DEFINITION OF EARTHQUAKE FOCUS COORDINATES USING A COMBINED METHOD
https://doi.org/10.21822/2073-6185-2017-44-2-118-125
Abstract
Objectives. The aim of the study is to determine earthquake hypocentres with the simultaneous use of both the sphere and hyperboloid methods of calculation, providing minimal possible error due to the appropriate choice of seismic sensors.
Method. A method for determining the hypocentre of earthquakes is proposed that uses methods of spheres and hyperboloids for calculations making it possible to minimise error due to the appropriate choice of seismic sensors. In this case, we proceed from the fact that the circumference is the geometric position of the intersection points of the hyperboloid and the sphere, provided that the focus of the hyperboloid and the centre of the sphere are located on one straight line.
Results. In order to find the coordinates of the earthquake focus, it is necessary to use the data of the third seismic sensor, which should not lie on the same line with the first two. If the third seismic sensor determines the distance to the earthquake focus according to the difference in travel times of the longitudinal and transverse seismic waves, then the geometric location of the earthquake focus will be the sphere. The point of intersection of this sphere with the abovementioned circumference is the earthquake focus. When locating the dependency of the earthquake hypocentre determination error in the relative location of the two seismic sensors, the values of the longitudinal and transverse seismic wave velocities, the difference in the travel times of these waves to the seismic sensors and the difference in the travel times of the longitudinal seismic wave to the two spaced seismic sensors are proposed for use in the calculations. Using the two methods listed above, it is possible to determine the error direction in determining the distance from the earthquake focus to the seismic sensor. For this purpose, the distance is retrieved between the epicentres of earthquakes, calculated using the combined method (spheres and hyperboloids) and the sphere method. The same distance is determined after the addition of the deliberate error t to the run time differences of the seismic waves Δt + t. The value of the - difference leads to a conclusion concerning the direction of the error.
Conclusion. The determination of the direction of errors is possible using the methods of spheres as well as the method of spheres and hyperboloids. The method having multidirectional errors in measuring the distances to the focus has fewer errors in determining its coordinates as compared to the method of spheres described in the work, while with co-directional errors, conversely, the errors arising when using the combined method are higher.
About the Author
T. G. AslanovRussian Federation
Cand. Sc. (Technical), Doctoral cand., Department Management and Informatics in Technical Systems and Computer Engineering,
70 I. Shamilya Ave., Makhachkala 367026
References
1. Shearer P.M. Introduction to Seismology. Cambridge University Press; 2009. 412 p.
2. Aslanov T.G., Tagirov Kh.Yu., Magomedov Kh.D. Vliyanie prostranstvennogo raspolozheniya seysmodatchikov na tochnost' opredeleniya gipotsentra zemletryaseniya. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2016;4(43):73-84. [Aslanov T.G., Tagirov Kh.Yu., Magomedov Kh.D. Influence of seismic sensor spatial configuration onto earthquake hypocenter definition accuracy. Herald of Daghestan State Technical University. Technical Sciences. 2016;4(43):73-84. (in Russ.)]
3. D'Amico S. (Ed.) Earthquake Research and Analysis - Statistical Studies, Observations and Planning. InTech; 2012. 460 p.
4. Robert Garotta. Poperechnye volny: ot registratsii do interpretatsii. Kratkiy kurs lektsiy dlya vysshikh uchebnykh zavedeniy. Seriya №3. 2000. [Robert Garotta. Transversal waves: from registration to interpretation. Short lecture course for Higher Education Institutions. Series №3. 2000. (in Russ.)]
5. Schuster G.T. Basics of Seismic Wave Theory. University of Utah; 2007. 154 p.
6. Kasahara K. Earthquake mechanics. Cambridge University Press; 1981. 272 p.
7. Kennett B. Seismic Wave Propagation in Stratified Media. Australian National University Press; 2009. 298 p.
8. Yanovskaya T.B. Osnovy seysmologii: uchebnoe posobie. Sankt-Peterburg; 2008. 222 s. [Yanovskaya T.B. Seismology fundamentals: a tutorial. Saint-Petersburg; 2008. 222 p. (in Russ)]
9. Mkrtychev O.V. Bezopasnost' zdaniy i sooruzheniy pri seysmicheskikh i avariynykh vozdeystviyakh. M.: MGSU; 2010. 152 s. [Mkrtychev O.V. Safety of buildings and constructions during seismic and emergency impacts. Moscow: MGSU; 2010. 152 p. (in Russ.)]
