Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

ENERGY EFFICIENT DESALINATOR

https://doi.org/10.21822/2073-6185-2017-44-4-49-57

Abstract

Abstract. Objectives The aim of the research was the development of an ultrasonic generator of technological design with a wide frequency range of output voltage. Methods The prototype works were performed and the functional scheme of the multifrequency ultrasonic generator realised in the experimental sample was developed, as well as the design of an ultrasonic piezoceramic system capable of operating at two resonant frequencies of 22 and 44 kHz. Results Based on the feature analysis of the modern composite material structure and technologies for moulding products, it was found to be expedient to introduce ultrasonic impregnation into the technological process, which can ensure increased uniformity in filling the structure with a binder as well as greater homogeneity of physicomechanical characteristics. A schema for the ultrasonic generator built into the technological equipment is developed, providing the formation of harmonic signals with a frequency alternating from 20 to 60 kHz, and power adjustable from 100 to 500 W, which will allow the implementation of highperformance ultrasonic technologies for processing materials with a heterogeneous structure formed during the manufacturing process. The studies were carried out according to parametric optimisation of the converter taking into account the specific load types. A special feature of the generator's power supply is its versatility in terms of frequency and voltage ranges, as well as the required quality indicators of the energy generated. The generator allows the reference frequency to be programmed using a laptop and then fine-tuned from the control panel in resonance with the radiator with a resolution of 10 Hz directly. The built-in microprocessor allows the reference frequency entered from the laptop to be stored in the memory. Conclusion The use of multifrequency ultrasonic sources allows the acting parameters to be optimised for ultrasonic impregnation of fibre-reinforced composite materials as well as their finishing dimensional processing, depending on the density of the structure and the reinforcement scheme used.

About the Authors

Nikolaj V. Bekrenev
Yuri Gagarin State Technical University of Saratov.
Russian Federation
77  Politehnicheskaya Str., Saratov 410054.


Dmitriy Yu. Lukov
Yuri Gagarin State Technical University of Saratov.
Russian Federation
77  Politehnicheskaya Str., Saratov 410054.


References

1. Koshkin R.P. Osnovnye napravleniya razvitiya i sovershenstvovaniya bespilotnykh aviatsionnykh sistem: http://spmagazine.ru/420, data obrashcheniya 28.01.2017 g. [Koshkin R.P. The main directions of development and improvement of unmanned aerial systems: http://spmagazine.ru/420, access date January 28, 2017. (In Russ.)]

2. Rand B., Appleyard S., Yardim M. Proceedings of the NATO advanced Study Institute on Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance. 1998. рр.177-193.

3. Thomas G. Composites come of age on 787. The Australian, 18 May 2007. P. 2830.

4. Werfelman L. The Composite Evolution. AeroSafetyWorld. March 2007. рр. 17-21.

5. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTs RF porealizatsii ―Startegicheskikhnapravleniirazvitiyamaterialov i tekhnologi ikh pererabotkina period do 2030 goda‖. Aviatsionnye materialy i tekhnologii. 2015;1(34):3–33. [Kablov E.N. Innovative developments FGUP «VIAM» GNTs RF on the implementation of "Strategic directions of materials development and processing technologies for the period until 2030". Aviation materials and technologies 2015;1(34):3–33. (In Russ.)]

6. Kablov E.N. Materialyikhimicheskie tekhnologii dlya aviatsionnoi tekhniki. Vestnik Rossiiskoi akademii nauk. 2012; 82(6):520–530. [Kablov E.N. Materials and chemical technologies for aviation equipment. Bulletin of the Russian Academy of Sciences. 2012; 82(6):520–530. (In Russ.)]

7. Krishnamurthy S. Prestressed Advanced Fibre Reinforced Composites: Fabrication and Mechanical Performance. PhD thesis, Defence College of Management and Technology, Cranfield University, Beds. 2006. P. 49-56.

