AUTOMATION OF OPTIMAL IDENTIFICATION OF DYNAMIC ELEMENT TRANSFER FUNCTIONS IN COMPLEX TECHNICAL OBJECTS BASED ON ACCELERATION CURVES
https://doi.org/10.21822/2073-6185-2017-44-2-97-106
Abstract
Objectives. The aim of present paper is to minimise the errors in the approximation of experimentally obtained acceleration curves.
Methods. Based on the features and disadvantages of the well-known Simoyu method for calculating transfer functions on the basis of acceleration curves, a modified version of the method is developed using the MathLab and MathCad software. This is based on minimising the sum of the squares of the experimental point deviations from the solution of the differential equation at the same points.
Results. Methods for the implementation of parametric identification are analysed and the Simoyu method is chosen as the most effective. On the basis of the analysis of its advantages and disadvantages, a modified method is proposed that allows the structure and parameters of the transfer function to be identified according to the experimental acceleration curve, as well as the choice of optimal numerical values of those parameters obtained for minimising errors in the approximation of the experimentally obtained acceleration curves.
Conclusion. The problem of optimal control over a complex technical facility was solved. On the basis of the modified Simoyu method, an algorithm for the automated selection of the optimal shape and calculation of transfer function parameters of dynamic elements of complex technical objects according to the acceleration curves in the impact channels was developed. This has allowed the calculation efficiency of the dynamic characteristics of control objects to be increased by minimising the approximation errors. The efficiency of the proposed calculation method is shown. Its simplicity makes it possible to apply to practical calculations, especially for use in the design of complex technical objects within the framework of the computer aided design system. The proposed method makes it possible to increase the accuracy of the approximation by at least 20%, which is an important advantage for its practical use.
About the Authors
A. Yu. AlikovRussian Federation
Cand. Sci.(Technical), Prof., Department of Automated Design Systems,
44 Nikolaeva Str., Vladikavkaz 362021
M. A. Kovaleva
Russian Federation
Cand. Sci.(Technical), Assoc. Prof., Department of Theory and Automation of Metallurgical Processes and Furnaces,
44 Nikolaeva Str., Vladikavkaz 362021
A. L. Rutkovskiy
Russian Federation
Dr. Sci.(Technical), Prof., Department of Theory and Automation of Metallurgical Processes and Furnaces,
44 Nikolaeva Str., Vladikavkaz 362021
N. V. Tedeeva
Russian Federation
Postgraduate student, Department of Automated Design Systems,
44 Nikolaeva Str., Vladikavkaz 362021
References
1. Tsypkin Ya.Z. Informatsionnaya teoriya identifikatsii. M.: Nauka; 1995. 336 s. [Tsypkin Ya.Z. Informational theory of identification. Moscow: Nauka; 1995. 336 p. (in Russ.)]
2. Krasovskiy A.A. Statisticheskaya teoriya perekhodnykh protsessov v sistemakh upravleniya. M.; 1968. 240 s. [Krasovskiy A.A. Statistical theory of transitional processes in control systems. Moscow; 1968. 240 p. (in Russ.)]
3. Kafarov V.V., Perov V.L., Meshalkin V.P. Printsipy matematicheskogo modelirovaniya khimikotekhnologicheskikh sistem. M.: Khimiya; 1974. 344 s. [Kafarov V.V., Perov V.L., Meshalkin V.P. The principles of mathematical modeling of chemical-technological systems. Moscow: Khimiya; 1974. 344 p. (in Russ.)]
4. Petrov B.N., Babak S.F., Il'yasov B.G. i dr. Ob odnom podkhode k analizu struktur mnogosvyaznykh sistem. Issledovanie po teorii mnogosvyaznykh sistem. Petrov B.N., Meerov M.V. (Eds). M.: Nauka; 1982. S. 4 – 12. [Petrov B.N., Babak S.F., Il'yasov B.G. et al. On the approach to the analysis of multirelation system structures. Studies on the theory of multi-relation systems. Petrov B.N., Meerov M.V. (Eds). Moscow: Nauka; 1982. P. 4 – 12. (in Russ.)]
5. Petrov B.N., Ulanov G.M., Gol'denblat N.I., Ul'yanov S.V. Teoriya modeley v protsessakh upravleniya. M.: Nauka; 1978. 216 s. [Petrov B.N., Ulanov G.M., Gol'denblat N.I., Ul'yanov S.V. Model theory in control processes. Moscow: Nauka; 1978. 216 p. (in Russ.)]
6. Raybman N.S. Identifikatsiya ob"ektov upravleniya (obzor). Avtomatika i telemekhanika. 1979;6:80- 93. [Raybman N.S. Identification of control objects (a review). Automation and Remote Control. 1979;6:80-93. (in Russ.)]
7. Mesarovich M. Obshchaya teoriya sistem. M.: Mir; 1966. 240 s. [Mesarovich M. General systems theory. Moscow: Mir; 1966. 240 p. (in Russ.)]
8. Kalman P.E., Falb P.L., Arbib M.A. Ocherki po matematicheskoy teorii sistem. M.: Mir; 1977. 250 s. [Kalman P.E., Falb P.L., Arbib M.A. Essays on mathematical systems theory. Moscow: Mir; 1977. 250 p. (in Russ.)]
9. Direktor S., Rorer R. Vvedenie v teoriyu sistem. M.: Mir; 1974. 464 s. [Direktor S., Rorer R. Introduction in systems theory. Moscow: Mir; 1974. 464 p. (in Russ.)]
