POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES
https://doi.org/10.21822/2073-6185-2017-44-2-77-86
Abstract
Objective. The development of light-emitting bipolar semiconductor structures having a low level of parasitic heat release.
Methods. A method for converting thermoelectric heat in bipolar semiconductor structures into optical radiation to divert the excess energy into the environment was developed. At the same time, the cooling effect on thermoelectric junctions remains. Instead of an inertial process of conductive or convective heat transfer, practically instantaneous heat removal from electronic components to the environment takes place.
Results. As a result, light-emitting bipolar semiconductor structures will allow more powerful devices with greater speed and degree of integration to be created. It is possible to produce transparent LED matrices with a two-way arrangement of transparent solar cells and mirror metal electrodes along the perimeter. When current is applied, the LED matrix on one of the transitions will absorb thermal energy; on other electrodes, it will emit radiation that is completely recovered into electricity by means of transparent solar cells following repeated reflection between the mirror electrodes. The low efficiency of solar cells will be completely compensated for with the multiple passages of photons through these batteries.
Conclusion. Light-emitting bipolar semiconductor structures will not only improve the reliability of electronic components in a wide range of performance characteristics, but also improve energy efficiency through the use of optical radiation recovery. Semiconductor thermoelectric devices using optical phenomena in conjunction with the Peltier effect allow a wide range of energy-efficient components of radio electronic equipment to be realised, both for discrete electronics and for microsystem techniques. Systems for obtaining ultra-low temperatures in order to achieve superconductivity are of particular value.
About the Author
P. A. MagomedovaRussian Federation
Graduate student, Department of Theoretical and General electrical engineering,
70 I. Shamilya Ave., Makhachkala 367026
References
1. Dmitriev A.I., Talantsev A.D., Zaytsev S.V., Danilov Yu.A., Dorokhin M.V., Zvonkov B.N., Koplak O.V., Morgunov R.B. Fotolyuminestsentnyy otklik kvantovoy yamy na izmenenie magnitnogo polya δ- sloya Mn v geterostrukturakh InGaAs/GaAs. ZhTF. 2011;140(1):158-169. [Dmitriev A.I., Talantsev A.D., Zaytsev S.V., Danilov Yu.A., Dorokhin M.V., Zvonkov B.N., Koplak O.V., Morgunov R.B. Photoluminescence response of a quantum well onto Mn δ-layer magnetic field alteration in InGaAs/GaAs heterostructures. Journal of Experimental and Theoretical Physics (JETP). 2011;140(1):158-169. (in Russ.)]
2. Anatychuk L.I. Termoelektrichestvo. T.2. Termoelektricheskie preobrazovateli energii. Kiev, Chernovtsy: Institut termoelektrichestva; 2003. 386 s. [Anatychuk L.I. Thermal electricity. T.2. Thermo-electric energy converters. Kiev, Chernovtsy: Institute of thermal electricity; 2003. 386 p. (in Russ.)]
3. Ismailov T.A. Termoelektricheskie poluprovodnikovye ustroystva i intensifikatory teploperedachi. SPb.: Politekhnika; 2005. [Ismailov T.A. Thermo-electric semiconductor devices and heat transfer intensifiers. Saint-Petersburg: Politekhnika; 2005. (in Russ.)]
4. Ismailov T.A., Gadzhiev Kh.M., Nezhvedilov T.D. Termostabilizatsiya mikroelektronnoy apparatury pri pomoshchi poluprovodnikovykh termoelektricheskikh ustroystv. Makhachkala: IPTs DGTU; 2013. 149 s. [Ismailov T.A., Gadzhiev Kh.M., Nezhvedilov T.D. Thermal stabilisation of microelectronic apparatus by means of semiconductor thermoelectric devices. Makhachkala: IPTs DGTU; 2013. 149 p. (in Russ.)]
5. Ismailov T.A., Gadzhiev Kh.M. Okhlazhdenie radioelektronnykh sistem: uchebnoe posobie. Makhachkala: IPTs DGTU; 2012. 165 s. [Ismailov T.A., Gadzhiev Kh.M. The cooling of radioelectronic systems: a tutorial. Makhachkala: IPTs DGTU; 2012. 165 s. (in Russ.)]
