Preview

Herald of Dagestan State Technical University. Technical Sciences

Advanced search

Specifics of integrated thermal imaging monitoring modern civil buildings and thermophysical properties of enclosing structures made of building materials of mass production

https://doi.org/10.21822/2073-6185-2021-48-4-147-158

Abstract

Objective. The purpose of the study is to improve the technical procedure and increase the accuracy of determining the key thermophysical characteristics of building materials and products in a stationary thermal regime, as well as expanding the possibilities of using integrated thermal imaging monitoring in assessing the heat-conducting qualities of heterogeneous single-layer building structures, which are, including in non-stationary temperature conditions.
Method. The methodological basis of the study is the fundamental provisions of the theories of heat transfer, thermal control and infrared diagnostics, methods of qualitative and quantitative analysis of thermograms.
Result. The scheme of complex non-destructive diagnostics of the thermal and technical condition of heat-protective shells of capital and completed construction facilities, engineering and technical systems and subsystems of life support for various functional, technological, operational purposes based on the results of thermography and qualitative and quantitative assessment of thermal images is presented. Examples of the use of thermal imaging equipment and other auxiliary control and measuring equipment in the field examination of translucent structures and non-translucent ventilated facade systems of a real civil building are given, as well as the results of thermal imaging identification of the main thermal properties of a fragment of an enclosing building structure in the form of a wall of silicate brick.
Conclusion. The presented method of active thermal non-destructive determination of the main thermophysical properties of structural building materials and products, as well as an experimental setup for its implementation, make it possible to study the entire range of thermal characteristics under various conditions and modes using a thermal imager and related instrumentation.

About the Authors

D. F. Karpov
Vologda State University
Russian Federation

Denis F. Karpov, Senior Lecturer 

15 Lenin Str., Vologda 160000



M. V. Pavlov
Vologda State University
Russian Federation

Mikhail V. Pavlov, Cand. Sci. (Eng) 

15 Lenin Str., Vologda 160000



A. G. Gudkov
Vologda State University
Russian Federation

Alexander G. Gudkov, Cand. Sci. (Eng), Assoc. Prof. 

15 Lenin Str., Vologda 160000



References

1. A. I. Bedov, A. I. Gabitov, A. S. Salov Development and features of diagnostics of building structures using thermal imaging. [Stroitel'stvo i rekonstrukciya.] Construction and reconstruction. 2020; 1(87): 59-70. – DOI 10.33979/2073-7416-2020-87-1-59-70. (In Russ.).

2. Lucchi E. Applications of the infrared thermography in the energy audit of buildings: A review / E. Lucchi. Renewable and Sustainable Energy Reviews. 2018; 82: 3077-3090. – DOI 10.1016/j.rser.2017.10.031.

3. V. A. SHinkevich, D. A. Gres', I. I. Eremeev, G. D. Petrov. The use of thermal imaging to search for hidden defects. [Aktual'nye problemy voenno-nauchnyh issledovanij]. Actual problems of military scientific research 2020; 6(7): 285-295. (In Russ.).

4. Comparative analysis of infrared thermography and CFD modelling for assessing the thermal performance of buildings / C. Morón, D. Ferrández, R. Felices, P. Saiz. Energies. 2018; 11 (3): 638. – DOI 10.3390/en11030638.

5. Plotnikov, E. A. Assessment of the reduction of heat losses when replacing a window block based on thermal imaging survey data [Molodoj uchenyj]. Young scientist. 2020; 21(311): 579-580. (In Russ.).

6. A model for the improvement of thermal bridges quantitative assessment by infrared thermography / G. Baldinelli, F. Bianchi, A. Rotili [et al.]Applied Energy. 2018; 211:854-864.–DOI 10.1016/j.apenergy.2017.11.091.

7. Aspects of thermal imaging inspection of power equipment. R. B. Goldman, V. A. Shchebeteev, A.V. Oshatinsky [et al.]. Colloquium-journal. 2021;10-1(97): 54-55. (In Russ.).

8. Locating hidden elements in walls of cultural heritage buildings by using infrared thermography / H. Glavaš, T. Barić, M. Hadzima-Nyarko, I. H. Buljan. Buildings. 2019; 9(2): 32. – DOI 10.3390/buildings9020032.