10. Shakhriman'yan M.A., Nigmetov G.M., Sosunov I.V. Matematicheskoe modelirovanie kak sposob podderzhki prinyatiya resheniy v sluchae vozniknoveniya chrezvychaynykh situatsiy. Katalog «Pozharnaya bezopasnost'»; 2003. S. 240-241. [Shakhriman'yan M.A., Nigmetov G.M., Sosunov I.V. Mathematical modeling as a method of desicion-making support in case of emergency situation arising. Catalogue ―Fire safety‖; 2003. P. 240-241. (in Russ.)]
11. Burmin V.Yu. Novyy podkhod k opredeleniyu parametrov gipotsentrov dalekikh zemletryaseniy. Vulkanologiya i seysmologiya. 1994;1:68-79. [Burmin V.Yu. A new approach for the determination of remote earthquake hypocenter parameters. Vulcanology and seismology. 1994;1:68- 79. (in Russ.)]
12. Aslanov T.G., Daniyalov M.G., Magomedov Kh.D., Aslanov G.K. Ob odnom metode opredeleniya ochaga zemletryaseniya s odnovremennym opredeleniem skorostey seysmicheskikh voln. Trudy instituta geologii Dagestanskogo nauchnogo tsentra RAN, Materialy. Makhachkala: Izdatelstvo DNTs RAN; 2010. 54-59. [Aslanov T.G., Daniyalov M.G., Magomedov Kh.D., Aslanov G.K. About the method of seismic center determination with simultaneous definition of speeds of seismic waves. Proceedings of the Institute of Geology of the Dagestan Scientific Center of the Russian Academy of Sciences. Makhachkala: DSCRAS Publ.; 2010. 54-59. (In Russ.)]
13. D'Amico S. (Ed.) Engineering Seismology, Geotechnical and Structural Earthquake Engineering. InTech; 2013. 300 p.
14. Gutenberg B., Richter C.F. Seismicity of the Earth and Associated Phenomena. Princeton, New Jersey: Princeton University Press; 1949. 284 p.
15. Arkhangel'skiy V.T., Vedenskaya I.A., Gayskiy V.N. Rukovodstvo po proizvodstvu i obrabotke nablyudeniy na seysmicheskikh stantsiyakh SSSR. Akad. nauk SSSR. Sovet po seysmologii. Moskva: Izd-vo Akad. nauk SSSR; 1954. [Arkhangel'skiy V.T., Vedenskaya I.A., Gayskiy V.N. Observation performance and processing guide on the seismic stations of USSR. USSR Academy of Sciences. Seismology Board. Moscow: Izd-vo Akad. nauk SSSR; 1954. (in Russ.)]
16. Gitis V.G., Ermakov B.V. Osnovy prostranstvenno-vremennogo prognozirovaniya v geoinformatike. M.: FIZMATLIT; 2004. 256 s. [Gitis V.G., Ermakov B.V. Fundamentals of spatial-time prognosis in geoinformatics. Moscow: FIZMATLIT; 2004. 256 p. (in Russ.)]
17. D'Amico S. (Ed.) Earthquake Research and Analysis - Seismology, Seismotectonic and Earthquake Geology. InTech; 2012. 370 p.
18. Kazakov A.Ya., Zhikhareva A.A. Analiticheskaya geometriya [Elektronnyy resurs]: Elektronnoe uchebnoe posobie dlya vuzov; 2014. 47 s. Rezhim dostupa: http://publish.sutd.ru/e_books/analit_geometr_2014/glava/anal_geom.pdf – EBS SPGUTD (Data obrashcheniya: 20.08.2016). [Kazakov A.Ya., Zhikhareva A.A. Analytical geometry [Electronic resourse]: Electronic tutorial for Higher Education Institutions; 2014. 47 p. Available at: http://publish.sutd.ru/e_books/analit_geometr_2014/glava/anal_geom.pdf – EBS SPGUTD (Access date: 20.08.2016). (in Russ.)]
Review
For citations:
Aslanov T.G. DEFINITION OF EARTHQUAKE FOCUS COORDINATES USING A COMBINED METHOD. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):118-125. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-118-125