CALCULATION OF BUILDINGS WITH COMPLEX GEOMETRIC SHAPES FOR WITHSTANDING WIND IMPACT
https://doi.org/10.21822/2073-6185-2017-44-2-8-17
Abstract
Objectives. The possibility of modeling wind flow during the design of buildings with complex geometric shapes in order to determine comfort parameters and zones is considered.
Methods. The investigation of the impact of wind on a cylindrical building was carried out using Ansys 15.0 software.
Results. A finite element model of a modern art museum building having a complex geometric shape is developed for the calculation of the wind flow and the definition of comfort zones. The computational region is chosen such that its borders do not affect the calculation results. The maximum wind speed is assumed to be 44 m/s at an altitude of 10 m from the ground level, this being the maximum in the region of Novorossiysk. The topography of the earth's surface around the model was considered flat. The surface of the building was assumed to be smooth while the surface of the surrounding terrain was assumed to be rough with a roughness parameter of 0,1 m. The parameters of the building orientation relative to the wind rise were varied during the numerical modeling. Three variants of computational models with varying building location and its geometric characteristics are developed. In the first variant, the building model is stretched along the X-axis; in the second variant, the acute angle of the building model's contour is oriented along the Y-axis; in the third variant, the building model is located and oriented along the Y-axis with its obtuse angle of the external contour of the building. The calculation results of a cylindrical building for wind impact correspond to SP 20.13330.2011. The comfort parameters and zones of a building having complex geometric shape are defined by means of numerical modeling of the wind flow. The discrepancy between the object's normative characteristics and the research results is revealed during the calculation of the wind load.
Conclusion. The recommendations are given for choosing the optimal location of the museum building, taking into account the comfort parameters and the greatest wind pressure; the geometric shape of the outer contour affects the location of the zones of reduced comfort; a sharp change in the boundaries of the outer contour leads to the appearance of increased pressure and wind speed and, as a consequence, a change in the direction of the vortex flows; it is necessary to apply the finite element method when modeling the wind impact for buildings of complex geometric shapes; sudden changes in the object's contour should be avoided when designing buildings and structures.
About the Authors
E. K. AgakhanovRussian Federation
Dr. Sci. (Technical), Prof., Department of Automobile Roads, Basements and Foundations,
70 I. Shamil Ave, Makhachkala 367026
G. M. Kravchenko
Russian Federation
Cand. Sci. (Technical), Assoc.Prof., Department of Technical Mechanics, Academy of Building and Architecture,
Gagarina square, Rostov-on-Don 344000
A. S. Osadchiy
Russian Federation
Student, Academy of Building and Architecture,
Gagarina square, Rostov-on-Don 344000
E. V. Trufanova
Russian Federation
Cand. Sci. (Technical), Assoc. Prof., Department of Technical Mechanics, Academy of Building and Architecture,
Gagarina square, Rostov-on-Don 344000
References
1. Ledenev V.V. Vysotnye zdaniya: ucheb.posobie. Tambov: Tambovsk. gos. tekhn. un-t; 2014. S. 67-89. [Ledenev V.V. High-rise Buildings: A Tutorial. Tambov: Tambov State Technical University; 2014. P. 67-89. (in Russ.)]
2. Nikolas P.I. Opredelenie vliyaniya vetrovykh nagruzok na antennoe sooruzhenie. Inzhenernyy vestnik Dona. 2008; 2. URL: http://www.ivdon.ru/ru/magazine/archive/n2y2008/67. [Nikolas P.I. Definition of wind load influence onto antenna buildings. Engineering journal of Don. 2008; 2. URL: http://www.ivdon.ru/ru/magazine/archive/n2y2008/67. (in Russ.)]
3. Retter E.I. Arkhitekturno-stroitel'naya aerodinamika. M: Stroyizdat; 1984. S. 113-141. [Retter E.I. Architectural – building aerodynamics. Moscow: Stroyizdat; 1984. P. 113-141. (in Russ.)]
4. Simiu E., Skanlan R. Vozdeystvie vetra na zdaniya i sooruzheniya. M.; 1984. S. 25-37. [Simiu E., Skanlan R. Wind impact onto buildings and constructions. Moscow; 1984. P. 25-37. (in Russ.)]
5. Agakhanov G.E. Reshenie zadach mekhaniki deformiruemogo tverdogo tela s ispol'zovaniem fiktivnykh raschetnykh skhem. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2015; 38(3): 8-15. [Agakhanov G.E. Solving problems of deforming solid state mechanics using fictitious computational schemes. Herald of Daghestan State Technical University. Technical Sciences. 2015; 38(3): 8-15. (in Russ.)]
