ISSN(Print) 2073-6185 ISSN (On-line) 2542-095X

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Дагестанский государственный технический университет»

Tom 45, №1, 2018.

ВЕСТНИК

ДАГЕСТАНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА. ТЕХНИЧЕСКИЕ НАУКИ

Volume 45, No.1, 2018.

HERALD

OF DAGHESTAN STATE TECHNICAL UNIVERSITY. TECHNICAL SCIENCES

Журнал основан в 1997 году. Выходит 4 раза в год

Научно-исследовательский журнал зарегистрирован в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (РОСКОМНАДЗОР), свидетельство ПИ № ФС77-30186 от 9 ноября 2007 г. Подписной индекс Т71366 в федеральном каталоге периодических изданий ОАО Агентства «Роспечать».

Журнал включен в Перечень ведущих рецензируемых научных журналов и изданий ВАК Российской Федерации, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук. Журнал включен в Российский индекс научного цитирования (РИНЦ), доступный в интернете, по адресу http://www.elibrary.ru (Научная электронная библиотека).

Журнал включен в российские и международные открытые репозитории научной информации; подключен к международной системе библиографических ссылок и находится в директории журналов открытого доступа: CrossRef; GoogleScholar; Ulrich's Periodicals Directory; Open Archives; Research Bible; Directory of Open Access Journals (DOAJ); Соционет, КиберЛенинка.

© Учредитель ФГБОУ ВО «Дагестанский государственный технический университет», 2018.

The research journal is registered in Federal Service for Supervision in the Sphere of Telecom, Information Technologies and Mass Commu-nications (ROSKOMNADZOR), the certificate of PI No. FS77-30186 of November 9, 2007. Subscription index T71366 is in the federal catalogue of periodicals of the JSC Rospechat Agency.

The journal is included in the List of leading reviewed scientific journals and periodicals of the Higher Certifying Commission (VAK) of the Russian Federation, in which basic scientific results of dissertations are to be published. The journal is included in the Russian Index of Scientific Citing (RISC) available on the Internet (http://www.elibrary.ru Scientific electronic library).

The journal is included in the Russian Citing Systems (RCS) and in the open repositories of scientific information connected with international system of bibliographic references: CrossRef; Google Scholar; Ulrich's Periodicals Directory; Open Archives; Research Bible; Directory of Open Access Journals (DOAJ); Socionet; CyberLeninca.

© Founder Daghestan State Technical University, 2018.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Дагестанский государственный технический университет»

ВЕСТНИК ДАГЕСТАНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА. ТЕХНИЧЕСКИЕ НАУКИ. ТОМ 45, №1, 2018

Главный редактор:

Исмаилов Т.А., д.т.н., профессор, ректор Дагестанского государственного технического университета, г. Махачкала, Россия

Заместитель главного редактора:

Эсетова А.М., д.э.н., профессор Дагестанского государственного технического университета, г. Махачкала, Россия.

Редакционная коллегия:

Абакаров А.Д., д.т.н., профессор, зав. кафедрой Дагестанского государственного технического университета, г. Махачкала. Россия.

Абакаров Г.М., д.х.н., профессор, зав.кафедрой Дагестанского государственного технического университета, г. Махачкала. Россия.

Абдулгалимов А.М., д.э.н., профессор, зав.кафедрой Дагестанского государственного технического университета, г. Махачкала, Россия.

Адамов А.П., д.т.н., профессор Дагестанского государственного технического университета, г. Махачкала, Россия.

Андреев В.И., д.т.н., профессор, зав.кафедрой Национального исследовательского Московского государственного строительного университета, г. Москва, Россия.

Батдалов М.М., д.т.н., член-корр. Российской академии архитектуры и строительных наук, профессор Дагестанского государственного технического университета, г. Махачкала, Россия.

Билалов Б.А., д.ф.-м.н., профессор, зав кафедрой Дагестанского государственного технического университета, г. Махачкала, Россия

Володин В.М., д.э.н., профессор, декан Пензенского государственного университета, г. Пенза, Россия.

Гулиев М.Е., д.э.н., профессор Азербайджанская республика. Азербайджанского государственного экономического университета, г. Баку,

Давидюк А.Н., д.т.н., заслуженный строитель России, директор НИИЖБ им. А.А.Гвоздева АО «НИЦ «Строительство», г. Москва, Россия.

