., Koskov I.G., Drutsko V.P., Bernshtein S.A. Betony i rastvory dlya podzemnogo shakhtnogo stroitel'stva. Spravochnoe posobie. M.: Nedra; 1989. 216 s. [Dokunin O.S., Koskov I.G., Drutsko V.P., Bernshtein S.A. Concretes and solutions for underground mine construction. Reference book. M.: Nedra; 1989. 216 p. (In Russ.)]
11. Bazhenov Yu.M. Tekhnologiya betona. Uchebnik. M.: Izdvo ASV; 2003. 500 s. [Bazhenov Yu.M. Technology of concrete. A tutorial. M.: Izd-vo ASV; 2003. 500 p. (In Russ.)]
12. Lur'e A.I. Prostranstvennye zadachi teorii uprugosti. M.: GITL; 1955. 491 s. [Lur'e A.I. Spatial problems in the theory of elasticity. M.: GITL; 1955. 491 p. (In Russ.)]
13. Jefferies M.G., Shuttle D.A. Calibration and use. Prediction, analysis and design in geomechanical applications. Norsand (The 11th Conf. of IACMAG vol 1). 2005. рр. 345– 352.
14. Tien Y.M., Kuo M.C. A failure criterion for transversely isotropic rocks. Int. J Rock Mech Min. 2001;38:399–412.
15. Vervoort A., Min K., Konietzkyc H., Cho J. W., Debecker B., Dinh Q., Frühwirt T., Tavallali A. Failure of transversely isotropic rock under Brazilian test conditions. Int. J Rock Mech Min. 2014;70:343–352.
16. Borja R.I., Lin C.H., Montans F.J., Cam-clay plasticity, Part IV: Implicit integration of anisotropic, bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function. Comp. Meth. Appl. Mach. Engng. 2001;190(2627):3293-3323.
17. Desai C.S. Mechanics of Materials and Interfaces, The Disturbed State Concept. CRC Press: Boca Raton, FL,USA; 2001.
18. Ingham T.J. Issues in the seismic analysis of bridges. Computational Fluid and Solid Mechanics (Ed. Bathe K.J.). Elsevier Science; 2001.
19. Jeremic B., Runesson K., Sture S. A model for elasticplastic pressure sensitive materials subjected to large deformations. Int. J.Solids and Structures. 1999;36:4901-4918.
20. Kawka M., Bathe K.J. Implicit integration for solution of metal forning processes. Computational Fluid and Solid Mechanics (Ed. Bathe K.J.). Elsevier Science; 2001.
21. Kojic M. Stress integration procedures for inelastic material models within the finite element method. Appl. Mech. Reviews. 2002;55(4):389-414.
22. Montans F.J., Bathe K.J. On the stress integration in large strain elasto-plasticity. Computational Fluid and Solid Mechanics (Ed. Bathe K.J.). Elsevier Science; 2003.
23. Ulm F.J., Coussy O. Mechanics and Durability of Solids. Solid Mechanics. Vol.1. Prentice-Hall: Englewood Cliffs, N.J.; 2003.
24. Simo J.C., Hughes T.J.R. Computational Inelasticity. Springer-Verlag: New York; 1998.
Review
For citations:
Buntov A.E., Gotsev D.V. INHOMOGENEOUS STRESS-DEFORMED STATE OF AN ELASTIC CYLINDRICAL BODY TAKING INTO ACCOUNT ITS MATERIAL INTERNAL STRUCTURE. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(1):8-11. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-1-8-11