Digital modeling of progressive collapse for high-rise building
https://doi.org/10.21822/2073-6185-2022-49-1-87-94
Abstract
Objective. The article substantiates the need for digital simulation of emergency impact in the study of the stability of a building to progressive collapse by creating a simulator of local destruction.
Method. To ensure the unique architectural appearance of the projected multifunctional high-rise complex, a complex shape has been developed with recesses in which elevator shafts are located. The principle of control of the structure due to the influx of external energy is observed. Energy conversion and the necessary protection is provided by the presence in the spatial frame of the building of balancing connections near architectural recesses, which allow stabilizing the state of a complex system. The spatial rigidity of the structural scheme of a high-rise building is ensured by the use of symmetrically located diaphragms and stiffening cores, rigid nodes for interfacing with the supporting structures of outrigger systems.
Result. The calculation algorithm for progressive collapse includes the calculation of the stress-strain state of the building frame elements during normal operation. An analogue of the emergency action is created by excluding from the design model the bearing element, the instantaneous removal of which is modeled by a force with the opposite sign, determined by the results of the calculation in the normal operation stage.
Conclusion. The stress-strain state of the frame, which occurs during local destruction, is a criterion for resistance to progressive collapse. The question of the need and the established form of outrigger floors in relation to a specific building has been investigated. The dependence of the dynamic characteristics when changing the structural solutions of the frame of a unique building is given.
About the Authors
E. K. AgakhanovRussian Federation
Elifkhan K. Agakhanov, Dr. Sci. (Eng.), Prof., Prof, Department of Transport Facilities and Building Materials
70 I. Shamilya Ave., Makhachkala 367026
G. M. Kravchenko
Russian Federation
Galina M. Kravchenko, Cand. Sci. (Eng.), Assoc. Prof., Assoc. Prof., Department of Technical Mechanics, Associate Professor
1 Gagarin Square, Rostov-on-Don 344000
M. I. Kadomtsev
Russian Federation
Maksim I. Kadomtsev, Cand. Sci. (Phys. and Mathem.), Assoc. Prof., Assoc. Prof., Department of Media Technologies
1 Gagarin Square, Rostov-on-Don 344000
E. V. Trufanova
Russian Federation
Elena V. Trufanova, Cand. Sci. (Eng.), Assoc. Prof., Assoc. Prof., Department of Technical Mechanics
1 Gagarin Square, Rostov-on-Don 344000
N. A. Savelyeva
Russian Federation
Nina A. Savelyeva, Senior Lecturer, Department of Technical Mechanics
1 Gagarin Square, Rostov-on-Don 344000
References
1. Eremeeva AA, Pomorov SB, Pojdina TV (2014) Parametrism in architecture. Searches and solution. Barnaul, 118–122
2. Mamieva I. Analytical surfaces for parametric architecture in contemporary buildings and structures, Academia. Architecture and Construction. 2020; 1:150–165
3. Kravchenko G, Trufanova E, Boldyrev A. Evolution of objects of parametrism Constr Archit.2018; 6(4):44–4
4. V. Talapov BIM technology: The essence and features of building information modeling implementation, DMK-press, 2015; 410.
5. N. V. Fedorova, S. Yu. Savin. Progressive collapse resistance of facilities experienced to localized structural damage - an analytical review. Building and Reconstruction. 2021; 3(95): 76-108.
6. Kiakojouri F. et al. Progressive collapse of framed building structures: Current knowledge and future prospects // Eng. Struct. Elsevier, December 2019. 2020; 206: 110061.