6. Agakhanov E.K., Kravchenko G.M., Trufanova E.V. Regulirovanie parametrov sobstvennykh kolebaniy prostranstvennogo karkasa zdaniya. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2016; 42(3): 8-15. [Agakhanov E.K., Kravchenko G.M., Trufanova E.V. Regulation of self-induced vibration parameters of building space framework. Herald of Daghestan State Technical University. Technical Sciences. 2016; 42(3): 8-15. (in Russ.)]
7. Agakhanov E.K. Razvitie kompleksnykh metodov v mekhanike deformiruemogo tverdogo tela. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2013; 28(2):39-45. [Agakhanov E.K. Development of combined methods for deforming solid state mechanics. Herald of Daghestan State Technical University. Technical Sciences. 2013; 28(2):39-45. (in Russ.)]
8. Fedorov A.V., Fedorova N.N., Danilov M.N., Valger S.A. Computations of wind environment and shock wave impact on the civil engineering constructions with computer Aid engineering methods. Proc. of 2012 Joint Symp. NSC — SB RAS. Taiwan — Russia Bilateral Symp. on Civil Eng. Taipei, Taiwan: R.O.C. 2012. P. 2–30.
9. Basov K.A. ANSYS. Spravochnik pol'zovatelya. M.: Izdatel'stvo ―DMKPress‖; 2014. S. 124-133. [Basov K.A. ANSYS. User guide. Moscow: ―DMKPress‖; 2014. P. 124-133 (in Russ.)]
10. Basov K.A. ANSYS dlya konstruktorov. M.: Izdatel'stvo ―DMK Press‖; 2016. S. 96-118. [Basov K.A. ANSYS for designers. Moscow: Izdatel'stvo ―DMK Press‖; 2016. P. 96-118. (in Russ.)]
11. Engel H. Structure Systems. Stuttgart: Deutsche Verlags-Anstalt; 1967. P. 23-24.
12. Sidorov V.N., Akhmetov V.K. Matematicheskoe modelirovanie v stroitel'stve. M.: Izdatel'stvo Assotsiatsii stroitel'nykh vuzov; 2007. S.21-25. [Sidorov V.N., Akhmetov V.K. Mathematical modeling in construction. Moscow: Izdatel'stvo Assotsiatsii stroitel'nykh vuzov; 2007. P.21-25. (in Russ.)]
13. Nguyen D.T.et al. Finite element methods. Parallel-Sparse Statics and Eigen-Solutions. Springer; 2008. P. 147-153.
14. Yakushev V. Analysis of numerical methods for building structures in STARK ES. ABSE-IASS-2011 Symposium. London; 2011. P.54-56.
15. Solin P. Partial Differential Equations and the Finite Element Method. A JOHN WILEY & SONS, INC; 2007. Vol. 499 P.109-111.
16. Trushin S.I. Metod konechnykh elementov. Teoriya i zadachi. M.: Izdatel'stvo Assotsiatsii stroitel'nykh vuzov: 2008. S. 52-61. [Trushin S.I. Finite Element Method. Theory and problems. Moscow: Izdatel'stvo Assotsiatsii stroitel'nykh vuzov: 2008. P. 52-61. (in Russ.)]
17. Lutz L.A. Analysis of Stress in Concrete Hear a Reinforcing Bar Due To Bond and Trans-verse. ACI Journal. 1979; 10:12-15.
18. Nilsen A.H. Nonlinear Analysis of Reinforced Concrete by the Finite Element Method. ACI Journal. 1968; 65(9): 6-70.
19. Simbirkin V. Analysis of Reinforced Concrete Loadbearing Systems of Multistorey Buildings. Modern Building Materials, Structures and Techniques. CD-ROM Proceedings of the 8th International Conference. Vilnius: 2004. P.98-99.
20. Akaev A. I., Magomedov M. G., Khanmagomedov M. A. Printsipy optimal'nogo planirovaniya eksperimental'no-teoreticheskikh issledovaniy stroitel'nykh konstruktsiy. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2015; 37(2):92-98. [Akaev A. I., Magomedov M. G., Khanmagomedov M. A. Optimized planning principles of experimental-theoretic investigations of building constructions. Herald of Daghestan State Technical University. Technical Sciences. 2015; 37(2):92-98. (in Russ.)]
Review
For citations:
Agakhanov E.K., Kravchenko G.M., Osadchiy A.S., Trufanova E.V. CALCULATION OF BUILDINGS WITH COMPLEX GEOMETRIC SHAPES FOR WITHSTANDING WIND IMPACT. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(2):8-17. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-2-8-17