Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING FLOW TYPE THERMOELECTRIC HEAT TRANSFER INTENSIFIER

https://doi.org/10.21822/2073-6185-2017-44-2-68-76

Abstract

Objectives. The aim of the study is to develop a construction design that increases the intensity of heat exchange between media and optimises the energy and mass dimensions of the instrument indicators.

Methods. A method for the theoretical investigation of thermoelectric heat transfer intensifiers is used, which, by means of forced air flows along the junctions of thermoelements, provides a higher coefficient of heat exchange between media moving in transport zones with altering temperature.

Results. The construction of a thermoelectric heat transfer intensifier is proposed, which uses fan assemblies to force air flow in the respective gaps between the junctions of the thermoelements and the media moving in transport zones to increase the heat transfer coefficient. A device model based on the solution of the heat balance equations for media flows in transport zones, thermoelectric battery surfaces and gaps between transport zones and battery surfaces for direct flow conditions is considered. Theoretical studies of the heat transfer intensifier using the developed model were carried out. The dependencies of the media temperature alterations at the output of the heat transfer intensifier on the value of the heat transfer coefficient between the junctions of the thermoelectric battery and the air medium in the gap are determined for a fixed value of the thermoelectric battery supply current equal to 5 A.

Conclusion. It is established that an increase in media temperature difference at the input contributes to a sharper decrease in the dependencies of the limiting lengths of the thermoelectric battery on the heat transfer coefficient between the junctions of the thermoelectric battery and the air medium in the gap at a constant supply current. 

About the Author

D. K. Kadirova
Daghestan State Technical University
Russian Federation

aspirant, Department of Theoretical and General electrical engineering,

70 I. Shamilya Ave., Makhachkala 367026


References

1. Ismailov T.A. Termoelektricheskie poluprovodnikovye ustroystva i intensifikatory teploperedachi. SPb.: Politekhnika; 2005. 534 s. [Ismailov T.A. Thermal-electric semiconductor devices and heat transfer intensifiers. Saint-Petersburg: Politekhnika; 2005. 534 p. (in Russ.)]

2. Anatychuk L.I. Termoelementy i termoelektricheskie ustroystva. Kiev: Naukova Dumka; 1979. 768 s. [Anatychuk L.I. Thermal elements and thermal-electric devices. Kiev: Naukova Dumka; 1979. 768 p. (in Russ.)]

3. Bulat L.P. Prikladnye issledovaniya i razrabotki v oblasti termoelektricheskogo okhlazhdeniya v Rossii. Kholodil'naya tekhnika. 2009; 7:34-37. [Bulat L.P. Applied studies and developments in the area of thermalelectric cooling in Russia. Kholodilnaya tekhnika. 2009; 7:34-37. (in Russ.)]

4. Malkovich B.E.-Sh. Termoelektricheskie moduli na osnove splavov tellurida vismuta. Doklady XI Mezhgosudarstvennogo seminara ―Termoelektriki i ikh primenenie‖. Sankt-Peterburg; 2008. S. 462-468. [Malkovich B.E.-Sh. Thermal electric units based on the bismuth telluride alloys. Proceedings of XI Interstate seminar ―Thermo-electrics and their application‖. Sankt-Peterburg; 2008. P. 462-468. (in Russ.)]

5. Dreytser G.A., Lobanov I.E. Predel'naya intensifikatsiya teploobmena v trubakh za schet iskusstvennoy turbulizatsii potoka. IFZh. 2003;76(1):46-51. [Dreytser G.A., Lobanov I.E. Terminal heat transfer intensification in pipes due to artificial flow turbulisation. Journal of Engineering Physics and Thermophysics. 2003;76(1):46-51. (in Russ.)]

6. Dreytser G.A., Isaev S.A., Lobanov I.E. Raschet konvektivnogo teploobmena v trubakh s periodicheskimi vystupami. Problemy gidrodinamiki i teploobmena v energeticheskikh ustanovkakh. M.: Izd. MEI; 2003;1:57- 60. [Dreytser G.A., Isaev S.A., Lobanov I.E. Calculation of convective heat exchange in pipes with periodical protrusions. The problems of hydro-dynamics and heat exchange in energetic facilities. Moscow: Izd. MEI; 2003;1:57-60. (in Russ.)]