8. Lobanov D.S. Eksperimental'nye issledovaniya deformatsionnykh i prochnostnykh svoistv polimernykh kompozitsionnykh materialov i panelei s zapolnitelem: dis. kand. tekhn. nauk: Perm', 2015. 130 s. [Lobanov D.S. Experimental studies of the deformation and strength properties of polymeric composite materials and panels with filler. Published summary of the candidate of technical sciences dissertation: Perm', 2015. 130 p. (In Russ.)]

9. Gareev A. R. Razrabotka i issledovanie trekhmerno-armirovannykh ugleplastikov na osnove sterzhnevykh struktur na polnitelya: dis. kand. tekhn. nauk: Moskva, 2015. 113 s. [Gareev A. R. Development and investigation of threedimensional reinforced carbon plastics on the basis of core filler structures. The Candidate of technical sciences dissertation. Moscow, 2015. 113 p. (In Russ.)]

10. Guseva R.I., ShaMingun. Osobennost i zgotovleniya tonkostennykh obshivok iz ugleplastika v samoletostroenii. Izmenenie tekhnologicheskikh parametrov v protsesse formovaniya. Uchenyezapiski Komsomol'skogo-naAmuregosudarstvennogo tekhnicheskogo universiteta. 2014; II-1(18):4-12. [Guseva R.I., ShaMingun. Features of manufacturing thin-walled plating of carbon fiber in aircraft construction. Change of technological parameters in the process of moulding. Scholarly Notes of Komsomolsk-na-Amure State Technical University. 2014; II-1(18):412. (In Russ.)]

11. Rozenberg D. Fizika i tekhnikamoshchnogoul'trazvuka. Tom 3. Fizicheskieosnovyul'trazvukovoitekhnologii. M.: KnigapoTrebovaniyu; 2012. 689 р. [Rozenberg D. Physics and technology of powerful ultrasound. Volume 3. Physical fundamentals of ultrasonic technology. M.: KnigapoTrebovaniyu; 2012. 689 p. (in Russ.)]

12. Prikhod'ko V.M., Medelyaev I.A., Fatyukhin D.S. Formirovanie ekspluatatsionnykhsvoistv detalei mashinul'trazvukovymi metodami. Monografiya. M.: MADI; 2015. 264 р. [Prikhod'ko V.M., Medelyaev I.A., Fatyukhin D.S. Formation of operational properties of machine parts by ultrasonic methods. Monograph. M.: MADI; 2015. 264 p. (In Russ.)]

13. Ul'trazvukovaya propitka. http://u-sonic.com/tech/obrabotka-zhidkikh-i-zhidkodispersnykh-sred/propitka_02/ [Ultrasonic Impregnation http://u-sonic.com/tech/obrabotka-zhidkikh-i-zhidkodispersnykh-sred/propitka_02/ (In Russ.)]

14. Bekrenev N.V., Zlobina I.V. Razrabotka ul'trazvukovykh tekhnologii obrabotki plasticheskim deformirovaniem neodnorodnykh kompozitsionnykh materialov v Saratove. Voprosy elektrotekhnologii. 2015; 2(7):28-35. [Bekrenev N.V., Zlobina I.V. Development of ultrasonic technologies for processing plastic deformation of inhomogeneous composite materials in Saratov. Voprosyelektrotekhnologii. 2015;2(7):28-35. (In Russ.)]

15. Bekrenev N.V., Petrovskii A.P. Vliyanie struktury konstruktsionnykh materialov na kharakterul'trazvukovogo vozdeistviya pri ikh poverkhnostnoi obrabotke. Tekhnologiyametallov. 2011;5:35-39. [Bekrenev N.V., Petrovskii A.P. Influence of the structure of structural materials on the nature of the ultrasonic action during their surface treatment. Technologyofmetals. 2011;5:35-39. (In Russ.)]

