THE OPERATION OF POWER EQUIPMENT DURING THE DISPOSAL OF COMBUSTIBLE GASES ASSOCIATED WITH GEOTHERMAL WATER
https://doi.org/10.21822/2073-6185-2017-44-3-48-60
Abstract
Objectives. The aim of the study is to assess the appropriateness of utilising combustible gases associated with geothermal water with low gas factor and the possibility of its practical implementation with the provision of power equipment operation of geothermal systems with a nonscaling mode.
Methods. The investigations were carried out by analysing the content of associated combustible gases in the underground thermomineral waters of the Cis-Caucasian deposits on the basis of an assessment of the feasibility of their utilisation for heating and hot water supply.
Results. A review of practically existing heat and power schemes utilising geothermal water sources is carried out. Based on the studies conducted, it is found that methane (70-90%) is prevalent in the water under consideration; meanwhile, the content of heavy hydrocarbons does not exceed 10%. The concentration of carbon dioxide is 3 ÷ 6%, nitrogen 1 ÷ 4%. Depending on the depth of the aquifer, gas factors range from 1 to 5 m3/ m3. As a result of the analysis of the operation of typical thermal distribution stations, it is established that a violation of the carbon dioxide equilibrium in water leads to the formation of a solid phase of calcium carbonate on the heat exchange surface. A technique for estimating the relationship between the partial pressure of methane and carbon dioxide with the total pressure in a solution of geothermal water is proposed. A scheme for the efficient operation of thermal distribution stations with the prevention of carbonate deposits formation by using the combustion products of the used gas combined with the injection of waste water back into the aquifer is presented.
Conclusion. As a result of the conducted studies, the possibility of using associated combustible gases in geothermal wells is established using differences in their solubility and that of carbon dioxide. In this case, the protection of heat exchange equipment and the well from solid deposits of calcium carbonate can be achieved by using combustion products of associated combustible gases.
About the Authors
G. Ya. AkhmedovRussian Federation
70 I. Shamilya Ave., Makhachkala 367026, Russia
Dr. Sci. (Technical), Prof., Department of Physics
A. S. Kurbanismailova
Russian Federation
75 M. Yaragskogo Ave., Makhachkala 367010, Russia
Junior Researcher, Institute of Geology
References
1. Arent D.J., Wise A., Gelman R. The status and prospects of renewable energy for combating global warming. Energy Economics.2011;33(4):584–593.
2. Renewables 2016, Global Status Report.BP Statistical Review of World Energy, June 2015. [Electronic resourse] URL: https://nauchforum.ru/archive/MNF_social/1(30).pdf (access date15.05.2017)
3. Alkhasov A.B. Vozobnovlyaemaya energetika. M.: FIZMATLIT; 2010. 256 s. [Alkhasov A.B. Renewable energy. M.: FIZMATLIT; 2010. 256 p. (In Russ.)]
4. Lund I., Freeston D., Boyd T. Direct Utilization of Geothermal Energy. Proc. WGC-2010. Bali.Worldwide Review. 2010. [Electronic resourse]URL:http//www.geothermal.org. (access date 10.03.2016).
5. B'ornsson S. Razvitie geotermal'noi energetiki i issledovaniya v Islandii. Reik'yavik: Gud'on O; 2006. 40 s. [Elektronnyy resurs] URL: http://www.os.is/gogn/os-onnur-rit/Geothermal-russneska.pdf.(data obrashcheniya: 02.05.2017) [B'ornsson S. Development of geothermal energy and research in Iceland. Reik'yavik: Gud'on O; 2006. 40 p. [Electronicresourse] URL: http://www.os.is/gogn/os-onnur-rit/Geothermal-russneska.pdf. (access date 02.05.2017) (In Russ.)]
6. Lund J.W., Boyd T. L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics. 2016;60:66-93.
7. Holm A., Blodgett L., Jennejohn D., Gawell K.Geothermal Energy: International Market Update: Geothermal Energy Association [Electronic resourse] URL: http://www.geoenergy.org/pdf/reports/gea_international_market_report_final_may_2010.pdf.(access date 11.05.2017).
8. Dobrokhotov V.I., Povarov O.A. Ispol'zovanie geotermal'nykh resursov v energetike Rossii. Teploenergetika. 2003;1:2-11. [Dobrokhotov V.I., Povarov O.A. Use of geothermal resources in the energy sector of Russia. Thermal Engineering. 2003;1:2- 11. (In Russ.)]
9. Tomarov G.V., Nikol'skii A.I., Semenov V.N., Shipkov A.A. Geotermal'naya energetika: spravochnometodicheskoe izdanie. Ser. 3. Vozobnovlyaemaya energetika. (Pod red. P. P. Bezrukikh). Moskva: Teploenergetik; 2015. 301 s. [Tomarov G.V., Nikol'skii A.I., Semenov V.N., Shipkov A.A. Geothermal power engineering: reference and methodical edition. Ser. 3. Renewable energy. (Ed. P. P. Bezrukih). Moscow: Teploenergetik; 2015. 301 p. (In Russ.)]
10. Branchugov V.K., Gavrilov E.I., Garipov V.3., Kozlovskii E.A., Kraev A. G., Litvinenko V. S. i dr. Mineral'nosyr'evaya baza toplivno-energeticheskogo kompleksa Rossii. Sostoyanie i prognoz. M.: Institut geologoekonomicheskikh problem; 2004. 548 s. [BranchugovV.K., GavrilovE.I., GaripovV.Z., KozlovskiiE.A., KraevA. G., LitvinenkoV. S. etal. Mineral and raw materials base of the fuel and energy complex of Russia. Status and forecast. M.: Institut geologo-ekonomicheskikh problem; 2004. 548 p. (In Russ.)]