9. Ignatyuk A. S. Information system of thermal imaging inspection of building structures. A. S. Ignatyuk, S. D. Nikolenko, S. A. Sazonova. [Informacionnye tekhno-logii v stroitel'nyh, social'nyh i ekonomicheskih sistemah] Information technologies in construction, social and economic systems. 2021; 2(24): 88-94. (In Russ.)

10. Improving the detection of thermal bridges in buildings via on-site infrared thermography: The potentialities of innovative mathematical tools. S. Sfarra, S. Perilli, A. Cicone [et al.]Energy and Buildings.2019;l(. 182):159-171. – DOI 10.1016/j.enbuild.2018.10.017.

11. Karpov D. F. Integrated energy-saving diagnostics of the technical condition of fencing structures of capital construction objects and engineering systems based on thermal control / D. F. Karpov, M. V. Pavlov, A. A. Sinitsy. [Energosberezhenie i vodopodgotovka] Energy saving and water treatment. 2020; 2 (124): 29-33. (In Russ.).

12. Heat loss from defects of hinged facade systems of buildings / A. E. Rusanov, A. Kh. Baiburin, D. A. Baiburin, V. Bianco. Magazine of Civil Engineering. 2020; 3(95): 57-65. – DOI 10.18720/MCE.95.6.

13. Karpov D. F. Features of mounted ventilated facade heat control systems in construction projects / D. F. Karpov, M. V. Pavlov, A. A. Sinitsyn, N. N. Monarkin, A. G. Gudkov [Vestnik Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki] Herald of Daghestan State Technical University. Technical Sciences. 2020; 47(1): 147-155. (In Russ.).

14. Thermographic methodologies used in infrastructure inspection: A review-Post-processing procedures I. Garrido, R. Otero, P. Arias, S. Lagüela. Applied Energy. 2020;266:114857. – DOI 10.1016/j.apenergy.2020.114857.

15. Karpov D. F. Application of active and passive thermal control in defectoscopy of construction materials and products, filler structures of buildings and constructions. [Stroitel'nye materialy i izdeliya Construction] Building Materials and Products. 2019; 2(4): 39-44. (In Russ.).

16. Kolesnichenko, S. Detection of dangerous defects and damages of steel building structures by active thermography / S. Kolesnichenko, A. Popadenko, Y. Selyutyn. Materials Science Forum. 2021; 1038 MSF: 417-423. – DOI 10.4028/www.scientific.net/MSF.1038.417.

17. Karpov, D. F. About the possibility of using thermal imaging for monitoring thermal qualities of the walling of construction projects / D. F. Karpov // XIX International youth scientific conference “Severgeoteh-2018”: materials of the conference (21-23 March 2018). In 5 parts. Part 4. – Ukhta: Ukhta State Technical University, 2019; 111-113. (In Russ.).

18. Building envelope modeling calibration using aerial thermography / N. Bayomi, S. Nagpal, T. Rakha, J. E. Fernandez. Energy and Buildings. 2021; 233: 110648. – DOI 10.1016/j.enbuild.2020.110648.

19. Karpov D. F. Review of regulatory and guidance documents for thermal imaging inspection of buildings and structures / D. F. Karpov, M. V. Pavlov, E. G. Kasyanov, V. P. Nikulin // Materials VIII all-Russian scientific and practical conference with international participation 22-23 November 2018. Part 2. – Rubtsovsk: RII (branch) of the Federal state budgetary educational institution of higher education “Altai state technical University. I. I. Polzunova”. 2018; 301-306. (In Russ.)].

20. Golovin, Y. I. Dynamic Thermography for Technical Diagnostics of Materials and Structures / Y. I. Golovin, D. Y. Golovin, A. I. Tyurin. Russian metallurgy (Metally). 2021; 2021(4):512-527. – DOI 10.1134/S0036029521040091.

21. Milovanović, B. Principal component thermography for defect detection in concrete / B. Milovanović, M. Gaši, S. Gumbarević. Sensors. 2020; 20(14): 1-21. – DOI 10.3390/s20143891.

