ASSESSMENT OF CRACKING RESISTANCE OF CELLULAR CONCRETE PRODUCTS UNDER MOISTURE AND CARBONISATION DEFORMATIONS WITH STRESS RELAXATION
https://doi.org/10.21822/2073-6185-2017-44-2-151-161
Abstract
Objectives. On the basis of the experimental, theoretical and field studies, an engineering calculation method was developed for assessing the cracking resistance of external enclosing constructions made of cellular concrete, with the maximum gradient development of moisture and carbonisation forced deformations along their thickness, taking into account the relaxation of the shrinkage stresses. In this regard, the aim of the work is to provide technological measures at the manufacturing stage in order to increase the operational cracking resistance of the construction's outer surface layers by reducing the moisture and carbonation shrinkage of cellular concrete by introducing a large or fine porous aggregate in calculated amounts.
Methods. A number of analytical equations were applied to establish the dependence of the shrinkage of heavy concrete of conventional hardness on the amount of aggregate introduced and its elasticity modulus, water-cement ratio and cement consumption, as well as the concrete's moisture content.
Results. Knowing the volumes of the structural aggregate and the cellular concrete mass, as well as their modulus of elasticity, the shrinkage reduction factor of the cellular concrete was calculated with the addition of a lightweight porous aggregate. Subsequently, the shrinkage deformations of concrete in the surface layer of the outer enclosing construction, maximising crack resistance due to moisture exchange and carbonation influences under operating conditions, were defined, taking into account the relaxation of tensile stresses due to creep of concrete.
Conclusion. Theoretical calculations, based on the recommended method of assessing the cracking resistance of cellular concrete enclosing constructions under moisture exchange and carbonisation processes, taking into account the relaxation of shrinkage stresses, showed that in order to exclude the appearance of cracks in wall panels 280 mm thick made of 700 kg/m3 gas ash concrete with elasticity modulus of 2500 MPa, it is necessary to have 70-80% of keramzite or granulated slag, and 50-60% of stone crumb (granite or marble crushed stone) of the volume of cellular concrete in the surface layer of 30-50 mm.
About the Authors
Sh. I. ApkarovRussian Federation
Postgraduate Student,
21а, Staropromyslovskoye Shosse, Grozny 364051
D. K.-S. Bataev
Russian Federation
Dr. Sci. (Technical), Prof.,
21а, Staropromyslovskoye Shosse, Grozny 364051
M. A. Gaziev
Russian Federation
Cand. Sci.(Technical), Assoc. Prof.,
100 H.A. Isaeva Ave., Grozny 3364905
Kh. N. Mazhiev
Russian Federation
Dr. Sci. (Technical), Prof.,
21а, Staropromyslovskoye Shosse, Grozny 364051
References
1. Silaenkov E.S. Dolgovechnost' izdeliy iz yacheistykh betonov. M.: Stroyizdat; 1986. 176 s. [Silaenkov E.S. Durability of cellular concrete products. Moscow: Stroyizdat; 1986. 176 p. (in Russ.)]
2. Chernyshov E.M., Slavcheva G.S. Upravlenie ekspluatatsionnoy deformiruemost'yu i treshchinostoykost'yu makroporistykh (yacheistykh) betonov Ch.1. Kontekst problemy i voprosy teorii. Stroitel'nye materialy. 2014;1:105-112. [Chernyshov E.M., Slavcheva G.S. Exploitational deformation and crack-resistance management of macroporous (cellular) concretes. Part 1. Problem‘s context and theoretical questions. Stroitel'nye materialy. 2014;1:105-112. (in Russ.)]
3. Silaenkov E.S., Bataev D.K-S., Mazhiev Kh.N., Gaziev M.A. Povyshenie dolgovechnosti konstruktsiy i izdeliy iz melkozernistykh yacheistykh betonov pri ekspluatatsinnykh vozdeystviyakh. Groznyy; 2015. 355 s. [Silaenkov E.S., Bataev D.K-S., Mazhiev Kh.N., Gaziev M.A. The increase of durability of thingrain cellular concrete constructions and products during exploitational impacts. Grozny; 2015. 355 p. (in Russ.)]
4. Silaenkov E.S. Povyshenie dolgovechnosti paneley iz yacheistykh betonov. M.: Stroyizdat; 1965. 215 s. [Silaenkov E.S. The increase of durability of cellular concrete panels. Moscow: Stroyizdat; 1965. 215 p. (in Russ.)]
5. Slavcheva G.S., Chernyshev E.M. Algoritm konstruirovaniya struktury tsementnykh penobetonov po kompleksu zadavaemykh svoystv. Stroitel'nye materialy. 2016;9:58-64. [Slavcheva G.S., Chernyshev E.M. Algorithm of construction of cement aerated concrete structure based on a set of pre-defined properties. Stroitel'nye materialy. 2016;9:58-64. (in Russ.)]
6. Bataev D.K-S., Gaziev M.A., Pinsker V.A., Chepurnenko A.S. Teoriya rascheta usadochnykh napryazheniy v yacheistobetonnykh stenovykh panelyakh pri karbonizatsionnykh protsessakh s uchetom polzuchesti. Vestnik MGSU. 2016;12:11-22. [Bataev D.K-S., Gaziev M.A., Pinsker V.A., Chepurnenko A.S. Computational theory of shrinking stresses in cellular concrete wall panels during carbonation processes accounting for creep. Scientific and Engineering Journal for Construction and Architecture. 2016;12:11-22. (in Russ.)]