11. Geotermal'noe teplokhladosnabzhenie zhilykh i obshchestvennykh zdanii i sooruzhenii. VSN 56-87. Normy proektirovaniya. M.: Stroiizdat; 1989. 50 s. [Geothermal heat and cold supply of residential and public buildings and constructions. Industry-specific regulations 56-87. Design Standards. M.: Stroiizdat; 1989. 50 p. (In Russ.)]
12. Akhmedov G.Ya. Tverdye otlozheniya karbonata kal'tsiya v geotermal'nykh sistemakh. Al'ternativnaya energetika i ekologiya. 2010;11:81- 86. [AkhmedovG.Ya. Solid deposits of calcium carbonate in geothermal systems. International Scientific Journal for Alternative Energy and Ecology. 2010;11:81- 86. (In Russ.)]
13. Akulinchev B.P., Panchenko A.S., Pugacheva M.F. Vodorastvorennye gazy Predkavkaz'ya i problemy ikh ispol'zovaniya v narodnom khozyaistve. Resursy netraditsionnogo gazovogo syr'ya i problemy ego osvoeniya. Leningrad; 1990. S. 138- 144. [Akulinchev B.P., Panchenko A.S., Pugacheva M.F. Dissolved gases of Ciscaucasia and the issues of their use in the national economy. Resources of non-traditional gas raw materials and the issues of its development. Leningrad; 1990. P. 138-144. (In Russ.)]
14. Kurbanov M.K. Geotermal'nye i gidrotermal'nye resursy Vostochnogo Kavkaza i Predkavkaz'ya. M.: Nauka; 2001. 260 s. [Kurbanov M.K. Geothermal and hydrothermal resources of the Eastern Caucasus and Ciscaucasia. M.: Nauka; 2001. 260 p. (In Russ.)]
15. Sultanov Yu.I., Zav'yalov S.F., Badavov G.B. Vozmozhnosti ispol'zovaniya goryuchikh gazov na termovodozabore Makhachkala I –Ternair. Ezhegodnik ―Geotermiya―, vyp. 1. M.: Nauka; 1991. S. 47-53. [Sultanov Yu.I., Zav'yalov S.F., Badavov G.B. Possibilities of using combustible gases at thermal water inlet Makhachkala I - Ternair. Yearbook ―Geotermiya―, vol. 1. M.: Nauka; 1991. P. 47-53. (In Russ.)]
16. Mrazovac S., Basic D. Methane-rich geothermal waters in the Pannonian Basin of Vojvodina (northern Serbia). Geothermics. 2009;38(3):303-312.
17. Ganjdanesh R., Hosseini S.A. Potential assessment of methane and heat production from geopressuredgeothermal aquifers. Geothermal Energy. 2016;4(16):1-25.
18. Abdullaev A.N. Predotvrashchenie obrazovaniya otlozhenii tverdoi fazy CaCO3 v skvazhine. Ezhegodnik ―Geotermiya―. 1991. S. 81 – 84. [Abdullaev A.N Prevention of formation of solid CaCO3 deposits in the well. Yearbook ―Geotermiya―. 1991. P. 81 – 84. (In Russ.)].
19. Akhmedov G.Ya. K voprosu ob ekspluatatsii energeticheskikh sistem v usloviyakh dekarbonizatsii geotermal'nykh vod. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2013;28:63-69. [Akhmedov G.Ya. On the question of the exploitation of energy systems in the conditions of decarbonisation of thermal water. Herald of Daghestan State Technical University. Technical Sciences. 2013; 28:63-69. (In Russ.)]
20. Akhmedov G.Ya. Stabilizatsionnaya obrabotka geotermal'nykh vod. Vodosnabzhenie i sanitarnaya tekhnika. 2010;6:33-38. [Akhmedov G.Ya. Stabilization treatment of geothermal waters. Water Supply and Sanitary Technique. 2010;6:33-38. (In Russ.)]
21. Bryant S.L., PopeG.A.Pat. US 9121259 B2, C10L3/06, C07C1/00, B01J19/00, E21B43/295, C07C7/10. Storing carbon dioxide and producing methane and geothermal energy from deep saline aquifers. Pub. 01.09.2015 (URL: https://www.google.ch/patents/US9121259)
22. Akhmedov G.Ya. K voprosu o vliyanii teploperedachi na otlozhenie tverdoi fazy karbonata kal'tsiya na teploobmennoi poverkhnosti. Energosberezhenie i vodopodgotovka. 2011;6:6-8. [Akhmedov G.Ya. To the question of the effect of heat transfer on the deposition of the solid phase of calcium carbonate on the heat exchange surface. Energy and Water. 2011;6:6-8. (InRuss.)]
23. Alkhasov A.B. Geotermal'naya energetika: problemy, resursy, tekhnologii. M.: FIZMATLIT; 2008. 376 s. [Alkhasov A.B. Geothermal energy: problems, resources, technologies. M.: FIZMATLIT; 2008. 376 p. (In Russ.)]
24. Akhmedov G.Ya. K voprosu ob ispol'zovanii vnutriskvazhinnykh teploobmennikov v geotermal'noi energetike. Promyshlennaya energetika. 2011;9:13-17. [Akhmedov G.Ya. About the use of downhole heat exchangers in geothermal energy. Industrial power engineering. 2011;9:13-17. (In Russ.)]
Review
For citations:
Akhmedov G.Ya., Kurbanismailova A.S. THE OPERATION OF POWER EQUIPMENT DURING THE DISPOSAL OF COMBUSTIBLE GASES ASSOCIATED WITH GEOTHERMAL WATER. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(3):48-60. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-3-48-60