POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING PHYSICAL DATA CODING USING POLARISING SPIN DEVICES
https://doi.org/10.21822/2073-6185-2017-44-2-46-54
Abstract
Objectives. Spin nanoelectronics facilitate fundamentally new ways of encoding and encrypting information implemented using photon spins in fibre-optic data transmission lines. The article discusses the possibility of creating a spin LED emitting circularly polarised light.
Methods. In a spin LED, spin-polarised carriers are injected from a ferromagnetic contact combined with a quantum well.
Results. Quantum selection rules for describing recombination establish a connection between the circular polarisation of light, emitted along the normal to the surface, and the spin polarisation of the electrons.
Conclusion. Physical methods for coding and transmitting information by means of polarised spin devices using the spin degree of freedom are formulated. The configuration principles of a polarised radiation generator (spin LED) are proposed. The approach is based on a heterostructure containing the quantum well InGaAs / GaAs (luminescent layer) and the ferromagnetic layer GaMnAs. It is established that the quantum well emission line is split into two circularly polarised components, which opens up new possibilities for coding and transmission of information in fibre-optic data transmission lines by the methods of polarisation modulation. The circular polarisation of the photoluminescence from the InGaAs / GaAs quantum well is caused by the magnetisation of a nearby ferromagnetic GaMnAs layer. Acknowledgments The author is grateful to the employees of NIFTI UNN named after N.I. Lobachevsky Yu.A. Danilov and M.V. Dorokhin for samples, the employee of ISSP RAS S.V. Zaitsev for optical measurements, the employee of the Moscow State University of Railway Engineering (MIIT) V.P. Solov'ev for useful discussions. The work is partially supported by the grant of the Russian Foundation for Basic Research No. 16-07-00863a and the RF President's grant MK-5754.2016.3.
About the Author
A. I. DmitrievRussian Federation
Cand. Sci. (Physical and Mathematical), Assoc. Prof., Department of Information and Mathematical Technologies and Information Right,
9b9 Obrazcova Str., Moscow 127994References
1. Nikolaev S.N., Aronzon B.A., Ryl'kov V.V., Tugushev V.V., Demidov E.S., Levchuk S.A., Lesnikov V.P., Podol'skiy V.V., Gareev R.R. Anomal'nyy effekt Kholla v Si plenkakh, sil'no legirovannykh Mn. Pis'ma v ZhTF. 2009;89(12):707-712. [Nikolaev S.N., Aronzon B.A., Ryl'kov V.V., Tugushev V.V., Demidov E.S., Levchuk S.A., Lesnikov V.P., Podol'skiy V.V., Gareev R.R. Abnormal Hall effect in heavily Mn-doped Si films. Journal of Experimental and Theoretical Physics Letters (JETP Letters). 2009;89(12):707-712. (in Russ.)]
2. Dmitriev A.I., Morgunov R.B., Kazakova O.L., Tanimoto I. Spin-volnovoy rezonans v plenkakh Ge1- xMnx, obladayushchikh perkolyatsionnym ferromagnetizmom. ZhTF. 2009;135(5):1134-1141. [Dmitriev A. I., Morgunov R. B., Kazakova O. L., Tanimoto I. Spin-wave resonance in percolating ferromagnetic Ge1-xMnx films. Journal of Experimental and Theoretical Physics Letters (JETP Letters). 2009;135(5):1134-1141. (in Russ.)]
3. Morgunov R.B., Dmitriev A.I., Tanimoto Y., Klenina I.B. Magnitnyy rezonans v nanoprovolokakh Ge0.99Mn0.01. Fizika tverdogo tela. 2007;49(2):285-290. [Morgunov R.B., Dmitriev A.I., Tanimoto Y., Klenina I.B. Magnetic resonance in Ge0.99Mn0.01 nano-wires. Fizika tverdogo tela. 2007;49(2):285-290. (in Russ.)]
4. Morgunov R.B., Dmitriev A.I., Tanimoto Y., Kulkarni J.S. Spinovaya dinamika v orientirovannykh ferromagnitnykh nanoprovolokakh Ge0.99Co0.01. Fizika tverdogo tela. 2008;50(6):1058-1063. [Morgunov R.B., Dmitriev A.I., Tanimoto Y., Kulkarni J.S. Spin dynamics in oriented ferromagnetic Ge0.99Co0.01 nano-wires. Fizika tverdogo tela. 2008;50(6):1058-1063. (in Russ.)]
5. Dmitriev A.I., Talantsev A.D., Zaytsev S.V., Danilov Yu.A., Dorokhin M.V., Zvonkov B.N., Koplak O.V., Morgunov R.B. Fotolyuminestsentnyy otklik kvantovoy yamy na izmenenie magnitnogo polya δ- sloya Mn v geterostrukturakh InGaAs/GaAs. ZhTF. 2011;140(1):158-169. [Dmitriev A.I., Talantsev A.D., Zaytsev S.V., Danilov Yu.A., Dorokhin M.V., Zvonkov B.N., Koplak O.V., Morgunov R.B. Photoluminescence response of a quantum well onto Mn δ-layer magnetic field alteration in InGaAs/GaAs heterostructures. Journal of Experimental and Theoretical Physics (JETP). 2011;140(1):158-169. (in Russ.)]
