INFLUENCE OF THE SPATIAL ARRANGEMENT OF SEISMIC DETECTORS ON THE ACCURACY OF EARTHQUAKE HYPOCENTRE DETERMINATION
https://doi.org/10.21822/2073-6185-2016-43-4-73-84
Abstract
Objectives. To determine the coordinates of the seismic focus of an earthquake with a minimum margin of error with the use of an optimal selection of seismic sensors. Method. Seismic wave velocity data, relying on the time discrepancies between the registering of seismic waves on the seismic sensor and the defined error in determining the time difference, were used to identify errors in the location of an earthquake's hypocenter depending on the respective positions of three seismic sensors. Discrepancies between data containing an error and those without it used to determine two hypocenters provide information about the hypocenter locating error. An analysis of the influence of the respective arrangements of the seismic sensors and the earthquake epicentre on the accuracy of determination of epicentre coordinates was carried out. Results. It is established that, in order to improve the accuracy of epicenter and hypocenter earthquake coordinate determination, it is preferable to use different combinations of seismic sensors. The present recommendations are based on the desire to reduce errors in determining the earthquake source coordinates. Due to earthquake epicenter distance determination errors found in different seismic sensors both with increasing and decreasing distance, the hypocenter coordinate determining error has been found to depend on the respective arrangement of seismic sensors and on the earthquake source's geographical location. In order to determine the dependence of the source coordinate determining error on the relative position of three seismic sensors, the third seismic sensor was displaced on a horizontal plane at the location centered at the coordinate of the origin. Conclusion. When selecting seismic sensors it is essential that one of them be located perpendicular to the center of the segment formed by the other two seismic sensors. The probability of a multidirectional error of measurement at the moment of arrival of seismic wave is higher the closer the seismic sensors are to one another; this is due to the fact that seismic waves pass close by the trajectory layout.
About the Authors
T. G. AslanovRussian Federation
Tagirbek G. Aslanov – Cand. Sc. (Technical), Deputy Director for Research.
87 Agasiyeva Str, Makhachkala 367008, Russia
Кh. J. Magomedov
Russian Federation
Khaskil J. Magomedov Deputy Director.
16 Belinsky Str., Makhachkala 367008, Russia
U. A. Musayeva
Russian Federation
Uma A. Musaeva – Cand. Sc.(Technical), Assoc.Prof., Department of management and informatici tehnicheskih systems and computing.
70 I. Shamil Ave., Makhachkala 367015, Russia
Кh. Y. Tagirov
Russian Federation
Кhalipa Y.Tagirov – Postgraduate student.
70 I. Shamil Ave., Makhachkala 367015, RussiaReferences
1. Shakhrimanyan M.A., Nigmetov G.M., Sosunov I.V. Matematicheskoye modelirovanie kak sposob podderzhki prinyatiya resheniy v sluchaye vozniknoveniya chrezvychaynykh situatsiy. Katalog ―Pozharnaya bezopasnost‖. 2003. 240-241. [Shakhrimanyan M.A., Nigmetov G.M., Sosunov I.V. Mathematical modeling as a way of decision support in case of emergencies. Сatalogue "Fire Safety". 2003. 240-241.(In Russ.)]
2. Gitis V.G., Ermakov B.V. Osnovy prostranstvenno-vremennogo prognozirovaniya v geoinformatike. M.: FIZMATLIT, 2004. 256 s. [Gitis V.G., Ermakov B.V. Fundamentals of spacetime forecasting in geoinformatics. Moscow: Fizmatlit; 2004. 256 p. (In Russ.)]
3. Jing Z., Laurie G. B., Magaly K. Mapping earthquake induced liquefaction surface effects from the 2011 Tohoku earthquake using satellite imagery. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2016. 2328-2331.
4. Rui J., Shuanggen J. Ionospheric acousitc and rayleigh waves detected by GPS following the 2005 Mw=7.2 northern California earthquake. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2016. 3956-3959.
5. Aixia D., Xiaoqing W., Xiaoxiang Y., Shumin W. The loss assessment method of building earthquake damage using The Remote Sensing and building grid data. 2016 IEEE International Geo-science and Remote Sensing Symposium (IGARSS). 2016. 4255-4258.
6. Wei Z., Huan-Feng Sh., Chun-Lin H., Wan-Sheng P. Building damage information inves-tigation after earthquake using single post-event PolSAR image. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2016. 7338-7341.