10. Li E.B., Markus L. Osnovy teorii optimal'nogo upravleniya. M.: Nauka; 1972. 474 s. [Li E.B., Markus L. Fundamentals of optimal control theory. Moscow: Nauka; 1972. 474 p. (in Russ.)]
11. Osnovy avtomatizatsii khimicheskikh proizvodstv. Obnovlenskiy P.A., Gurevich A.A. (Eds.). M.: Khimiya; 1975. 528 s. [Fudamentals of chemical production automation. Obnovlenskiy P.A., Gurevich A.A. (Eds.). Moscow: Khimiya; 1975. 528 p. (in Russ.)]
12. Ostrem K., Bolin T. Tsifrovaya identifikatsiya dinamicheskikh sistem na osnove dannykh o normal'nom rezhime raboty. Trudy 11 Mezhdunarodnogo simpoziuma IFAK po samonastraivayushchimsya sistemam ―Teoriya samonastraivayushchikhsya sistem upravleniya‖. M.: Nauka; 1969. S. 99 – 116. [Ostrem K., Bolin T. Digital identification of dynamic systems based on tha data about the normal mode of operation. Proccedings of the 11 International symposium IFAK on the self-adaptive systems ―Theory of self-adaptive control systems‖. Moscow: Nauka; 1969. P. 99 – 116. (in Russ. )]
13. Grop D. Metody identifikatsii sistem. M.: Mir; 1979. 302 s. [Grop D. System identification methods. Moscow: Mir; 1979. 302 p. (in Russ.)]
14. Kalman P.E. Identifikatsiya sistem s shumami. Uspekhi matematicheskikh nauk. 1985;40(4-244):27-41. [Kalman P.E. Identification of systems with noises. Russian Mathematical Surveys. 1985;40(4-244):27- 41. (in Russ.)]
15. L'yung L. O tochnosti modeli v identifikatsii sistem. Izvestiya AN. Tekhnicheskaya kibernetika. 1992;6:55 – 64. [L'yung L. On the model‘s accuracy for systems identification. Engineering cybernetics. 1992;6:55 – 64. (in Russ.)]
16. Zade L.A. Osnovy novogo podkhoda k analizu slozhnykh sistem i protsessov prinyatiya resheniy. Matematika segodnya. M.: Znanie; 1974. S. 5 – 49. [Zade L.A. Fundamentals of a new approach to the analysis of complex systems and decision-making processes. Mathematics today. Moscow: Znanie; 1974. P. 5 – 49. (in Russ.)]
17. Dreyper N., Smit G. Prikladnoy regressionnyy analiz. M.: Finansy i statistika; 1986. 366 s. [Dreyper N., Smit G. Applied regression analysis. Moscow: Finansy i statistika; 1986. 366 p. (in Russ.)]
18. Rutkovskiy A.L., Matveeva L.I., Kozachek G.V. Optimizatsiya koeffitsientov peredatochnoy funktsii, poluchennoy modifitsirovannym metodom Simoyu po eksperimental'no snyatoy perekhodnoy kharakteristike. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2010;6(3):138 – 141. [Rutkovskiy A.L., Matveeva L.I., Kozachek G.V. Optimisation of transfer function coefficient obtained by modified Simoyu method using experimentally derived transfer character. The Bulletin of Voronezh State Technical University. 2010;6(3):138 – 141. (in Russ.)]
19. Stefani E.P. Osnovy rascheta nastroyki regulyatorov teploenergeticheskikh protsessov. M-L: Gosudarstvennoe energeticheskoe izdatel'stvo; 1960. 328 s. [Stefani E.P. Fundamentals of regulator adjustment of heat-energetic processes. Moscow-Leningrad: Gosudarstvennoe energeticheskoe izdatel'stvo; 1960. 328 p. (in Russ.)]
20. Kravtsov A.F., Zaytseva E.V, Chuyko Yu.N. Raschet avtomaticheskikh sistem kontrolya i regulirovaniya metallurgicheskikh protsessov. Kiev - Donetsk: Vishcha shk., 1983; 317 s. [Kravtsov A.F., Zaytseva E.V, Chuyko Yu.N. The calculation of automatic control and regulation systems of metallurgical processes. Kiev - Donetsk: Vishcha shk., 1983; 317 p. (in Russ.)]
21. Simoyu M.P. Opredelenie koeffitsientov peredatochnykh funktsiy linearizovannykh zven'ev i sistem avtoregulirovaniya. Avtomatika i telemekhanika. 1957;8(6):514–528. [Simoyu M.P. Determination of transfer function coefficients of linearised links and automatic control systems. Automation and Remote Control. 1957;8(6):514–528. (in Russ.)]
22. Arunyants G.G., Rutkovskii A.L., Salikhov Z.G., Stolbovskii D.N. Computation of dynamic characteristics of control systems: an effectiveness enhancement method. Automation and Control. 2005;66(4):562-569.
23. Ochkov V.F. Mathcad-14 dlya studentov i inzhenerov: russkaya versiya. SPb.: BKhV – Peterburg; 2009. 498 s. [Ochkov V.F. Mathcad-14 for students and engineers: Russian version. Saint-Petersburg: BKhV – Peterburg; 2009. 498 p. (in Russ.)]
Review
For citations:
Alikov A.Yu., Kovaleva M.A., Rutkovskiy A.L., Tedeeva N.V. AUTOMATION OF OPTIMAL IDENTIFICATION OF DYNAMIC ELEMENT TRANSFER FUNCTIONS IN COMPLEX TECHNICAL OBJECTS BASED ON ACCELERATION CURVES. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):97-106. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-97-106