Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

SIMULATION OF FREE CURRENT FLOWS IN BUOYANCY-DRIVEN VENTILATION SYSTEMS

https://doi.org/10.21822/2073-6185-2017-44-3-136-145

Abstract

Objectives. The aim of the study is to analyse the effect of the design and methods for heating the ventilation duct of a buoyancy- driven system on the formation of free convective air currents in it.

Methods. The study of free convection under the conditions of interior problem was carried out using the CFD software, based on  the finite volume method with unstructured grid. Ansys Fluent software was used as a calculation tool in the study, due to its having a high convergence of numerical solutions offering full-scale  measurements of convective currents.To evaluate the reliability of  the results obtained, a validation procedure was carried out, allowing us to determine how accurately the selected conceptual model describes the investigated flow through a comparison of experimental and numerical data.

Results. The results of numerical modelling of free convective currents occurring in the heated channel of the ventilation system of  the top floor of a multi-storey residential building are presented in  the article. In the course of the study, the air velocity at the entrance to the ventilation duct was found to depend on the calculated  temperature difference θ ˚C for various heating methods. A gradual  increase in the discrepancy between the numerical simulation and  experimental results is observed if the calculated temperature  difference > 20 ° C. This phenomenon is due to the fact that with  increased duct temperature, it is quite difficult to achieve even  heating under actual conditions; this is especially noticeable when  considering the variant when the vertical part of the vent duct and the take-off are both heated. The maximum deviation of the  results is 4.4%. The obtained velocity profiles in the calculated  sections indicate the impact of the ventilation take-off on the nature  of the air flow motion.

Conclusion. One of the drawbacks of the existing systems of natural ventilation of residential buildings is the low efficiency of work in the  warm and transitional periods of the year, especially in bathrooms.  The use of buoyancy-driven ventilation with vertical heating of the  vent duct combined with the take-off allows a stable air exchange in the rooms to be provided.

About the Author

D. V. Abramkina
Moscow State University of Civil Engineering (National Research University)
Russian Federation

26 Yaroslavskoye highway, Moscow 129337, Russia

Assistant, Department of Heat and Gas Supply and Ventilation



References

1. Vatin N.I., Samoplyas T.V. Sistemy ventilyatsii zhilykh pomeshcheniy mnogokvartirnykh domov: uchebnoe posobie. S-Pb.: Izd. Sankt-Peterburgskiy gosudarstvennyy politekhnicheskiy universitet; 2004. 66 s. [Vatin N.I., Samoplyas T.V. Ventilation systems for living quarters of apartment buildings: a tutorial. S- Pb.: Izd. St. Petersburg State Polytechnic University; 2004. 66 p. (In Russ.)]

2. Livchak I.F., Naumov A.L. Ventilyatsiya mnogoetazhnykh zhilykh zdaniy. M.: AVOK-Press; 2005. 133 s. [Livchak I.F., Naumov A.L. Ventilation of multi-storey residential buildings. M.: ABOK-Press; 2005. 133 p. (In Russ.)]

3. CIBSE - Mixed mode ventilation: CIBSE applications manual AM 13. London: Chartered Institution of Building Services Engineers; 2000. 77p.

4. Bobrovitskiy I.I., Shilkin N.V. Gibridnaya ventilyatsiya v mnogoetazhnykh zhilykh zdaniyakh. ABOK. 2003; 10:16-27. https://www.abok.ru/for_spec/articles.php?nid=4573 [Bobrovitskiy I.I., Shilkin N.V. Hybrid ventilation in multi-storey residential buildings. ABOK. 2003;10:16-27. https://www.abok.ru/for_spec/articles.php?nid=4573 (In Russ.)]

5. Van Hooff T., Blocken B., Aanen L., Bronsema B. A venturi-shaped roof for wind-induced natural ventilation of buildings: wind tunnel and CFD evaluation of different design configurations. Building and Environment. 2011; 46:1797-1807. http://www.sciencedirect.com/science/article/pii/S0360132311000576

6. Kleiven T. Natural ventilation in buildings: architectural concepts, consequences and possibilities: PhD thesis. Norwegian University of Science and Technology, 2003. 305 p. https://www.researchgate.net/profile/Tommy_Kleiven/publication/267243303_Natural_Ven tilation_in_Buildings_Architectural_concepts_consequences_and_possibilities/links/54 4e3c7d0cf26dda088e9459/Natural-Ventilationin-Buildings-Architectural-concepts- consequences-and-possibilities.pdf

7. Kharitonov V.P. Estestvennaya ventilyatsiya s pobuzhdeniem. Ventilyatsiya, otoplenie, konditsionirovanie vozdukha, teplosnabzhenie i stroitel'naya teplofizika (ABOK). 2006;3:46-55. https://www.abok.ru/for_spec/ articles.php?nid=3201 [Kharitonov V.P. Natural buoyancy-driven ventilation. Ventilation, heating, air conditioning, heat supply and construction thermal physics (ABOK). 2006;3:46-55. https://www.abok.ru/for_spec/ articles.php?nid=3201 (In Russ.)]