16. Zlobina I.V., Bekrenev N.V., Maksimova N.N. i dr. Obosnovanie razrabotki ul'trazvukovogo mnogochastotnogo generator dlya osnashcheniya tekhnologicheskogo oborudovaniya. Voprosy elektrotekhnologii. 2014;2(3):53-59. [Zlobina I.V., Bekrenev N.V., Maksimova N.N. et al.The rationale for developing an ultrasonic multifrequency generator for equipping technological instrumentation. Voprosyelektrotekhnologii. 2014;2(3):53-59. (In Russ.)]

17. Khmelev V.N., Khmelev S.S., Golykh R.N. i dr. Povyvshenieeffektivnostiul'trazvukovoikavitatsionnoiobrabotkivyazkikh i dispersnykhzhidkikhsred. Polzunovskiivestnik. 2010;3:321-325. [Khmelev V.N., Khmelev S.S., Golykh R.N. i dr. Increase of efficiency of ultrasonic cavitation processing of viscous and disperse liquid media. Polzunovskyvestnik. 2010;3:321-325. (In Russ.)]

18. Brzhozovskii B.M., Bekrenev N.V. Ul'trazvukovyetekhnologicheskieprotsessy i oborudovanie v mashino- i priborostroenii: ucheb. posobie. Saratov: Sarat. gos. tekhn. un-t; 2009. 348 s. [Brzhozovskii B.M., Bekrenev N.V. Ultrasonic technological processes and equipment in machine and instrument engineering: Textbook. Saratov: Saratov state technical university; 2009. 348 p. (In Russ.)]

19. Bekrenev N.V., Brzhozovskii B.M., Firsov V.M. i dr. Ustroistvodlyaul'trazvukovoiobrabotki. Patent RU № 2548344, opubl. 20.04.2015 g. [Bekrenev N.V., Brzhozovskii B.M., Firsov V.M. etal.The device for ultrasonic treatment. Patent RU № 2548344, publ. 20.04.2015 (in Russ.)]

20. Frolov N.A., Yagudin A.F. O parametricheskoi stabilizatsii avtonomnogo rezonansnogo invertora s pomoshch'yunagruzochnogo konturatret'egoporyadka. Elektrichestvo. 2009;7:68-69. [Frolov N.A., Yagudin A.F. On the parametric stabilization of an autonomous resonant inverter using a third-order loading circuit. Elektrichestvo. 2009; 7: 68-69. (In Russ.)]

21. Zlobina I.V., Bekrenev N.V., Petrovskii A.P. Malodefektnayaul'trazvukovaya obrabotka detalei na vigatsionnykh priborov iz neodnorodnykh po strukture tverdykh, khrupkikh materialov. Vestnik SGTU. 2014; 4(77):97-103. [Zlobina I.V., Bekrenev N.V., Petrovskii A.P. Low-defect ultrasonic treatment of navigational instruments from heterogeneous structures of hard, brittle materials. Vestnik Saratov State Technical University. 2014;4(77):97-103. (In Russ.)]

22. Zlobina I.V., Petrovsky A.P., Bekrenev N.V. etal. Increasing of topography homogeneity of the construction materials surface during final ultrasound processing. Proceedings of the International Conference on Mechanical Engineering, Automation and Control Systems (MEACS). Tomsk, 2015. P. 1-4.

23. Bekrenev N.V., Zlobina I.V., Petrovskii A.P. Model' vozdeistviya energiiul'trazvukovykh kolebanii na strukturu tverdykh khrupkikh materialov. Voprosy elektrotekhnologii. 2015;2(7):35-41. [Bekrenev N.V., Zlobina I.V., Petrovskii A.P. Model of the impact of ultrasonic vibration energy on the structure of hard brittle materials. Voprosy elektrotekhnologii. 2015; 2(7):35-41. (In Russ.)]


Review

For citations:


Bekrenev N.V., Lukov D.Yu. ENERGY EFFICIENT DESALINATOR. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(4):49-57. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-4-49-57

Views: 782


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)