THE DEPENDENCE OF DIELECTRIC PERMEABILITY AND SPECIFIC VOLUME RESISTANCE OF POLYMER COMPOSITES ON THE CONCENTRATION OF NANO-DIMENSIONAL ALUMINIUM PARTICLES AND CARBON BLACK FILLERS
https://doi.org/10.21822/2073-6185-2017-44-2-18-27
Abstract
Objectives. The main idea of the present study was the production of polymer composites based on synthetic isoprene elastomer and low-density polyethylene containing nanoparticles of carbon black and aluminium in various amounts.
Methods. An exponential approach was used throughout the study to better control the region of small additives; this control was impossible to achieve using a linear distribution of nanofillers among the small additives. The composites were filled with nanosized aluminium and DG-100 carbon black particles with a specific adsorption surface of 100 m2 /g and having an average particle size of 20-30 nm. Electrophysical parameters were measured by conventional techniques of electron microscopy, electron shadow microscopy and hydrostatic weighing. Maxwell-Wagner theory and polarisation model were applied.
Results. For a composite containing 80% of isoprene synthetic rubber (SCI-3) and 20% of low-density polyethylene, the dielectric permeability and specific volume resistivity dependences were studied experimentally and their graphs were plotted against the concentration of nanosized particles of aluminium and carbon black fillers. The features of these curves were considered. It is shown that, for small amounts of Al and carbon black nanoparticles in the composite, significant changes (extrema) take place on the curves ԑ '= ԑ' (C) and ρᵥ = ρᵥ (C), which do not conform to the Maxwell-Wagner polarisation model. For some heterogeneous polymer mixtures, a distribution of carbon black particles was observed that led to a superadditive electrical resistance.
Conclusion. It is shown that for small amounts of Al and carbon black nanoparticles in composite materials, significant changes (extrema) take place on the curves ԑ '= ԑ' (C) and ρᵥ = ρᵥ (C) that do not fit within the framework of the Maxwell-Wagner polarisation model.
About the Authors
A. S. AkhrievRussian Federation
Cand. Sci. (Physics and Mathematical), Assoc. Prof., Department of Theoretical Physics,
7 I. Zyazikova Ave., Magas 386001, Republic of Ingushetia
Z. Kh. Gaytukieva
Russian Federation
Cand. Sci. (Physics and Mathematical), Assoc. Prof., Department of Theoretical Physics,
7 I. Zyazikova Ave., Magas 386001, Republic of Ingushetia
B. I. Kunizhev
Russian Federation
Dr. Sci. (Physics and Mathematical), Prof. Department of Theoretical Physics, Institute of Physics and Mathematics,
175 Chernyshevskogo Str., Nal’chik 360004, Kabardino-Balkar Republic
R. B. Tkhakakhov
Russian Federation
Dr. Sci. (Physics and Mathematical), Prof., Department of Nanosystem Physics, Institute of Physics and Mathematics,
175 Chernyshevskogo Str., Nal’chik 360004, Kabardino-Balkar Republic
References
1. Wegner F. Classical electrodynamics (lecture notes). Franz Wegner. Institut für Theoretische Physik. Ruprecht-Karls-Universität Heidelberg. 2003; 112: XV-XX.
2. Lopez-Ramos A., Menendez J.R. and Pique C. Conditions for the validity of Faraday's law of induction and their experimental confirmation. Eur. J. Phys. 2008; 29(5): 1069-1076.
3. Sihvola A. Electromagnetic Mixing Formulas and Applications. IEE Electromagnetic Wave Series, 47. London: IEE, 1999; 284 p.
4. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Phys. Rev. Lett. 2000; 84 (18): 4184-4187.
5. Fenouillot F. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. F. Fenouillot, P. Cassagnau, J.-C. Majeste. Polymer. 2009; 50 (6):1333–1350.