7. Osipov M.I., Olesevich R.K., Olesevich K.A. Eksperimental'noe i chislennoe issledovanie teploobmennykh apparatov shnekovogo tipa. Trudy Vtoroy Rossiyskoy natsional'noy konferentsii po teplomassoobmenu. M.: MEI. 2002;6:159-162. [Osipov M.I., Olesevich R.K., Olesevich K.A. Experimental and numeric study of heat exchange apparatus of screw type. Proceedings of the Second Russian national conference on heat and mass exchange. Moscow: MEI. 2002;6:159-162. (in Russ.)]

8. Popov I.A., Makhyanov Kh.M., Gureev V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena. Pod obshch. Red. Yu.F. Gortyshova. Kazan': Izd. dom ―Logos‖; 2012. 559 s. [Popov I.A., Makhyanov Kh.M., Gureev V.M. Physical fundamentals and industrial application of heat exchange intensification. Ed. Yu.F. Gortyshov. Kazan': Izd. dom ―Logos‖; 2012. 559 p. (in Russ.)]

9. Gortyshov Yu.F., Olimpiev V.V., Popov I.A. Effektivnost' promyshlenno effektivnykh intensifikatorov teploperedachi (Obzor. Analiz. Rekomendatsii). Izvestiya RAN, Energetika. 2002;3:102-118. [Gortyshov Yu.F., Olimpiev V.V., Popov I.A. The efficiency of industrially-effective heat transfer intensifiers (Review. Analysis. Recommendations). Proceedings of the Russian Academy of Sciences. Power Engineering. 2002;3:102-118. (in Russ.)]

10. Walker G. Industrial Heat Exchangers: A Basic Guide, 2nd ed., Washington: Hemisphere Publishing: 1990.

11. Hewitt G.F. Heat Exchanger Design Handbook. Begell House; 1990.

12. Shah R.K. Compact Heat Exchangers - Recuperators and Regenerators. In Handbook of Energy Efficiency and Renewable Energy. Kreith F., Yogi Goswami D., Chap.

13. eds. CRC Press, Taylor & Francis Group; 2007. 13. Zimparov V.D. Extended performance evaluation criteria for heat transfer surfaces: Heat transfer through ducts with constant wall temperatures. Int. J. Heat Mass Transfer. 2000;43(17):3137-3150.

14. Chinangad R.S., Master B.I., Thome J.R. Helixchanger Heat Exchanger: Single - Phase and Two-Phase Enhancement. Compact Heat Exchangers and Enhancement Technology for the Process Industries. New York, Wallingford (UK): Begell House, Inc; 1999. P. 471-477.

15. Dreitser G.A. Modern problems of cryogenic heat transfer and its enhancement (Generalization of experimental results. Practical recommendations and different applications). Low Temperature and Cryogenic Refrigeration. Dordrecht, Boston, London: Kruger Academic Publications; 2003. P. 201-220.

16. Martynenko O.G. Heat and mass transfer bibliography—CIS works. International Journal of Heat and Mass Transfer. 1998;41(11):1371-1384.

17. Sajid M., Hassan I., Rahman A. An overview of cooling of thermoelectric devices. Energy. 2017;118:1035-1043.

18. Yazawaa K., Shakouria A., Hendricks T.J.Thermoelectric heat recovery from glass melt processes. Energy. 2016;185:598-602.

19. El-Desouky A., Carter M., Andre M.A., Bardet P.M., LeBlanc S. Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Progress in Materials Science. 2016;83:330- 382.

20. Gaynera C., Kara K.K. Recent advances in thermoelectric materials. Applied Energy. 2016;168:65-74.

21. Zhang T. New thinking on modeling of thermoelectric devices. Renewable and Sustainable Energy Reviews. 2014;38:903-916.

22. Virjogheb E.O., Enescua D. A review on thermoelectric cooling parameters and performance. Applied Thermal Engineering. 2014;66(1–2):15–24.

23. Zhao D., Tan G. A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering. 2003;23(8):913–935.

24. Riffat S.B., Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering. 2014;64(1–2):252–262.

25. Brown J.S., Domanski P.A. Review of alternative cooling technologies. Applied Thermal Engineering. 2014;63(1):33–39.

26. Mota F.A.S., Ravagnani M.A.S.S., Carvalho E.P. Optimal design of plate heat exchangers. Applied Thermal Engineering. 2014;63:33-39.

27. Mazen M.A.-K. Plate heat exchangers: Recent advances. Renewable and Sustainable Energy Reviews. 2012;16(4):1883-1891.


Review

For citations:


Kadirova D.K. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING FLOW TYPE THERMOELECTRIC HEAT TRANSFER INTENSIFIER. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):68-76. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-68-76

Views: 730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)