6. Ismailov T.A., Gadzhiev Kh.M. Termoelektricheskoe okhlazhdenie teplovydelyayushchikh komponentov mikroelektronnoy tekhniki. Moskva: «Akademiya»; 2012. 136 s. [Ismailov T.A., Gadzhiev Kh.M. Thermoelectric cooling of heat-emitting components of microelectronic technique. Moscow: «Akademiya»; 2012. 136 p. (in Russ.)]
7. Dorokhin M.V., Danilov Yu.A. Izmerenie polyarizatsionnykh kharakteristik izlucheniya nanogeterostruktur: uchebno-metodicheskoe posobie. Nizhniy Novgorod: Nizhegorodskiy gosuniversitet; 2011. [Dorokhin M.V., Danilov Yu.A. Measurement of polarisation features of nanoheterostructure emission: a Tutorial. Nizhniy Novgorod: Lobachevsky State University of Nizhni Novgorod; 2011. (in Russ.)]
8. Vikhrova O.V., Danilov Yu.A., Drozdov Yu.N., Zvonkov B.N., Iikawa F., Brasil M.J.S.P. Svoystva kvantovo-razmernykh struktur GaAs/InGaAs, soderzhashchikh δ-legirovannye sloi. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya. 2007;2:9-12. [Vikhrova O.V., Danilov Yu.A., Drozdov Yu.N., Zvonkov B.N., Iikawa F., Brasil M.J.S.P. The properties of GaAs/InGaAs quantum-dimentional structures, containing δ-doped layers. Journal of Surface Investigation. XRay, Synchrotron and Neutron Techniques. 2007;2:9-12. (in Russ.)]
9. Ismailov T.A., Gadzhiev Kh.M., Gadzhieva S.M., Nezhvedilov T.D., Chelushkina T.A. Kaskadnoe svetoizluchayushchee termoelektricheskoe ustroystvo. Patent RF na izobretenie №2507613.0. Opubl. 20.02.2014. [Ismailov T.A., Gadzhiev Kh.M., Gadzhieva S.M., Nezhvedilov T.D., Chelushkina T.A. Cascade light-emitting thermal-electric device. Patent RF №2507613.0. Publ. 20.02.2014. (in Russ.)]
10. Ismailov T.A., Gadzhiev Kh.M., Gadzhieva S.M., Nezhvedilov T.D., Chelushkina T.A. Sposob otvoda tepla ot teplovydelyayushchikh elektronnykh komponentov v vide izlucheniya. Patent RF na izobretenie №2405230. Opubl. 01.06.2009. [Ismailov T.A., Gadzhiev Kh.M., Gadzhieva S.M., Nezhvedilov T.D., Chelushkina T.A. A method of heat removal from heat-emitting electronic components in the form of emission. Patent RF №2405230. Publ. 01.06.2009. (in Russ.)]
11. Ismailov T.A., Gadzhiev Kh.M., Gadzhieva S.M., Nezhvedilov T.D., Chelushkina T.A. Svetotranzistor. Patent RF №2487436. Opubl. 10.07.2013. [Ismailov T.A., Gadzhiev Kh.M., Gadzhieva S.M., Nezhvedilov T.D., Chelushkina T.A. Light transistor. Patent RF №2487436. Publ. 10.07.2013. (in Russ.)]
12. Ismailov T.A., Gadzhiev Kh.M., Nezhvedilov T.D., Yusufov Sh.A. Svetotranzistor s vysokim bystrodeystviem. Patent RF na izobretenie №2507632. Opubl. 20.02.2014. [Ismailov T.A., Gadzhiev Kh.M., Nezhvedilov T.D., Yusufov Sh.A. Light transistor with high speed. Patent RF na izobretenie №2507632. Publ. 20.02.2014. (in Russ.)]
13. Holub M., Bhattacharya P. Spin-polarized light-emitting diodes and lasers. J. Phys. D: Appl. Phys. 2007;40(2):R179-R203.
14. Govorov A.O., Kalameitsev A.V. Optical properties of a semiconductor quantum dot with a single magnetic impurity: photoinduced spin orientation. Phys. Rev. B. 2005;71(3):035338-1-5.
Review
For citations:
Magomedova P.A. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):77-86. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-77-86