6. Blayt E.R., Blur D. Elektricheskie svoystva polimerov. Per s angl. M.: Fizmatlit; 2008. 376 s. [Blayt E.R., Blur D. Polymer electrical properties. Translated from English. Moscow: Fizmatlit; 2008. 376 p. (in Russ.)]
7. Sushko M.Ya., Kris'kiv S.K. Metod kompaktnykh grupp v teorii dielektricheskoy pronitsaemosti geterogennykh sistem. Zhurnal tekhnicheskoy fiziki. 2009;79(3):97-101. [Sushko M.Ya., Kris'kiv S.K. Compact group method in theory of dielectric permeability of heterogeneous systems. Technical physics. The Russian journal of applied physics. 2009;79(3):97-101. (in Russ.)]
8. Sotskov V.A. Eksperimental'noe issledovanie provodyashchikh frontal'nykh faz na dielektricheskuyu pronitsaemost' kompozitov. Zhurnal tekhnicheskoy fiziki. 2013; 83(10):85-89. [Sotskov V.A. Experimental investigation of frontal conductive phases onto dielectric permeability of composites. Technical physics. The Russian journal of applied physics. 2013; 83(10):85-89. (in Russ.)]
9. Zaykin A.E., Zharinova E.A., Bikmullin R.S. Osobennosti lokalizatsii tekhnicheskogo ugleroda na granitse razdela polimernykh faz. Vysokomolekulyarnye soedineniya. Seriya A - Fizika polimerov. 2007;49(3):499-509. [Zaykin A.E., Zharinova E.A., Bikmullin R.S. Features of technical carbon localisation on the polymer phase interface. Polymer Science Series A - Polymer Physics. 2007; 49(3):499- 509. (in Russ.)]
10. Adamson A. Fizicheskaya khimiya poverkhnosti. M.: Mir; 1979. 568 s. [Adamson A. Physical Chemistry of surface. Moscow: Mir; 1979. 568 p. (in Russ.)]
11. Manas-Zloczower I., Nir A., Tadmor Z. Depressive mixing in rubber and plastics. Rubber Chem. Tech. 1984; 57(3): 583-619.
12. Qi Li, Feke D.L., Manas-Zloczower I. Influence of aggregate structure and matrix infiltration on the dispersion behavior of carbon black agglomerates. Rubber.Chem.Technol. 1995; 68(5):836-841.
13. Funktsional'nye napolniteli dlya plastmass. Pod red. M. Ksantosa. Per. s angl. Kulezneva V.N. SPb: Nauchnye osnovy i tekhnologii; 2010. 462 s. [Functional fillers for plastmasses. Ed. M. Ksantos. Translated from English by Kuleznev V.N. Saint-Petersburg: Nauchnye osnovy i tekhnologii; 2010. 462 p. (in Russ.)]
14. Hong C.M., Kim J., Jana S.C. The effects of shear-induced migration of conductive fillers on conductivity of injection molded articles. SPE ANTEC. 2003; 61:1625-1629.
15. Smirnov B.M. Fizika frontal'nykh klasterov. M: Nauka; 1991. 136 s. [Smirnov B.M. Physics of frontal clusters. Moscow: Nauka; 1991. 136 p. (in Russ.)]
16. Landau L.D., Livshits E.M. Elektrodinamika sploshnykh sred. M.: Nauka; 1982. s.58. [Landau L.D., Livshits E.M. Electrodynamics of continuous media. Moscow: Nauka; 1982. p.58. (in Russ.)]
Review
For citations:
Akhriev A.S., Gaytukieva Z.Kh., Kunizhev B.I., Tkhakakhov R.B. THE DEPENDENCE OF DIELECTRIC PERMEABILITY AND SPECIFIC VOLUME RESISTANCE OF POLYMER COMPOSITES ON THE CONCENTRATION OF NANO-DIMENSIONAL ALUMINIUM PARTICLES AND CARBON BLACK FILLERS. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):18-27. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-18-27