7. Hao D., Xin X., Rong G., Chao S., Haigang S. Metric learning based collapsed building extraction from post-earthquake PolSAR imagery. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2016. 4742-4745.
8. Liu L. B., Liu M., Wang J. Q. Electromagnetic environment comprehension for radar de-tection of vital signs at China National Training Center for earthquake search & rescue. 2016 16th International Conference on Ground Penetrating Radar (GPR). 2016.1-4.
9. Radoutskiy V.Yu. Vetrova Yu.V., Vasyutkina D.I. Opasnyye prirodnyye protsessy: ucheb. posobie. Pod red. V.Yu. Radoutskogo. Belgorod: Izd-vo BGTU; 2013. 206 s. [Radoutskiy V.Yu. Vetrova Yu.V., Vasyutkina D.I. Dangerous natural processes: study guide. In: V.Yu. Radoutsky (Ed.).Belgorod: BSTU Publ.; 2013. 206 p. (In Russ.)]
10. Arkhangelskiy V.T., Vedenskaya I.A., Gayskiy V.N. Rukovodstvo po proizvodstvu i obrabotke nablyudeniy na seysmicheskikh stantsiyakh SSSR. Akad. nauk SSSR. Sovet po seysmologii. Moskva: Izd-vo Akad. nauk SSSR; 1954. [Arkhangelskiy V.T., Vedenskaya I.A., Gayskiy V.N. Guidelines for the production and processing of observations at seismic stations of the USSR. Academy of Sciences of the USSR. Council on Seismology. Moscow: Acad. of Sciences of the USSR Publ; 1954. (In Russ.)]
11. Dobrovolskiy I.P. Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya. M.: FIZMATLIT; 2009. 240 s. [Dobrovolskiy I.P. The mathematical theory of training and tectonic earthquake prediction. Moscow: Fizmatlit; 2009. 240 p. (In Russ.)]
12. Gurevich P.S. Psikhologiya chrezvychaynykh situatsiy: uchebnoye posobie. M.: YuNITI-DANA; 2012. 495 s. [Gurevich P.S. Psychology of emergencies: Tutorial. Moscow: Yuniti-Dana; 2012. 495 p. (In Russ.)]
13. Mkrtychev O.V. Bezopasnost zdaniy i sooruzheniy pri seysmicheskikh i avariynykh vozdeystviyakh: monografiya. M.: MGSU; 2010. 152 s. [Mkrtychev O.V. Safety of buildings and structures under seismic and emergency actions: Monograph. Moscow: MSUCE; 2010. 152 p. (In Russ.)]
14. Aslanov T.G., Tagirov Kh.Yu., Aslanov G.K., Alimerdenov V.Sh. Matematicheskaya model rascheta energeticheskogo klassa, intensivnosti i magnitudy zemletryaseniya v realnom masshtabe vremeni. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. Makhachkala: DGTU; 2015;2(37):66-71. [Aslanov T.G., Tagirov Kh.Yu., Aslanov G.K., Alimerdenov V.Sh. A mathematical model for calculating energy class, intensity and magnitude of the earthquake in real time.Herald of Daghestan State Technical University. Technical Sciences. Makhachkala: DSTU; 2015;2(37):66-71. (In Russ.)]
15. Aslanov T.G. Razrabotka algoritma opredeleniya koordinat ochaga zemletryaseniya, s odnovremennym opredeleniem skorostey seysmicheskikh voln. Nauchnyye trudy molodykh issledovateley programmy ―Shag v budushcheye‖. Tom 8. ―Professional‖. Moskva; 2005. 32-34. [Aslanov T.G. Development of the algorithm for determining the coordinates of earthquake with simultaneous determination of seismic velocities. Proceedings of Young Researchers Program "Step into the Future". Part 8. ―Professional‖. Moscow; 2005. 32-34. (In Russ.)]
16. Rahinul H., Shoaib H., Akter S., Asadullahil G., Tahia F. K. Earthquake monitoring and warning system. 2015 International Conference on Advances in Electrical Engineering (ICAEE). 2015, 109-112.
17. Alphonsa A., Ravi G. Earthquake early warning system by IOT using Wireless sensor networks. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). 2016. 1201-1205.