7. Agaxanov G.E`. Reshenie zadach mexaniki deformiruemogo tverdogo tela s ispol`zovaniem fiktivny`x raschetny`x sxem / [Vestnik Dagestanskogo gosudarstvennogo texnicheskogo universiteta. Texnicheskie nauki] Herald of the Daghestan State Technical University. Technical Science. 2015; 3: 8-15. (In Russ)
8. Agaxanov E.K., Kravchenko G.M., Panasyuk L.N., Trufanova E.V. Realizaciya metoda kinematicheskoj dekompozicii dlya raschetov v nelinejnoj postanovke. [Vestnik Dagestanskogo gosudarstvennogo texnicheskogo universiteta. Texnicheskie nauki] Herald of the Daghestan State Technical University. Technical Science. 2014; 35(4):14-19 (In Russ)
9. Abdurazakov G.M., Abakarov A.D. Postroenie raschetny`x modelej ocenki zhivuchesti ramny`x sistem pri sejsmicheskom vozdejstvii v sbornike: voprosy` sovremenny`x texnicheskix nauk: svezhij vzglyad i novy`e resheniya. Sbornik nauchny`x trudov po itogam mezhdunarodnoj nauchno-prakticheskoj konferencii. 2015; 58-61. (In Russ)
10. Adam J.M. Research and practice on progressive collapse and robustness of building structures in the 21st century. Eng. Struct. Elsevier, 2018; 173 (March): 122-14
11. Agaxanov E`.K. O razvitii kompleksny`x metodov resheniya zadach mexaniki deformiruemogo tverdogo tela». [Vestnik Dagestanskogo gosudarstvennogo texnicheskogo universiteta. Texnicheskie nauki], 2013; 14-19. (In Russ)
12. Kravchenko G.M., Korobkin A.P., Trufanova E.V., Luk`yanov V.I. Kriterii ocenki dinamicheskix modelej zhelezobetonnogo karkasa zdaniya, Science Time, 2014; 255-260. (In Russ)
13. Murtazaliev G.M., Akaev A.I., Pajzulaev M.M. Osnovny`e sootnosheniya nachal`nogo e`tapa poslekriticheskogo deformirovaniya konstrukcij. [Vestnik Dagestanskogo gosudarstvennogo texnicheskogo universiteta. Texnicheskie nauki] Herald of the Daghestan State Technical University. Technical Science. 2013;28: 90-93. (In Russ)
14. Murtazaliev G.M., Dibirgadzhiev A.M Variacionny`e principy` mexaniki konstrukcij. Sbornik tezisov dokladov XXXVI itogovoj nauchno-texnicheskoj konferencii prepodavatelej, sotrudnikov, aspirantov i studentov FGBOU VO «Dagestanskij gosudarstvenny`j texnicheskij universitet». Pod red. T.A. Ismailova. 2015;118-119. (In Russ)
15. Agaxanov E`.K. Razvitie kompleksny`x metodov v mexanike deformiruemogo tverdgo tela, Materialy` Mezhdunarodnoj nauchno-prakticheskoj konferencii, FGBOU VPO "GGNTU", g. Grozny`j, 2015; 99-105. (In Russ)
16. G. M. Kravchenko, E. V. Trufanova, D. S. Kostenko, S. G. Tsurikov. Structural concepts of high-rise buildings resistant to progressive collapse. Materials Science Forum. 2018; 931: 54-59. (In Russ)
17. Trufanova E.V., Panasyuk E.L.Vliyanie uproshhayushhix gipotez pri modelirovanii ob``ektov stroitel`stva na tochnost` konstruktivny`x rezul`tatov. [Nauka i biznes: puti razvitiya] Science and business: ways of development. 2013;8 (26): 11-18. (In Russ)
18. Batht K.-J. Finite Element Procedures. New Jersey: Prentice Hall, 1996; 95-97.
19. Engel H. Structure Systems. Stuttgart: Deutsche Verlags-Anstalt. 1967; 23-24.
20. Simbirkin V. Analysis of Reinforced Concrete Loadbearing Systems of Multistorey Buildings. Modern Building Materials, Structures and Techniques: CD-ROM Proceedings of the 8th International Conference, Vilnius, May 19-21, 2004; 98-99.
Review
For citations:
Agakhanov E.K., Kravchenko G.M., Kadomtsev M.I., Trufanova E.V., Savelyeva N.A. Digital modeling of progressive collapse for high-rise building. Herald of Dagestan State Technical University. Technical Sciences. 2022;49(1):87-94. (In Russ.) https://doi.org/10.21822/2073-6185-2022-49-1-87-94