8. Bansal N.K.,Mathur R., Bhandari M. Solar chimney for enhanced stack ventilation. Building and environment. 1993;28(3):373-377. http://www.sciencedirect.com/science/article/pii/0360132393900422

9. Hirunlabh J.,Wachirapuwadon S., Pratinthong N., Khedari J. New configurations of a roof solar collector maximizing natural ventilation. Building and Environment. 2001; 36(3):383-391. http://www.sciencedirect.com/science/article/pii/S0360132300000160

10. Lal S.,Kaushik S.C., Bhargav P.K. Solar chimney: a sustainable approach for ventilation and building space conditioning. International Journal of Development and Sustainability. 2013;2(1):277-279. https://isdsnet.com/ijdsv2n1-20.pdf

11. Tongbai P.,Chitsomboon T. Enhancement of roof solar chimney performance for building ventilation. Journal of power and energy engineering. 2014; 2:22-29.https://file.scirp.org/pdf/JPEE_2014060916330973.pdf

12. Rymarov A.G., Abramkina D.V. Sistemy estestvennoy ventilyatsii s teplovym pobuzhdeniem. Nauchnoe obozrenie. 2016;9:43-46. https://elibrary.ru/item.asp?id=26206445 [RymarovA.G., AbramkinaD.V. Naturalbuoyancydrivenventilationsystems. Scientific Review. 2016; 9:43-46. . https://elibrary.ru/item.asp?id=26206445 (In Russ.)]

13. Malyavina E.G., Kitaytseva E.Kh. Estestvennaya ventilyatsiya zhilykh zdaniy. Ventilyatsiya, otoplenie, konditsionirovanie vozdukha, teplosnabzhenie i stroitel'naya teplofizika (ABOK).1999;3:35-43. https://www.abok.ru/for_spec/articles.php?nid=67 [Malyavina E.G., Kitaytseva E.Kh. Estestvennaya ventilyatsiya zhilykh zdaniy. Ventilyatsiya, otoplenie, konditsionirovanie vozdukha, teplosnabzhenie i stroitel'naya teplofizika (ABOK).1999; 3:35-43. https://www.abok.ru/for_spec/articles.php?nid=67 (In Russ.)]

14. Ostroumov G.A. Svobodnaya konvektsiya v usloviyakh vnutrenney zadachi. M.-L.: GITTL; 1952. 286 s. [Ostroumov G.A. Free convection under the conditions of interior problem. M.-L.: GITTL; 1952. 286 p. (In Russ.)]

15. Gershuni G.Z., Zhukhovitskiy E.M., Nepomnyashchiy A.A. Ustoychivost' konvektivnykh techeniy. M: Nauka; 1989. 320 s. [Gershuni G.Z., Zhukhovitskiy E.M., Nepomnyashchiy A.A. Stability of convective currents. M: Nauka; 1989. 320 p. (In Russ.)]

16. Varapaev V.N., Kitaytseva E.Kh. Matematicheskoe modelirovanie zadach vnutrenney aerodinamiki i teploobmena zdaniy. M.: Izd. SGA; 2008. 337 s. [Varapaev V.N., Kitaytseva E.Kh. Mathematical modeling of problems of internal aerodynamics and heat exchange of buildings. M.: Izd. SGA; 2008. 337 p. (In Russ.)]

17. Kuznetsov G.V., Maksimov V.I., Sheremet M.A. Estestvennaya konvektsiya v zamknutom parallelepipede pri nalichii lokal'nogo istochnika energii. Prikladnaya mekhanika i tekhnicheskaya fizika. 2013;54(4):86-95. http://www.sibran.ru/upload/iblock/3a3/3a3fe0339a7a2861ffedf697d79a4e8f.pdf[Kuznetso v G.V., Maksimov V.I., Sheremet M.A. Natural convection in a closed parallelepiped in the presence of a local energy source. Journal of Applied Mechanics and Technical Physics. 2013; 54(4):86-95. http://www.sibran.ru/upload/iblock/3a3/3a3fe0339a7a2861ffedf697d79a4e8f.pdf (In Russ.)]

18. Kummitha O.R., Pandey K.M. Experimental and numerical analysis of forced convection heat transfer in turbulent flows. Procedia Engineering. 2015;127:711- 718.http://www.sciencedirect.com/science/article/pii/S1877705815037352

19. Trufanova N.M., Navalikhina E.Yu., Markovskiy M.V. Matematicheskoe modelirovanie nestatsionarnykh protsessov teplomassoperenosa v pryamougol'nom kabel'nom kanale. VESTNIK PNIPU. 2014;11:55-66. https://cyberleninka.ru/article/n/vliyanie- estestvennoy-i-vynuzhdennoy-ventilyatsii-na-protsessy-protekayuschiev-kabelnom- kanale [Trufanova N.M., Navalikhina E.Yu., Markovskiy M.V. Mathematical modeling of nonstationary processes of heat and mass transfer in a rectangular cable channel. PNRPU Bulletin. Electrotechnics, Informational Technologies, Control Systems. 2014;11:55-66. https://cyberleninka.ru/article/n/vliyanieestestvennoy-i-vynuzhdennoy-ventilyatsii-na-protsessy-protekayuschie-v-kabelnom-kanale (In Russ.)]

20. Spravochnoe posobie k SNiP 2.08.01-89. Otoplenie i ventilyatsiya zhilykh zdaniy. M.: Stroyizdat; 1990. 19 s. [Reference guide to SNIP 2.08.01-89. Heating and ventilation of residential buildings. M.: Stroyizdat; 1990. 19 p. (In Russ.)]

21. Kharitonov A.M. O verifikatsii i validatsii modeley i metodov chislennogo modelirovaniya prostranstvennykh techeniy. Mezhdunarodnaya konferentsiya ―Sovremennye problemy prikladnoy matematiki i mekhaniki: teoriya, eksperiment i praktika‖, Novosibirsk; 2011. S.1-7. [Kharitonov A.M. On verification and validation of models and methods for numerical modeling of spatial flows. International Conference ―Modern Problems of Applied Mathematics and Mechanics: Theory, Experiment and Practice‖. Novosibirsk; 2011. P.1-7. (In Russ.)]


Review

For citations:


Abramkina D.V. SIMULATION OF FREE CURRENT FLOWS IN BUOYANCY-DRIVEN VENTILATION SYSTEMS. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(3):136-145. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-3-136-145

Views: 877


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)