Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

REGULATION OF THE RELATIONSHIP BETWEEN ADDITIVE REDUCTION AND METRICS METHODS

https://doi.org/10.21822/2073-6185-2017-44-2-107-117

Abstract

Objectives. The aim of the work is to determine the relationship between generalised criterion and target programming methods.

Methods. The paper considers the aggregation operation that underlies many decision-making procedures used in input-output models, in neural network technologies and in the study of multi-purpose systems. The use of certain metrics within the framework of target programming can lead to solutions that are not Pareto-optimal. Therefore, in targeted programming, a significant place is given to finding the conditions under which the use of one or another metric obviously leads to Pareto-optimal solutions. The necessary (Carlin's theorem) and sufficient conditions of Pareto-optimality are known to perform the additive reduction. For a generalised criterion on the basis of order operators of weighted aggregation, two theorems proven by the author (the theorem on the inclusion of the set of Pareto-optimal solutions into a set of effective solutions and the Pareto optimality theorem for the solution obtained) are presented.

Results. The proof of the Pareto optimality theorem of the solution is given, maximising the generalised criterion obtained on the basis of the order operations of weighted aggregation, which justifies the use of operations of this type for solving the problems of vector optimisation or multicriteria choice. The theorem on the existence of an additive reduction for a metric is true only in the particular case and is based on Carlin's theorem, according to which a subset of Pareto-set points maximises some additive reduction.

Conclusion. In the paper a relationship between the additive reduction and metrics methods is established. An assertion concerning the relationship between the parameters of the distance function in the target programming method and the weighting coefficients of the additive reduction is formulated and proved, which ensures the equivalence of the optimal Pareto solutions. 

About the Author

E. M. Aristova
Voronezh State University
Russian Federation

Cand. Sci.(Physics and Mathematical), Assoc.Prof.,

1 Universitetskaya square, Voronezh 394018



References

1. Aristova E.M. Uchet vzaimodeystviya mezhdu tselevymi funktsiyami i ikh agregirovanie v zadachakh optimizatsii. Dissertatsiya na soiskanie uchenoy stepeni kandidata fiziko-matematicheskikh nauk. Voronezh; 2012. 152 s. [Aristova E.M. Considering the interaction between target fuctions and their aggregation in optimisation problems. Dissertation of a PhD degree in Physics and Mathematical Sciences. Voronezh; 2012. 152 p. (in Russ.)]

2. Ashmanov S.A., Timokhov A.V. Teoriya optimizatsii v zadachakh i uprazhneniyakh. M.: Lan'; 2012. 448 s. [Ashmanov S.A., Timokhov A.V. Optimisation theory in tests and exercises. Moscow: Lan'; 2012. 448 s. (in Russ.)]

3. Zaytsev M.G., Varyukhin S.E. Metody optimizatsii, upravleniya i prinyatiya resheniy. Primery, zadachi, keysy. Uchebnoe posobie. M.: RANKhiGS; 2015. 640 s. [Zaytsev M.G., Varyukhin S.E. Methods of optimisation, control and decision-making. Examples, tests, cases. Tutorial. Moscow: RANKhiGS; 2015. 640 p. (in Russ.)]

4. Karmanov V.G. Matematicheskoe programmirovanie. M.: Fizmatlit; 2004. 263 s. [Karmanov V.G. mathematical programming. Moscow: Fizmatlit; 2004. 263 p. (in Russ.)]

5. Struchenkov V.I. Prikladnye zadachi optimizatsii. Modeli, metody, algoritmy. M.: Solon-Press; 2016. 314 s. [Struchenkov V.I. Applied tasks of optimisation. Models, methods, algorithms. Moscow: SolonPress; 2016. 314 p. (in Russ.)]

6. Kravchenko T.K., Isaev D.V. Sistemy podderzhki prinyatiya resheniy. M.: Yurayt; 2017. 292 s. [Kravchenko T.K., Isaev D.V. Decision-making support systems. Moscow: Yurayt; 2017. 292 s. (in Russ.)]

7. Ledeneva T.M. Modeli i metody prinyatiya resheniy: uchebnoe posobie. Voronezh: VGTU; 2004. 189 s. [Ledeneva T.M. Models and methods of decision-making: a tutorial. Voronezh: VGTU; 2004. 189 p. (in Russ.)]

