Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

Algorithm for determining the degree of vulnerability of cloud computing areas based on the electre i method

https://doi.org/10.21822/2073-6185-2024-51-4-130-143

Abstract

Objective. In decision making when comparing alternatives, it is often necessary to work with different values or estimates that are still important. One of the multicriteria analysis methods that can be applied in the model for determining the vulnerability of cloud computing areas is the ELECTRE I method. This paper presents an algorithm for determining the degree of vulnerability of cloud computing areas using the Electre I method. Method. The Electre I method allows one to evaluate the relative advantages and disadvantages of different cloud computing areas based on a set of criteria. Result. The algorithm presented in the paper includes steps for determining the weights of criteria, evaluating alternatives according to these criteria, and calculating the degree of vulnerability. This model will allow one to determine the area or areas that are most susceptible to the danger of breakdown or failure, and to remove dominated alternatives that do not pose a serious danger. Based on the identified preferences, one can make a decision on troubleshooting the selected areas of the cloud service. An experimental study was conducted on the basis of real data on the cloud computing system. Conclusion. The obtained results confirm the effectiveness of the proposed method and its ability to accurately determine the vulnerabilities of cloud computing areas. The results of this work may be useful for cloud system administrators and security professionals who are concerned about maintaining security and reliability in the cloud environment.

About the Author

S. V. Razumnikov
Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета (ЮТИ ТПУ)
Russian Federation

Sergey V. Razumnikov, Cand. Sci. (Eng.), Assoc. Prof., Department of Digital Technologies and Security

26 Leningradskaya St., Yurga 652055



References

1. A cloud server energy consumption measurement system for heterogeneous cloud environments / W. Lin, H. Wang, Y. Zhang, D. Qi, J.Z. Wang, V. Chang // Information Sciences. – Vol. 468. – November 2018. – P. 47–62. https://doi.org/10.1016/j.ins.2018.08.032.

2. Paul PK; Ghose MK (2012). Cloud Computing: possibilities, challenges and opportunities with special reference to its emerging need in the academic and working area of Information Science. International conference on modelling optimization and computing, 38, 2222-2227. DOI:10.1016/j.proeng.2012.06.267.

3. Reynolds, P; Yetton, P. (2015). Aligning business and IT strategies in multi-business organization. Journal of information technology, 30 (2), 101-118. https://doi.org/10.1057/jit.2015.1.

4. Lin W, Wang H., Zhang Y., Qi D., Wang J.Z., Chang V. A cloud server energy consumption measurement system for heterogeneous cloud environments. Information Sciences, 2018, vol. 468, pp. 47–62. DOI:10.1016/j.ins.2018.08.032.

5. Jones, S (2015). Cloud computing procurement and implementation: Lessons learnt from a United Kingdom case study. International journal of information management, 35 (6), 712-716. https://doi.org/10.1016/j.ijinfomgt.2015.07.007.

6. Amir Mohamed Elamir, Norleyza Jailani, Marini Abu Dakar. (2013). Framework and architecture for programming education environment as cloud computing service. Procedia Technology, 11, 1299-1308. https://doi.org/10.1016/j.protcy.2013.12.328.

7. Sultan, N. (2013). Knowledge management in the age of cloud computing and Web 2.0: Experiencing the power of disruptive innovations. International journal of information management, 33 (1), 160-165. https://doi.org/10.1016/j.ijinfomgt.2012.08.006.

8. Breedveld S., Craft D., van Haveren R., Heijmen B. (2019). Multi-criteria optimization and decision-making in radiotherapy // European Journal of Operational Research, 277(1), с. 1-19. https://doi.org/10.1016/j.ejor.2018.08.019.

9. Singh, B.K., Roy, H., Mondal, B., Roy, S.S., Mandal, N. (2019). Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert // Measurement: Journal of the International Measurement Confederation, 142, с. 181-194. https://doi.org/10.1016/j.measurement.2019.04.064.

10. Wang J.-Q., Li S., Hedayati Dezfuli F., Alam M.S. (2019). Sensitivity analysis and multi-criteria optimization of SMA cable restrainers for longitudinal seismic protection of isolated simply supported highway bridges // Engineering Structures, 189, с. 509-522. DOI:10.1016/j.engstruct.2019.03.091.

11. Álvarez-Miranda E., Garcia-Gonzalo J., Pais C., Weintraub A. (2019). A multicriteria stochastic optimization framework for sustainable forest decision making under uncertainty // Forest Policy and Economics, 103, с. 112-122. https://doi.org/10.1016/j.forpol.2018.03.006.

12. Breedveld S., Craft D., van Haveren R., Heijmen B. (2019). Multi-criteria optimization and decision-making in radiotherapy // European Journal of Operational Research, 277(1), с. 1-19. DOI: 10.1016/j.ejor.2018.08.019.

13. Razumnikov S.V. (2022). Building an Aggregate Rating of Popular SaaS Services Based on Organization of Customer Support Channels // Lecture Notes in Electrical Engineering, vol. 857 LNEE, – p. 313-323. https://doi.org/10.1007/978-3-030-94202-1_30.

