INFORMATION-ANALYTICAL MODEL FOR A FUZZY PROPORTIONALINTEGRAL-DERIVATIVE CONTROLLER
https://doi.org/10.21822/2073-6185-2017-44-1-48-60
Abstract
Abstract. Objectives The aim of the study is to create a model allowing us to improve the accuracy of fuzzy control algorithms for complex objects in conditions of uncertainty. Methods An approach of fuzzy representation and comparison of the state parameters of complex objects of control in conditions of uncertainty has been developed. The principle of realisation of information-analytical model of proportional-integral-derivative law of regulation of state parameters of a complex object on the basis of linguistic variables and linguistic functions is proposed. A method for constructing graphs of linguistic functions is developed on the basis of expert data processing using regression analysis methods. Results An information-analytical model for a fuzzy proportional-integral-derivative law is constructed that allows a satisfactory level of accuracy for the regulation of the state parameters of a complex control object in an unstable environment to be achieved. The main drawback of fuzzy algorithms for managing complex objects (low accuracy in regulation of the state parameters of the control object) is identified and major limitations associated with their effective use are analysed. It is shown that one of the most effective means of circumventing the noted shortcoming is the use of the information-analytical model of the proportional-integral-derivative law of the state parameters of a complex object with fuzzy control algorithms used to implement selectable controls. Conclusion The proposed approach allows the proportional, integral and derivative fuzzy laws of regulation to effectively control the state of complex objects under undetermined and unstable operating conditions based on fuzzy control algorithms provided on this basis
About the Authors
Timur T. AbduragimovRussian Federation
competitor of the pulpit of software of the computing machinery and automated systems
70 I.Shamilya Ave.,70367015 Makhachkala
Vladimir B. Melekhin
Russian Federation
Dr. Sc. (Technical), Prof., head of the chair of software of the computing machinery and automated systems
70 I.Shamilya Ave.,70367015 Makhachkala
Vyacheslav M. Hachumov
Russian Federation
Dr. Sc. (Technical), Prof. head of Lab. 0-4. «Methods of intellectual management», Institute of the system analysis by WOUNDS
69 years of the October Ave., Moscow 117312
References
1. Khizhnyakov Yu. N. Algoritmy nechetkogo, neironnogo i neiro-nechetkogo upravleniya v sistemakh real'nogo vremeni. Perm: Perm National Research Polytechnic University; 2013. 169 s. [Khizhnyakov Yu. N. Algorithms of fuzzy, neural and neural-fuzzy control in realtime systems. Perm: Perm National Research Polytechnic University; 2013. 169 p. (in Russ.)]
2. Pegat A. Nechetkoe modelirovanie i upravlenie. 2-е izd. Moscow: BINOM. Laboratoriya znanii; 2013. 798 s. [Pegat A. Fuzzy modeling and control. 2nd edition. Moscow: BINOM. Laboratoriya znanii; 2013. 798 p. (in Russ.)]
3. Kosko B. Fuzzy systems as universal approximations. IEEE Transactions on Computers. 1994; 43(11):1329-1333.
4. Cordon O., Herrera F., A General study on genetic fuzzy systems. In Genetic Algorithms in Engineering and Computer Science. J. Periaux, G. Winter, M. Galan, and P. Cuesta (Eds.): John Wiley and Sons; 1995. P. 33-57.
5. Sivanandam S.N., Sumathi S., Deepa S.N. Introduction to fuzzy logic using Matlab. Berli: Springer; 2007. 430 p.
6. Kato M., Yamamoto T., Fujisawa S. A skill based PID controller using artificial neural networks. Proceedings of ―Computational Intelligence for Modeling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce‖. 2005. Vol. 1. P. 702-707.
7. Zakharov V.I. Ul’yanov S.V. Nechetkie modeli intellektual'nykh promyshlennykh regulyatorov i sistem upravleniya. Metodologiya proektirovaniya. Izvestiya RAN. Tekhnicheskaya kibernetika. 1993; 5: 197-220. [Zakharov V.I. Ul’yanov S.V. Fuzzy models of intelligent industrial controllers and control systems. Design Methodology. Journal of Computer and Systems Sciences International. 1993; 5: 197-220. (in Russ.)]
8. Passino K.M., Yurkovich S. Fuzzy Control. Boston (USA): Addison Wesley Longman; 1998. 522 p.
9. Zadeh L.A. Fuzzy sets. Information and Control. 1965; 8:338-353.
10. Hu B.G., Mann G.K.I., Gossine R.G. A systematic study of fuzzy PID controllers - functionbased evaluation approach. IEEE Trans. Fuzzy Syst. 2001; 9(5):699-711.