8. Nogin V.D. Prinyatie resheniy pri mnogikh kriteriyakh. SPb.: Izdatel'stvo YuTAS; 2007. 104 s. [Nogin V.D. Decision-making with multiple criteria. Saint-Petersburg: Izdatel'stvo YuTAS; 2007. 104 p. (in Russ.)]

9. Orlov A.I. Teoriya prinyatiya resheniy. M.: Ekzamen; 2006. 573 s. [Orlov A.I. Theory of decisionmaking. Moscow: Ekzamen; 2006. 573 p. (in Russ.)]

10. Podinovskiy V.V. Vvedenie v teoriyu vazhnosti kriteriev. M.: Fizmatlit; 2007. 64 s. [Podinovskiy V.V. Introduction to criteria importance theory. Moscow: Fizmatlit; 2007. 64 p. (in Russ.)]

11. Trofimova L.A., Trofimov V.V. Metody prinyatiya upravlencheskikh resheniy: uchebnik dlya bakalavrov. M.: Yurayt; 2013. 335 s. [Trofimova L.A., Trofimov V.V. The methods of managerial decision-making: a tutorial for batchelors. Moscow: Yurayt; 2013. 335 p. (in Russ.)]

12. Aristova E.M. Uproshchenie zadachi lineynoy mnogokriterial'noy optimizatsii s pomoshch'yu metoda agregirovaniya. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya Sistemnyy analiz i informatsionnye tekhnologii. 2012;2:11-17. [Aristova E.M. The simplification of linear multiple criteria optimisation problem using aggregation method. Proceedings of Voronezh State University. Series: Systems analysis and information technologies. 2012;2:11-17. (in Russ.)]

13. Mel'kumova E.M. (Aristova E.M.) Odin iz podkhodov k resheniyu zadachi mnogokriterial'noy optimizatsii. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya Sistemnyy analiz i informatsionnye tekhnologii. 2010;2:39-42. [Mel'kumova E.M. (Aristova E.M.). One of the approaches to the solution of multiple criteria optimisation problem. Proceedings of Voronezh State University. Series: Systems analysis and information technologies. 2010;2:39-42. (in Russ.)]

14. Baeva N.B., Bondarenko Yu.V. Osnovy teorii i vychislitel'nye skhemy vektornoy optimizatsii. Uchebnoe posobie. Voronezh: Izdatel'stvo VGU; 2003. 86 s. [Baeva N.B., Bondarenko Yu.V. Theory fundamentals and calculation schemes of vector optimisation. A tutorial. Voronezh: Izdatel'stvo VGU; 2003. 86 p. (in Russ.)]

15. Carlsson C., Fuller R. Multiple criteria decision making: The Case for Interdependence. Computers and Operations Research. 1995;22:251-260.

16. Sakawa M., Nishizaki I., Katagiri H. Fuzzy stochastic multiobjective programming. New York, NY: Springer; 2011. № XII. 264 p.

17. Podinovskiy V.V., Nogin V.D. Pareto-optimal'nye resheniya mnogokriterial'nykh zadach. M.: Nauka; 1982. 250 s. [Podinovskiy V.V., Nogin V.D. Pareto-optimal solutions of multiple criteria problems. Moscow: Nauka; 1982. 250 p. (in Russ.)]

18. Khomenyuk V.V. Elementy teorii mnogotselevoy optimizatsii. M.: Nauka; 1983. 124 s. [Khomenyuk V.V. Elements of multi-objective optimisation theory. Moscow: Nauka; 1983. 124 p. (in Russ.)]

19. Torra V., Narukawa Y. Modeling Decisions: Information Fusion and Aggregation Operators. Springer: Berlin; 2007. 284 p.

20. Liu X. The solution equivalence of minimax disparity and minimum variance problems for OWA operators. International Journal of Approximate Reasoning. 2007;45:68-81.

21. Yudin D.B., Gol'shteyn E.G. Lineynoe programmirovanie. Teoriya, metody i prilozheniya. M.: Krasand; 2012. 424 s. [Yudin D.B., Gol'shteyn E.G. Linear programming. Theory, methods and applications. Moscow: Krasand; 2012. 424 s. (in Russ.)]


Review

For citations:


Aristova E.M. REGULATION OF THE RELATIONSHIP BETWEEN ADDITIVE REDUCTION AND METRICS METHODS. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):107-117. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-107-117

Views: 864


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)