14. Разумников С.В. Некомпенсаторное агрегирование и рейтингование провайдеров облачных услуг // Доклады Томского государственного университета систем управления и радиоэлектроники. 2018. Т. 21. № 4. С. 63-69. doi: 10.21293/1818-0442-2018-21-4-63-69.

15. Разумников С.В. Планирование развития облачной стратегии на основе применения многокритериальной оптимизации и метода STEM//Доклады Томского государственного университета систем управления и радиоэлектроники. 2020. Т. 23. № 1. С. 53-61. DOI: 10.21293/1818-0442-2020-23-1-53-61.

16. Разумников С.В. Модели, алгоритмы и программное обеспечение поддержки принятия стратегических решений к переходу на облачные технологии: монография / С.В. Разумников // Изд-во Томского политехнического университета. - 2020. - 176 с.

17. Разумников С.В. Разработка программного обеспечения для построения агрегированных рейтингов на основе метода порогового агрегировния // Вестник воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2021. № 2. с. 138-152. DOI: https://doi.org/10.17308/sait.2021.2/3510.

18. Micale R., La Fata C.M., La Scalia G. (2019). A combined interval-valued ELECTRE TRI and TOPSIS approach for solving the storage location assignment problem // Computers and Industrial Engineering, 135, с. 199-210. DOI:10.1016/j.cie.2019.06.011.

19. Zhou H., Wang J.-Q., Zhang H.-Y. (2019). Stochastic multicriteria decision-making approach based on SMAAELECTRE with extended gray numbers // International Transactions in Operational Research, 26(5), с. 2032-2052. DOI:10.1111/itor.12380.

20. Liao H., Jiang L., Lev B., Fujita H. (2019). Novel operations of PLTSs based on the disparity degrees of linguistic terms and their use in designing the probabilistic linguistic ELECTRE III method // Applied Soft Computing Journal, 80, с. 450-464. https://doi.org/10.1016/j.asoc.2019.04.018.

21. Costa A.S., Rui Figueira J., Vieira C.R., Vieira I.V. (2019). An application of the ELECTRE TRI-C method to characterize government performance in OECD countries // International Transactions in Operational Research, 26(5), с. 1935-1955. DOI:10.1111/itor.12394.

22. Akram M., Waseem N., Liu P. (2019). Novel Approach in Decision Making with m–Polar Fuzzy ELECTRE-I // International Journal of Fuzzy Systems, 21(4), с. 1117-1129. DOI:10.1007/s40815-019-00608-y.

23. Hamzeh Alabool, Ahmad Kamil, Noreen Arshad, Deemah Alarabiat, Cloud service evaluation method-based MultiCriteria Decision-Making: A systematic literature review, Journal of Systems and Software, Volume 139, 2018, Pages 161-188. https://doi.org/10.1016/j.jss.2018.01.038.

24. Khoruzhy, L.I., Petrovich Bulyga, R., Yuryevna Voronkova, O., Vasyutkina, L.V., Ryafikovna Saenko, N., Leonidovich Poltarykhin, A. and Aravindhan, S. (2022), "A new trust management framework based on the experience of users in industrial cloud computing using multi-criteria decision making", Kybernetes, Vol. 51 No. 6, pp. 1949- 1966. https://doi.org/10.1108/K-05-2021-0378.

25. Bhol, S.G., Mohanty, J.R., Pattnaik, P.K. (2020). Cyber Security Metrics Evaluation Using Multi-criteria DecisionMaking Approach. In: Satapathy, S., Bhateja, V., Mohanty, J., Udgata, S. (eds) Smart Intelligent Computing and Applications . Smart Innovation, Systems and Technologies, vol 160. Springer, Singapore. https://doi.org/10.1007/978- 981-32-9690-9_71.

26. Hosseinzadeh, M., Hama, H.K., Ghafour, M.Y. et al. Service Selection Using Multi-criteria Decision Making: A Comprehensive Overview. J Netw Syst Manage 28, 1639–1693 (2020). https://doi.org/10.1007/s10922-020-09553-w.

27. Md Whaiduzzaman, Abdullah Gani, Nor Badrul Anuar, Muhammad Shiraz, Mohammad Nazmul Haque, Israat Tanzeena Haque, "Cloud Service Selection Using Multicriteria Decision Analysis", The Scientific World Journal, vol. 2014, Article ID 459375, 10 pages, 2014. https://doi.org/10.1155/2014/459375.

28. van der Meer J. et al. Multi-criteria decision model inference and application in information security risk classification : дис. – Ph. D. dissertation, Master Thesis, Dept. Economics, Erasmus University Rotterdam, 2012.


Review

For citations:


Razumnikov S.V. Algorithm for determining the degree of vulnerability of cloud computing areas based on the electre i method. Herald of Dagestan State Technical University. Technical Sciences. 2024;51(4):130-143. (In Russ.) https://doi.org/10.21822/2073-6185-2024-51-4-130-143

Views: 94


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)