6. Zaytsev S.V., Dorokhin M.V., Brichkin A.S., Vikhrova O.V., Danilov Yu.A., Zvonkov B.N., Kulakovskiy V.D. Ferromagnitnoe vozdeystvie δ--sloya v GaAs bar'ere na spinovuyu polyarizatsiyu nositeley v InGaAs/GaAs kvantovoy yame. Pis'ma v ZhTF. 2009;90(10):730-735. [Zaytsev S.V., Dorokhin M.V., Brichkin A.S., Vikhrova O.V., Danilov Yu.A., Zvonkov B.N., Kulakovskiy V.D. Ferromagnetic impact of δ--layer in GaAs barrier onto carrier spin polarisation in InGaAs/GaAs quantum well. Journal of Experimental and Theoretical Physics Letters (JETP Letters). 2009;90(10):730-735. (in Russ.)]
7. Aronzon B.A., Granovskiy A.B., Davydov A.B., Danilov Yu.A., Zvonkov B.N., Ryl'kov V.V., Uskova E.A. Svoystva InGaAs/GaAs kvantovykh yam s δ-legirovannym sloem v GaAs. FTT. 2007;49(1):165-171. [Aronzon B.A., Granovskiy A.B., Davydov A.B., Danilov Yu.A., Zvonkov B.N., Ryl'kov V.V., Uskova E.A. Properties of InGaAs/GaAs quantum wells with δ-doped layer in GaAs. Fizika tverdogo tela. 2007;49(1):165-171. (in Russ.)]
8. Dorokhin M.V., Danilov Yu.A. Izmerenie polyarizatsionnykh kharakteristik izlucheniya nanogeterostruktur: uchebno-metodicheskoe posobie. Nizhniy Novgorod: Nizhegorodskiy gosuniversitet; 2011. [Dorokhin M.V., Danilov Yu.A. Measurement of polarisation features of nanoheterostructure emission: a Tutorial. Nizhniy Novgorod: Lobachevsky State University of Nizhni Novgorod; 2011. (in Russ.)]
9. Vikhrova O.V., Danilov Yu.A., Drozdov Yu.N., Zvonkov B.N., Iikawa F., Brasil M.J.S.P. Svoystva kvantovo-razmernykh struktur GaAs/InGaAs, soderzhashchikh δ-legirovannye sloi. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya. 2007;2:9-12. [Vikhrova O.V., Danilov Yu.A., Drozdov Yu.N., Zvonkov B.N., Iikawa F., Brasil M.J.S.P. The properties of GaAs/InGaAs quantum-dimentional structures, containing δ-doped layers. Journal of Surface Investigation. XRay, Synchrotron and Neutron Techniques. 2007;2:9-12. (in Russ.)]
10. Vikhrova O.V., Danilov Yu.A., Dorokhin M.V., Zvonkov B.N., Kalent'eva I.L., Kudrin A.V. Ferromagnetizm v GaAs strukturakh s del'ta-legirovannym Mn sloem. Pis'ma v ZhTF. 2009;35(14):8-17. [Vikhrova O.V., Danilov Yu.A., Dorokhin M.V., Zvonkov B.N., Kalent'eva I.L., Kudrin A.V. Ferromagnetism in GaAs structures with delta-doped Mn layer. Journal of Experimental and Theoretical Physics Letters (JETP Letters). 2009;35(14):8-17. (in Russ.)]
11. Holub M., Bhattacharya P. Spin-polarized light-emitting diodes and lasers. J. Phys. D: Appl. Phys. 2007;40(2):R179-R203.
12. Sperl M., Singh A., Wurstbauer U., Das S.K., Sharma A., Hirmer M., Nolting W., Back C.H., Wegscheider W., Bayreuther G. Spin-wave excitations and low-temperature magnetization in the dilute magnetic semiconductor (Ga,Mn)As. Phys. Rev. B. 2008;77(12):125212-1-7.
13. Goennenwein S.T.B., Graf T., Wassner T. Brandt M.S., Stutzmann M., Philipp J.B., Gross R., Krieger M., Zürn K., Ziemann P., Koeder A., Frank S., Schoch W., Waag A. Spin wave resonance in Ga1- xMnxAs. Appl. Phys. Lett. 2003;82(5):730-732.
14. Macdonald A.H., Schiffer P., Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature materials. 2005;4(3):195-202.
15. Ohno H., Matsukura F. A ferromagnetic III-V semiconductor: (Ga,Mn)As. Solid State Commun. 2001;117(3):179-186.
16. Edmonds K.W., Boguslawski P., Wang K.Y., Campion R.P., Novikov S.N., Farley N.R.S., Gallagher B.L., Foxon C.T., Sawicki M., Dietl T., Nardelli M.B., Bernholc J. Mn Interstitial Diffusion in (Ga,Mn)As. Phys. Rev. Lett. 2004;92(3):037201-1-4.
17. Govorov A.O., Kalameitsev A.V. Optical properties of a semiconductor quantum dot with a single magnetic impurity: photoinduced spin orientation. Phys. Rev. B. 2005;71(3):035338-1-5.
18. Hendorfer G., Schneider J. G-factor and effective mass anisotropies in pseudomorphic strained layers. Sem. Sci. Technol. 1991;6(7):595-601.
Review
For citations:
Dmitriev A.I. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING PHYSICAL DATA CODING USING POLARISING SPIN DEVICES. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):46-54. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-46-54