MATHEMATICAL MODELLING OF MASS EXCHANGE PROCESSES BETWEEN FLOW AND ALLUVIAL SEDIMENTS
https://doi.org/10.21822/2073-6185-2017-44-2-142-150
Abstract
Objectives. The aim is to improve the mathematical model of the motion of channelfill deposits in terms of clarifying one of the main relationships on which the sediment flow rate depends: the frequency of pulsations of the vertical fluid velocity component with hydraulic flow parameters.
Methods. The mathematical model is developed using probability theory and the theory of runs of random processes, taking into account the normal distribution of the horizontal and vertical components of the instantaneous flow velocities and the Rayleigh law of the distribution of their maxima.
Results. As a result of the modelling, information was obtained concerning the volumes and areas of the zones of influence of increased turbidity on the aquatic bioresources of the Gizeldon River. The operation of the Gizeldon hydroelectric power station have led to the loss of zoobenthos habitats, the destruction of bottom biocenoses, the loss of food organisms of plankton and benthos, a decrease in the fodder base of fish and the direct death of the ichthyofauna. An assessment of the damage caused to aquatic bioresources from the operation of the Gizeldon hydroelectric power station was carried out. As a result, it was proved that the negative influence of the "turbidity loop" in the lower tail of the river, taking into account the critical values of suspended matter concentration in water will be traced for 3.7 km. The amount of damage to aquatic bioresources in physical terms is about 1.5 tons due to the destruction of the fodder base of fish and the deterioration of habitat conditions in the zone of increased turbidity.
Conclusion. The results of mathematical modelling were tested on field data materials and used to calculate the turbidity of the Gizeldon River flow during the reconstruction of the Gizeldon hydroelectric power station. The results of the approbation of the mathematical model of the motion of channel-fill sediment are presented in order to identify the areas of increased turbidity during the assessment of the damage to the water resources of the Gizeldon River.
About the Author
M. R. MagomedovaRussian Federation
Cand. Sc.(Technical), Doctoral student, Department of Building Constructions and Hydraulic Structures,
70 I. Shamilya Ave., Makhachkala 367026
References
1. Alekseevskiy N.I. Formirovanie i dvizhenie rechnykh nanosov. M.: Izd-vo MGU; 1998. S. 95-114. [Alekseevskiy N.I. Formation and moving of the river sediments. Moscow: Izd-vo MGU; 1998. P. 95-114. (in Russ.)]
2. Alekseevskiy N.I. Transport vlekomykh nanosov pri razvitoy strukture ruslovogo rel'efa. Meteorologiya i gidrologiya. 1990;9:100-105. [Alekseevskiy N.I. The transport of moving sediments with the developed structure of the bed relief. Meteorologiya i Gidrologiya. 1990;9:100-105. (in Russ.)]
3. Baryshnikov N.B., Pagin A.O. Gidravlicheskoe soprotivlenie rechnykh rusel. Zhurnal universiteta vodnykh kommunikatsiy. 2010;2:90-93. [Baryshnikov N.B., Pagin A.O. Hydraulic resistance of the river beds. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova. 2010;2:90-93. (in Russ.)]
4. Kopaliani Z.D., Kostyuchenko A.A. Raschety raskhoda donnykh nanosov v rekakh: sbornik rabot po gidrologii. SPb.: Gidrometeoizdat. 2004;27:25–40. [Kopaliani Z.D., Kostyuchenko A.A. Calculations of sediment flow rates in rivers: work collection on hydrology. Saint-Petersburg: Gidrometeoizdat. 2004;27:25–40. (in Russ.)]
5. Klaven A.B., Kopaliani Z.D. Eksperimental'nye issledovaniya i gidravlicheskoe modelirovanie rechnykh potokov i ruslovogo protsessa. SPb.: Nestor-Istoriya; 2011. S. 103–107. [Klaven A.B., Kopaliani Z.D. Experimental studies and hydraulic modeling of river flows and bed process. Saint-Petersburg: NestorIstoriya; 2011. P. 103–107. (in Russ.)]
6. Magomedova A.V. Erozionnye protsessy v ruslakh rek i kanalov. M.: VZPI; 1990. S.98-108. [Magomedova A.V. Erosion processes in river beds and channels. M.: VZPI; 1990. P.98-108. (in Russ.)]
7. Magomedova M.R. Matematicheskoe modelirovanie dvizheniya pridonnykh nanosov v otkrytykh ruslakh. Makhachkala: Alef, Ovchinnikov M.A.; 2014. S.53-68. [Magomedova M.R. Mathematical modeling of near-bottom sediment movement in open beds. Makhachkala: Alef, Ovchinnikov M.A.; 2014. P.53-68. (in Russ.)]
8. Magomedova A.V., Magomedova M.R. O faktorakh, obuslovlivayushchikh protsess transporta rusloformiruyushchikh nanosov. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2013;29(2):58-64. [Magomedova A.V., Magomedova M.R. About the factors determining the transport process of bed-forming sediments. Herald of Daghestan State Technical University. Technical Sciences. 2013;29(2):58-64. (in Russ.)]
9. Grigor'yan O.P., Magomedova M.R. Imitatsionnoe matematicheskoe modelirovanie rasprostraneniya vzveshennykh chastits dlya opredeleniya zon povyshennoy mutnosti pri otsenke ushcherba vodnym biologicheskim resursam reki Cherek. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2016;42(3):106-109. [Grigor'yan O.P., Magomedova M.R. Imitation mathematical modeling of suspended particle distribution for the determination of high turbidity zones during the harm evaluation of the river Cherek water biological resourses. Herald of Daghestan State Technical University. Technical Sciences. 2016;42(3):106-109. (in Russ.)]
10. Magomedova M.R. Prakticheskoe primenenie avtorskoy modeli transporta mineral'nykh chastits. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2015;37(2):84-91. [Magomedova M.R. Practical application of an original transport model of mineral particles. Herald of Daghestan State Technical University. Technical Sciences. 2015;37(2):84-91. (in Russ.)]
11. Rzhanitsyn N.A. Rusloformiruyushchie protsessy rek. L.: Gidrometeoizdat; 1985. S.127-130. [Rzhanitsyn N.A. River bed-forming processes. Leningrad: Gidrometeoizdat; 1985. P.127-130. (in Russ.)]
12. Dade W.B., Friend P.F. Grain Size, Sediment Transport Regime, and Channel Slope in Alluvial Rivers. The Journal of Geology. 2011;106(6):662-673.
13. Camenen B., Larson M. General formula for non-cohesive bed load sediment transport. Estuarine, Coastal and Shelf Science. 2005;63:249-260.
14. Kopaliani Z.D. Problem of bed load discharge assessment in rivers. Proc. 10-th Inter Symp. on River Sedimentation. Moscow. 2007;3:175–181.
15. Wilcock P.R., Crowe J.C. Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering. 2003;129(2):120-128.
Review
For citations:
Magomedova M.R. MATHEMATICAL MODELLING OF MASS EXCHANGE PROCESSES BETWEEN FLOW AND ALLUVIAL SEDIMENTS. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):142-150. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-142-150