FLEXURAL VIBRATIONS OF THE VERTICAL ROD VARIABLE SECTION WITH A CONCENTRATED MASS
https://doi.org/10.21822/2073-6185-2015-39-4-77-86
Abstract
References
1. L. Collatz is the Task on eigenvalues (with technical Annex-mi). Moscow: Nauka. 1968.504p.
2. Kim C. S., Dickinson S. M. On the analysis of laterally vibrating slender beams subject to various complicating effects. J. Sound and Vibr. 1988. 122, N. 3, pp. 441- 455.
3. Auciello N. M. A study of the numerical convergence of Rayleigh-Ritz method for the free vibrations of cantilever beam of variable cross-section with tip mass. Eng. Trans.1996.44, No.3-4, pp.375-388.
4. Alakova M. H. Free vibrations of a vertical rack of variable cross section. XI all- Russian Congress on fundamental problems of theoretical and applied mechanics: collection of papers. (Kazan, August 20-24, 2015). Kazan: Publishing house of Kazan. Universitypress, 2015. pp. 135-137.
5. Kulterbaev H. P. Upright Vibrations of variable cross section under harmonic and random vector perturbations. XI All-Russian Congress on fundamental problems of theoretical and applied mechanics: collection of papers. (Kazan, August 20-24, 2015). Kazan: Publishing house of Kazan. University press, 2015 - pp. 2181-2184.
6. Verzhbitsky V. M. Fundamentals of numerical methods. M.: Higher school, 2002. 840p.
7. Kulterbaev H. P. Oscillations of discrete-continuous beam is kinematically excited by harmonic and stochastic vector processes, Izv. universities. North.- Caucasus region. Tekhn. sciences.- 2012. No.3. pp. 54-59.
Review
For citations:
Alokova M.Kh., Kulterbaev Kh.P. FLEXURAL VIBRATIONS OF THE VERTICAL ROD VARIABLE SECTION WITH A CONCENTRATED MASS. Herald of Dagestan State Technical University. Technical Sciences. 2015;39(4):77-86. (In Russ.) https://doi.org/10.21822/2073-6185-2015-39-4-77-86