7. Aleksandrovskiy S.V. Raschet betonnykh i zhelezobetonnykh konstruktsiy na izmeneniya temperatury i vlazhnosti s uchetom polzuchesti. M.: Stroyizdat; 1973. 417 s. [Aleksandrovskiy S.V. Calculaton of concrete and iron-concrete constructions during temperature and humidity alterations accounting for creep. Stroyizdat; 1973. 417 p. (in Russ.)]
8. Vishnevetskiy G.D. Ob usadochnykh kharakteristikakh betonov. Trudy LISI. 1952;13:112-117. [Vishnevetskiy G.D. About the concrete‘s shrinkage chatacteristics. Work collection of LISI (Leningrad Engineering - Building Institute). 1952;13:112-117. (in Russ.)]
9. Lermit R. Izmenenie ob"ema betona. Chetvertyy mezhdunarodnyy kongress po khimii tsementa. M.: Stroyizdat; 1964. S.475-485. [Lermit R. Concrete‘s volume alteration. The 4th International congress on cement chemistry. Moscow: Stroyizdat; 1964. P. 475-485. (in Russ.)]
10. Sheykin A.E., Chekhovskiy Yu.V., Brusser M.I. Struktura i svoystva tsementnykh betonov. M.: Stroyizdat; 1979. 344 s. [Sheykin A.E., Chekhovskiy Yu.V., Brusser M.I. tructure and properties of cement concretes. Moscow: Stroyizdat; 1979. 344 p. (in Russ.)]
11. Gaziev M.A., Florova M.R. Karbonizatsiya i polzuchest' gazozolobetona v panelyakh zhilykh zdaniy na srednem Urale. Vliyanie klimaticheskikh usloviy i rezhimov nagruzheniya na deformatsii i prochnost' konstruktsionnykh betonov i elementov zhelezobetonnykh konstruktsiy. Tbilisi; 1985. S.15-16. [Gaziev M.A., Florova M.R. Carbonation and creep of gas-ash concrete in panels of the Middle Ural‘s domestic buildings. Climate conditions and loading modes impact onto deformation and strength of constructional concretes and iron-concrete construction elements. Tbilisi; 1985. P.15-16. (in Russ.)]
12. Gaziev M.A. Relaksatsiya napryazheniy v avtoklavnykh yacheistykh betonakh s uchetom ikh stareniya vsledstvie karbonizatsii. Rabotosposobnost' kompozitsionnykh stroitel'nykh materialov v usloviyakh vozdeystviya razlichnykh ekspluatatsionnykh faktorov. Mezhvuzovskiy sbornik KISI. Kazan'. 1985. S. 44-46. [Gaziev M.A. Stress relaxation in autoclave cellular concretes taking into account their ageing due to carbonation. Operability of composite building materials under the conditions of various exploitation factors. Inter-University work collection of KISI. Kazan'. 1985. P. 44-46. (in Russ.)]
13. Bataev D.K.-S., Mazhiev Kh.N., Murtazaev S-A.Yu., Gaziev M.A. Relaksatsiya szhimayushchikh napryazheniy v melkozernistom yacheistom betone. Covremennye stroitel'nye materialy, tekhnologii i konstruktsii. Grozny; 2015. S.166-171. [Bataev D.K.-S., Mazhiev Kh.N., Murtazaev S-A.Yu., Gaziev M.A. Compressing stress relaxation in fine-grained cellular concrete. Modern building materials, technologies and constructions. Grozny; 2015. P.166-171. (in Russ.)]
14. Samouh H., Wishiewski E. V., Loukili A. Consequences of longer sealed curing on drying shrinkage, crcking and carbonation of concrete. Cement and Concrete Research. 2017;95:117-131.
15. Li G., Dong L., Bai Zh., Lei M., Du J.. Predicing carbonation depth for concrete with organic film coatings combined with ageing effects. Construction and Building Materials. 2017;142:59-65.
16. Possan E., Thomaz W.A., Aleandri G.A., Felix E.F., dos Santos A.C.P. CO2 uptake potential due to concrete carbonation. A case study. Case Studies in Construction Materials. 2017;6:147-161.
17. Ta V.L., Bonnet S., Kiesse T.S., Ventura A.. A new meta model to calculate carbonation front depth within concrete structures. Construction and Building Materials. 2016;129:172-181.
18. Ekolu S.O. A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Construction and Building Materials. 2016;127:306-320.
19. Shuguan Kh., Chzhou V.F. Legkie betony. M.: Izdatel'stvo ASV; 2016. 304 s. [Shuguan Kh., Chzhou V.F. Light concretes. Moscow: Izdatel'stvo ASV; 2016. 304 p. (in Russ.)]
20. Yuan' Yu., Lin V., Pe T. Vysokokachestvennyy tsementnyy beton s uluchshennymi svoystvami. Moskva: Izdatel'stvo ASV; 2014. 448 s. [Yuan' Yu., Lin V., Pe T. High-quality cement concrete with improved properties. Moscow: Izdatel'stvo ASV; 2014. 448 p. (in Russ.)]
Review
For citations:
Apkarov Sh.I., Bataev D.K., Gaziev M.A., Mazhiev Kh.N. ASSESSMENT OF CRACKING RESISTANCE OF CELLULAR CONCRETE PRODUCTS UNDER MOISTURE AND CARBONISATION DEFORMATIONS WITH STRESS RELAXATION. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):151-161. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-151-161