Иванов А.П., д.ф.-м.н., профессор, зав.кафедрой Московского физико-технического института (государственного университета), г. Долгопрудный, Россия

Исалова М.Н., д.э.н., профессор, зав.кафедрой Дагестанского государственного технического университета,г. Махачкала

Исмаилов Э.Ш., д.б.н., профессор Дагестанского государственного технического университета, г. Махачкала, Россия. Казачек В.Г., д.т.н., профессор, главный научный сотрудник Института жилища - НИПТИС им. Атаева С.С., директор ООО «Мобильная диагностика в строительстве», г. Минск, Республика Беларусь.

Каргин Н.И., д.т.н., профессор, директор Института нанотехнологий в электронике, спинтронике и фотонике Национального исследовательского ядерного университета «МИФИ», г. Москва, Россия.

Кругляков А.А., д.т.н., профессор, генеральный директор научно-коммерческой фирмы WBH, г. Берлин, Германия

Кутузов В.М., д.т.н., профессор Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» им. В.И. Ульянова (Ленина) (СПбГЭТУ «ЛЭТИ»), г. Санкт-Петербург, Россия.

Ларионов А.Н., д.э.н., профессор, генеральный директор ООО «Научно-исследовательский центр «Стратегия», г. Москва Россия.

Лобанов д.т.н., ведущий научный сотрудник Московского авиационного института (Национальный исследовательский университет), г. Москва, Россия.

Магомедов М. Х., д-р.физ.-мат. наук, генеральный директор ООО «САУНО», НПФ, г. Москва, Россия.

Мажиев Х.Н., д.т.н., профессор Грозненского государственного нефтяного технического университета им. Академика М.Д. Миллионщикова, г. Грозный, Россия.

Мелехин В.Б., д.т.н., профессор Дагестанского государственного технического университета, г. Махачкала, Россия. Митаров Р.Г., д.ф.-м.н., профессор, Дагестанского государственного технического университета, г. Махачкала, Россия. Несветаев Г.В., д.т.н., профессор, зав.кафедрой Донского государственного технического университета, г. Ростов-на-Дону,

Оборин М.С., д.э.н, профессор Пермского государственного национального исследовательского университета, г. Пермь Россия.

Павлюченко Е.И., д.э.н, профессор Дагестанского государственного технического университета, г. Махачкала, Россия Рогозин Е.А., д.т.н., профессор Воронежского института Министерства внутренних дел России, г. Воронеж, Россия. Саркаров Т.Э., д.т.н., профессор, зав.кафедрой Дагестанского государственного технического университета, г. Махачкала.

Сафаралиев Г.К., д.ф.-м.н., член-корр. РАН, научный руководитель НИИ «Микроэлектроники и нанотехнологий» Дагестанского государственного технического университета, г. Махачкала, Россия. Сулин А.Б., д.т.н., профессор, член-корр. МАХ, НИИ промышленной и морской медицины федерального медико-

биологического агентства, г. Санкт-Петербург, Россия.

Финаев В.И., д.т.н., профессор, зав. кафедрой Южного федерального университета, г. Ростов-на-Дону, Россия. Хаджишалапов Г.Н., д.т.н., профессор Дагестанского государственного технического университета, г. Махачкала, Россия.

Шахтарин Б.И., д.т.н., профессор Московского государственного технического университета им. Н.Э. Баумана, г. Москва, Россия.

Эмиров Ю.Н., д.ф.-м.н., ученый-исследователь Центра нанотехнологий Университета Южной Флориды, США.

Релакционный совет:

Председатель редакционного совета:

Якимович Б.А., д.т.н., профессор, Ижевский государственный технический университет им. М.Т. Калашникова, г. Ижевск,

Сопредседатели:

Иванов К.М., д.т.н., профессор, ректор БГТУ «ВОЕНМЕХ» им. Д.Ф.Устинова, г. Санкт-Петербург, Россия.

Исмаилов Т.А., д.т.н., профессор, ректор Дагестанского государственного технического университета, г. Махачкала,

Кутузов В.М., д.т.н., профессор Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» им. В.И. Ульянова (Ленина) (СПбГЭТУ «ЛЭТИ»), г. Санкт-Петербург, Россия.