22. Karpov D. F. The active method of control the thermal conductivity of building materials and products [Vestnik BGTU im. V.G. Shuhova] Bulletin of BSTU named after V. G. Shukhov, 2019; 7: 57-62. (In Russ.)].

23. Patent No. 2530473 C1 Russian Federation, IPC G01N 25/18. Device and method of complex determination of the basic thermophysical properties of a solid : No. 2013119005/28 : application 23.04.2013 : publ. 10.10.2014 / D. F. Karpov, M. V. Pavlov, A. A. Sinitsyn [et al.] ; applicant Federal State Budgetary Educational Institution of Higher Professional Education “Vologda State University” (VoSU). (In Russ.).

24. Vasilyeva, I. L. Reduction of energy consumption of a building using the construction of a double facade / I. L. Vasilyeva, D. V. Nemova, N. I. Vatin. [Vestnik Donbasskoj nacional'noj akademii stroitel'stva i arhitektury] Bulletin of the Donbass National Academy of Construction and Architecture. 2020; 3(143): 18-25. (In Russ.)

25. Nemova, D. V. Reduction of energy consumption of a building using the construction of a double glass facade / D. V. Nemova, N. I. Vatin, I. L. Vasilyeva. [ZHilishchnoe ho-zyajstvo i kommunal'naya infrastruktura] Housing and communal infrastructure. 2020; 3(14): 17-25. (In Russ.).

26. Vasilyeva, I. L. Introduction of double glass facades on the territory of the Russian Federation / I. L. Vasilyeva, D. V. Nemova, N. I. Vatin.[Stroitel'stvo unikal'nyh zdanij i sooruzhenij] Construction of unique buildings and structures. 201; 9(84): 51-62. – DOI 10.18720/CUBS.84.4. (In Russ.).

27. Patent No. 2488102 C1 Russian Federation, IPC G01N 25/18. Method for determining the thermal conductivity of a solid by the active method of thermal non-destructive control : No. 2012106323/28 : application. 02/21/2012 : publ. 20.07.2013 / D. F. Karpov, M. V. Pavlov, A. A. Sinitsyn, V. I. Igonin ; applicant Federal State Budgetary Educational Institution of Higher Professional Education “Vologda State Technical University” (VoGTU). (In Russ.).

28. Karpov, D. Determination of surface temperature and moisture fields of structural elements of buildings by thermal imaging / D. Karpov, M. Pavlov, R. Salikhova. Lecture Notes in Civil Engineering. 2021; 141: 253-258. https://doi.org/10.1007/978-3-030-67654-4_28.

29. Solovyova, A. A. Investigation of the development of models of random variables in calculations of reliability of building structures with incomplete statistical information / A. A. Solovyova, S. A. Solovyov. Vestnik MGSU. 2021; 16(5): 587-607. – DOI 10.22227/1997-0935.2021.5.587-607. (In Russ.).

30. Karpov D. Thermal method for non-destructive control of actual coolant mass flow through a heating device /D. Karpov D, A. Sinitsyn. ICEPP-2020. E3S Web of Conferences. 2020;161: 01041. doi.org/10.1051/e3sconf/202016101041.

31. Solovyova, A. A. Method for assessing the reliability of elements of flat trusses based on p-blocks / A. A. Solovyova, S. A. Solovyov. Vestnik MGSU. 2021;16(2): 153-167. – DOI 10.22227/1997-0935.2021.2.153-167. (In Russ.).

32. Karpov D. Algorithm for integrated non-destructive diagnostics of technical condition of structures of buildings and constructions using the thermogram analysis / D. Karpov D, A. Sinitsyn // ICEPP-2020. E3S Web of Conferences. 2020; 161: 01040 (. doi.org/10.1051/e3sconf/202016101040.


Review

For citations:


Karpov D.F., Pavlov M.V., Gudkov A.G. Specifics of integrated thermal imaging monitoring modern civil buildings and thermophysical properties of enclosing structures made of building materials of mass production. Herald of Dagestan State Technical University. Technical Sciences. 2021;48(4):147-158. (In Russ.) https://doi.org/10.21822/2073-6185-2021-48-4-147-158

Views: 511


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6185 (Print)
ISSN 2542-095X (Online)