Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT)

https://doi.org/10.21822/2073-6185-2016-42-3-34-44

Abstract

Aim. The aim of this study is to develop one of the most perspective semiconductor device suitable for creation and improvement of controlled rectifiers, bipolar static induction transistor.

Methods. Considered are the structural and schematic circuit controlled rectifier based on bipolar static induction transistor (BSIT), and the criterion of effectiveness controlled rectifiers - equivalent to the voltage drop.

Results. Presented are the study results of controlled rectifier layout on BSIT KT698I. It sets the layout operation at an input voltage of 2.0 V at a frequency up to 750 kHz. The efficiency of the studied layouts at moderate current densities as high as 90 % .Offered is optimization of technological route microelectronic controlled rectifier manufacturing including BSIT and integrated bipolar elements of the scheme management.

Conclusion. It is proved that the most efficient use of the bipolar static induction transistor occurs at the low voltage controlled rectifiers 350-400 kHz, at frequencies in conjunction with a low-voltage control circuit.It is proved that the increase of the functional characteristics of the converters is connected to the expansion of the input voltage and output current ranges

About the Authors

F. I. Bukashev
Novgorod State University
Russian Federation

candidate of technical Sciences, lecturer of the Department of designing and technology of radio equipment,

41 d. Bolshaya Sankt-Peterburgskaya, Veliky Novgorod, 173003



A. R. Shakhmaeva
Daghestan State Technical University
Russian Federation

candidate of technical Sciences, Dean of Faculty training and retraining, Associate Professor of Department of Software computer technology and automated systems,

 70 I. Shamil Ave, Makhachkala, 367015



References

1. Ismailov T.A., Shakhmaeva A.R., Bukashev F.I., Zakharova P.R. Technology, Constructions, methods of simulation and application BSIT-transistors. Moscow: Academy, 2012, 252 p. (In Russian)

2. Bukashev F.I. SPICE model of the bipolar static induction transistor.News of higher education institutions. Electronics, 2009, no.5, pp.15-21. (In Russian)

3. Grigoriev B.I. The state and prospects of further development of theory of power bipolar transistors. Journal of Instrument Engineering. St. Petersburg: ITMO, 2016, vol. 59, no.2, pp. 95-106. (In Russian)

4. Lagunovich N.L., Turtsevich A.S., Borzdov V.M. A new process flow of manufacture of the bipolar transistor with static induction. MNPK "The Modern Information and Electronic Technologies". Odessa, 2016, pp.150-151. (In Russian)

5. Shakhmaeva A.R., Shangereevа B.A., Sarkarov T.E. Technology of manufacturing of transistor structures of force electronics. Vestnik Dagestanskogo gosudarstvennogo tehnicheskogo universiteta. Tehnicheskie nauki. [Herald of Dagestan State Technical University. Technical Sciences], 2016, vol.40, no.1, pp.31-37. (In Russian)

6. Shakhmaeva A.R., Zakharova P.R. Application ofa TCAD of SYNOPSYS for simulation of the BSIT-transistor. Perspective technologies, the equipment and analytical systems of materials science and nanomaterials: works of the VIII International conference. June 9-10, 2011. Moscow: MISIS, 2011, pp.823-828. (In Russian)

7. Karimov A.V., Yodgorova D.M., Abdulkhaev O.A. Long-channel field-effect transistor with short-channel transistor properties. Semiconductors. Moscow:Nauka, 2014. no.4, pp.498-503. (In Russian)

8. Zakharova P.R. Research and the analysis of change of parameters in the channel of average high-voltage bipolar static induction transistor. Vestnik Dagestanskogo gosudarstvennogo tehnicheskogo universiteta. Tehnicheskie nauki. [Herald of Dagestan State Technical University. Technical Sciences], 2013, vol.29, no.2, pp.15-21. (In Russian)

9. Ismailov T.A., Shakhmaeva A.Р., Zakharova P.R. Technology solution on improving of parameters of a crystal of the bipolar with static induction transistor. Vestnik Dagestanskogo gosudarstvennogo tehnicheskogo universiteta. Tehnicheskie nauki. [Herald of Dagestan State Technical University. Technical Sciences], 2011, vol.20, no.1, pp. 6-10. (In Russian)

10. Shakhmaeva A.R. Shangereeva B.A., Zakharova P.R. Development of constructive technology solutions of creation of BSIT-transistors using means of instrumental and technological simulation. The Actual directions of fundamental and applied researches: materials of the IV international scientific and practical conference, on August 4-5, 2014 – Makhachkala, 2014, рр.172-174. (In Russian)

11. Shakhmaeva A.R., Zakharova P.R. Enhancement of manufacturing technology of the lowvoltage transistor with nanosized values of the active areas. Caspian journal. Management and high technologies.2011, vol. 4, no.16, рр.103-110. (In Russian)

12. Patent 2013100562/28 Russian Federation: MPK H01L 21/58, No. 2534439; 09.01.2013 is declared; 27.11.2014 is published in Bulletin. no.33, 4p. A method of formation of contact to drain area of the semiconductor device. Ismailov T.A., Shakhmaeva A.R., Zakharova P. R. (In Russian)

13. Wang, Y., Feng, J., Liu, C. et al. Improvements on voltage-resistant performance of bipolar static induction transistor (BSIT) with buried gate structure. Science in China Series F: Information Sciences, 2012, 55(4): 962.

14. Wang, Y., Feng, J., Liu, C. et al. Improvement on the dynamical performance of a power bipolar static induction transistor with a buried gate structure. Journal of Semiconductors, 2011, 32 (11): 962.

15. Napoli, E. and Strollo, A. G. 2014, Static Induction Transistors. Wiley Encyclopedia of Electrical and Electronics Engineering, pp.1–6.

16. Meenakshi Mataray et al. 2012, Modern Power Semiconductor Devices. (IJCSIT) International. Journal of Computer Science and Information Technologies, vol. 3, no. 4, pp. 4571 – 4574.

17. Shaohua Lu and Farid Boussaid. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting. Sensors, 2015, р.15.

18. G. Belkacem1a, S. Lefebvre1, P. Joubert et al. 2014, Distributed and coupled 2D electrothermal model of power semiconductor devices. Eur. Phys. J. Appl. Phys., 66: 20102.


Review

For citations:


Bukashev F.I., Shakhmaeva A.R. DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT). Herald of Dagestan State Technical University. Technical Sciences. 2016;42(3):34-44. (In Russ.) https://doi.org/10.21822/2073-6185-2016-42-3-34-44

Views: 711


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)