18. Aslanov T.G., Alimerdenov V.Sh. Opredelenie struktury zemli po statisticheskim dannym vremen prikhoda seysmicheskikh voln proizoshedshikh zemletryaseniy. Start v budushchee – 2013. Trudy III nauchno-tekhnicheskoy konferentsii molodykh uchennykh i spetsialistov. Sankt-Peterburg. [Aslanov T.G., Alimerdenov V.Sh. Determining the structure of the Earth according to the statistics of arrival times of seismic waves of occurred earthquakes. Start the future – 2013. III Proceedings of the Scientific and Technical Conference of Young Scientists and Specialists. St. Petersburg. (In Russ.)]
19. Aslanov G.K., Gadzhiev M.M., Ismailov T.A., Magomedov Kh.D. O zemletryaseniyakh (proshloye i sovremennost). Makhachkala: Informatsionno poligraficheskiy tsentr DGTU; 2001. [Aslanov G.K., Gadzhiev M.M., Ismailov T.A., Magomedov Kh.D. About earthquakes (past and present). Makhachkala: Dagestan State Technical University Informational Publishing Center; 2001. (In Russ.)]
20. Bystritskaya Yu.V. Sootnoshenie i sopostavlenie makroseysmicheskikh i instrumentalnykh dannykh (dagestanskie zemletryaseniya). Sbornik ―Seysmichnost i gidrogeogazokhimiya territorii Dagestana‖. Makhachkala; 1978;2(17). [Bystritskaya Yu.V. Correlation and comparison of macroseismic and instrumental data (Dagestan earthquake). Seismicity and gidrogeogazohimiya Dagestan. Makhachkala; 1978;2(17). (In Russ.)]
21. Aslanov G.K., Gadzhiev M.M., Ismailov T.A., Magomedov Kh.D. O zemletryaseniyakh. (Proshloye, sovremennost, prognoz). Makhachkala: IPTs DGTU; 2001. 98 p. [Aslanov G.K., Gadzhiev M.M., Ismailov T.A., Magomedov Kh.D About earthquakes. (Past, present, forecast).Makhachkala: Dagestan State Technical University CPI; 2001. 98 p. (In Russ.)]
22. Alekseev, A.S. i dr Metody resheniya pryamykh i obratnykh zadach seysmologii, elektromagnetizma i eksperimentalnyye issledovaniya v problemakh izucheniya geodinamicheskikh protsessov v kore i verkhney mantii Zemli. Otv. red. B. G. Mikhaylenko, M. I. Epov; Ros. akad. nauk, Sib. otdelenie, Institut vychislitel'noy matematiki i matematicheskoy geofiziki [i dr.]. Novosibirsk: Izd-vo SO RAN; 2010. 310 s. [Alekseev, A.S. et al. Methods for solving the direct and inverse problems of seismology, electromagnetism and experimental research in the study of the problems of geodynamic processes in the crust and upper mantle of the Earth. In: B.G. Mikhailenko, M.I. Epov (Eds).; Ros. Acad. Sciences, Sib. Branh, Institute of Computational Mathematics and Mathematical Geophysics et al.Novosibirsk: Publishing House of the SB RA; 2010. 310 p. (In Russ.)]
23. Aslanov T.G., Daniyalov M.G., Magomedov Kh.D., Aslanov G.K. Ob odnom metode opredeleniya ochaga zemletryaseniya s odnovremennym opredeleniem skorostey seysmicheskikh voln. Trudy instituta geologii Dagestanskogo nauchnogo tsentra RAN, Materialy. Makhachkala: Izdatelstvo DNTs RAN; 2010. 54-59. [Aslanov T.G., Daniyalov M.G., Magomedov Kh.D., Aslanov G.K. About the method of seismic center determination with simultaneous understanding of speeds of seismic waves. Proceedings of the Institute of Geology of the Dagestan Scientific Center of the Russian Academy of Sciences. Makhachkala: DSCRASPubl.; 2010. 54-59. (InRuss.)]
Review
For citations:
Aslanov T.G., Magomedov К.J., Musayeva U.A., Tagirov К.Y. INFLUENCE OF THE SPATIAL ARRANGEMENT OF SEISMIC DETECTORS ON THE ACCURACY OF EARTHQUAKE HYPOCENTRE DETERMINATION. Herald of Dagestan State Technical University. Technical Sciences. 2016;43(4):73-84. (In Russ.) https://doi.org/10.21822/2073-6185-2016-43-4-73-84