Члены редакционного совета

Бабанлы М.Б.-О., д.т.н., профессор, ректор Азербайджанского государственного университета нефти и промышленности, г. Баку, Азербайджанская республика.

Джанзаков И.И., д.т.н., профессор, член-корр. НИА РК, академик МАНЭБ, г. Атырау, Республика Казахстан.

Хачумов В.М., д.т.н., профессор, заведующий лабораторией Института системного анализа РАН, г. Москва, Россия.

Якунин А.Г., д.т.н., профессор, зав.кафедрой Алтайского государственного технического университета им. И.И. Ползунова. г. Барнаул, Россия.

Научные направления: Физикоматематические науки Механика

Технические науки

Энергетическое, металлургическое И химическое машиностроение

> Информатика, вычислительная техника и управление

Строительство и архитектура

Экономические науки

Вестник **Дагестанского** осударственного технического университета. Технические науки. Том 45, №1 Махачкала, 2018 -260 c.

Издается по решению Ученого СоветаФГБОУВО «Дагестанский государственный технический университет»

Алрес **учрелителя**: 367026, РД, г. Махачкала, пр. И.Шамиля, 70, ФГБОУ ВО «Дагестанский государственный технический университет». Тел./факс 8722)623715; (8722)623964 e-mail: vestnik.dgtu@mail.ru Website:

http://vestnik.dgtu.ru/

СОДЕРЖАНИЕ

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
МЕХАНИКА8
Бунтов А.Е., Гоцев Д.В. НЕОДНОРОДНОЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ УПРУГОГО ЦИЛИНДРИЧЕСКОГО ТЕЛА С УЧЕТОМ ВНУТРЕННЕЙ СТРУКТУРЫ МАТЕРИАЛА8
Гусейнов Р.В. ДИНАМОМЕТРИЧЕСКАЯ АППАРАТУРА ДЛЯ ИЗМЕРЕНИЯ СОСТАВЛЯЮЩИХ СИЛ РЕЗАНИЯ ПРИ ОБРАБОТКЕ ОСЕВЫМ ИНСТРУМЕНТОМ22
Мурадова С.Ш., Федосеева Л.В. ВЛИЯНИЕ СТАТИЧЕСКИХ СВОДОВ НА ЭФФЕКТИВНОСТЬ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В БУНКЕРЕ30
ТЕХНИЧЕСКИЕ НАУКИ
ЭНЕРГЕТИЧЕСКОЕ, МЕТАЛЛУРГИЧЕСКОЕ И ХИМИЧЕСКОЕ МАШИНОСТРОЕНИЕ49
Авилов Е.С., Коржуев М.А., Кретова М.А. ЭКСПРЕСС-МЕТОДИКИ АНАЛИЗА ХАРАКТЕРИСТИК ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ И ПРЕОБРАЗОВАТЕЛЕЙ49
Евдулов О.В., Кадирова Д.К., Магомедова С.Г., Рагимова Т.А., Хазамова М.А. МОДЕЛЬ ТЕРМОЭЛЕКТРИЧЕСКОГО УСТРОЙСТВА ДЛЯ ТЕПЛОВОГО ВОЗДЕЙСТВИЯ НА ОБЛАСТЬ СТОПЫ60
Макеев А.Н. ОЦЕНКА НАДЕЖНОСТИ И ЭФФЕКТИВНОСТИ РАБОТЫ ОСНОВНЫХ КОНСТРУКЦИЙ ИМПУЛЬСНЫХ НАГНЕТАТЕЛЕЙ ДЛЯ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ ГИДРАВЛИЧЕСКОГО УДАРА73
ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ88
Агаджанян Р.Б., Байжанова Д.О., Маркосян М.В. ИССЛЕДОВАНИЕ И АВТОМАТИЗАЦИЯ КОНТРОЛЯ СТОХАСТИЧЕСКИХ ОТКЛОНЕНИЙ В СИСТЕМАХ ОРГАНИЗАЦИОННОГО УПРАВЛЕНИЯ ПРОИЗВОДСТВЕННЫМ ПРОЦЕССОМ88
Антонов В.О., Гурчинский М.М., Петренко В.И., Тебуева Ф.Б. МЕТОД ПЛАНИРОВАНИЯ ОПТИМАЛЬНОЙ ТРАЕКТОРИИ ДВИЖЕНИЯ ТРЕХЗВЕННОГО МАНИПУЛЯТОРА В ОБЪЕМНОМ ПРОСТРАНСТВЕ С ПРЕПЯТСТВИЕМ98
Ветров А.Н. КОГНИТИВНЫЙ ПОДХОД КАК ОСНОВА СИСТЕМНОГО И ФИНАНСОВОГО АНАЛИЗА СЛОЖНЫХ ОБЪЕКТОВ ИССЛЕДОВАНИЯ113
Ехлаков Ю.П., Малаховская Е.К. СЕМАНТИЧЕСКАЯ СЕТЬ ФОРМИРОВАНИЯ СОДЕРЖАНИЯ ТЕКСТОВОГО КОММУНИКАЦИОННОГО СООБЩЕНИЯ ДЛЯ ПРОДВИЖЕНИЯ МОБИЛЬНЫХ ПРИ ПОЖЕНИЙ НА ПОТРЕБИТЕ ПЬСКИЙ РЫНОК