11. Kawafuku R., Sasaki M., Kato S. Selftuning PID control of a flexible micro actuator using neural networks. Proceedings of IEEE International Conference on Systems, Man and Cybernetics. 1998; 3: 3067-3072.
12. Jie L., Jianying X., Zhengmao W. Design of disturbance rejection PID controllers for time delay system based on genetic algorithms. Proccedings of International Conference on Neural Networks and Brain (ICNN&B '05). 2005; 2:876-880.
13. Gostev V.I. Proektirovanie nechetkikh regulyatorov dlya sistem avtomaticheskogo upravleniya. Saint-Petersburg: BHV – Peterburg; 2011. 416 s. [Gostev V.I. Designing fuzzy controllers for automatic control systems. Saint-Petersburg: BHV – Peterburg; 2011. 416 s. (in Russ.)]
14. Burlakov M.V. Nechetkie regulyatory. Saint-Petersburg: GUAP; 2010. 252 s. [Burlakov M.V. Fuzzy regulators. Saint-Petersburg: GUAP; 2010. 252 p. (in Russ.)]
15. Lubentsova E.V., Petrakov V.A., Slyusarev G.V., Lubentsov V.F. Metod postroeniya nechetkikh regulyatorov s ispol'zovaniem analiticheskikh vyrazhenii dlya upravlyayushchikh vozdeistvii. Fundamental'nye issledovaniya. 2015; 11(3):484-490. [Lubentsova E.V., Petrakov V.A., Slyusarev G.V., Lubentsov V.F. Method for constructing fuzzy regulators using analytical expressions for control actions. Fundamental research. 2015; 11(3):484-490. (in Russ.)]
16. Melekhin V.B., Aliev S.N., Verdiev M.M. Lingvisticheskie funktsii i osobennosti ikh primeneniya v sistemakh upravleniya i prinyatiya reshenii. Nauchno-tekhnicheskie vedomosti SPb GPU. Osnovnoi vypusk. 2008; 2:249-254. [Melekhin V.B., Aliev S.N., Verdiev M.M. Linguistic functions and features of their application in management and decision-making systems. St. Petersburg Polytechnic University Journal Of Engineering Sciences And Technology. 2008; 2:249-254. (in Russ.)]
17. Melikhov A.N., Bernshtein L.S., Korovin S.Ya. Situatsionnye sovetuyushchie sistemy s nechetkoi logikoi. Moscow: Nauka; 1990. 272 s. [Melikhov A.N., Bernshtein L.S., Korovin S.Ya. Fuzzy-Logic Situational Advisory Systems. Moscow: Nauka; 1990. 272 p. (in Russ.)]
18. Bernshtein L.S., Melekhin V.B. Planirovanie povedeniya intellektual'nogo robota. Moscow: Energoatomizdat; 1994. 238 s. [Bernshtein L.S., Melekhin V.B. Planning the behavior of an intellectual robot. Moscow: Energoatomizdat; 1994. 238 s. (in Russ.)]
19. Bernshtein L.S., Melekhin V.B., Kanaev M.M. Vybor velichiny upravleniya pri realizatsii nechetkikh upravlyayushchikh algoritmov. Elektronnoe modelirovanie. 1989; 1:91-99. [Bernshtein L.S., Melekhin V.B., Kanaev M.M. Selection of the control value for the realization of fuzzy control algorithms. Engineering Simulation. 1989; 1:91-99. (in Russ.)]
20. Drayner M., Smit G. Prikladnoi regressionnyi analiz. Per. S. Angl. V 2 kn. Kn. 1. Moscow: Finansy i statistika; 1986. 366 s. [Drayner M., Smit G. Applied regression analysis. Translated from English. In 2 books. Book 1. Moscow: Finansy i statistika; 1986. 366 p. (in Russ.)]
21. Rastrigin L.A. Sovremennye printsipy upravleniya slozhnymi ob"ektami. Moscow: Sovetskoye radio; 1980. 232 s. [Rastrigin L.A. Modern principles of managing complex objects. Moscow: Sovetskoye radio; 1980. 232 p. (in Russ.)]
Review
For citations:
Abduragimov T.T., Melekhin V.B., Hachumov V.M. INFORMATION-ANALYTICAL MODEL FOR A FUZZY PROPORTIONALINTEGRAL-DERIVATIVE CONTROLLER. Herald of Dagestan State Technical University. Technical Sciences. 2017;44(1):48-60. (In Russ.) https://doi.org/10.21822/2073-6185-2017-44-1-48-60