Кадиев И.П., Кадиев П.А. ОСНОВЫ ИНДЕКСНОЙ СТРУКТУРИЗАЦИИ nxn - КОМБИНАТОРНЫХ КОНФИГУРАЦИЙ13	19
Качаева Г.И., Попов А.Д., Рогозин Е.А. ПОКАЗАТЕЛИ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ ПРИ РАЗРАБОТКЕ СИСТЕМ ЗАЩИТЫ ИНФОРМАЦИИ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА В АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМАХ14	17
Моисеева Т.В., Поляева Н.Ю. МОДЕЛИРОВАНИЕ ПРОБЛЕМНОЙ СИТУАЦИИ В ТЕОРИИ ИНТЕРСУБЪЕКТИВНОГО УПРАВЛЕНИЯ16	50
Юркова О. Н. ПРИМЕНЕНИЕ МЕТОДОВ АНАЛИЗА ДАННЫХ ДЛЯ АВТОМАТИЗАЦИИ ФОРМИРОВАНИЯ ОНТОЛОГИИ17	′2
СТРОИТЕЛЬСТВО И АРХИТЕКТУРА18	81
Алибеков А. К. ОЦЕНКА РАЗМЫВА У СВАЙНЫХ ОПОР СООРУЖЕНИЙ, ПРЕСЕКАЮЩИХ ВОДОТОКИ, С УЧЕТОМ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ И НЕОДНОРОДНОСТИ ГРУНТОВ ОСНОВА- НИЯ	
Гамидов Т. С. ПРОБЛЕМЫ СИНТЕЗА МОНУМЕНТАЛЬНОЙ СКУЛЬПТУРЫ В АНСАМБЛЯХ ГОРОДА МАХАЧКАЛЫ19	13
Муртазаев С-А.Ю., Омаров А.О., Саламанова М.Ш. ВЫСОКОПРОЧНЫЕ БЕТОНЫ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ВТОРИЧНЫХ ТЕХНОГЕННЫХ РЕСУРСОВ)4
ЭКОНОМИЧЕСКИЕ НАУКИ21	4
Абдуллаева Т.К., Алиева П.А. РОЛЬ КОММУНИКАЦИОННЫХ СЕТЕЙ В ОРГАНИЗАЦИИ МАТЕРИАЛЬНО- ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ СТРОИТЕЛЬНЫХ ПРЕДПРИЯТИЙ21	4
Алёхина Т.А., Захаркина Н.В. ИМПОРТОЗАМЕЩЕНИЕ КАК ОСНОВНОЙ ИНСТРУМЕНТ РАЗВИТИЯ ЭКОНОМИКИ РОССИИ	23
Исмаилова Ш.Т., Юсуфова А.М. СТИМУЛИРОВАНИЕ КАК МЕХАНИЗМ РАЗВИТИЯ СТРОИТЕЛЬНЫХ ОРГАНИЗАЦИЙ23	36
Оборин М.С. ПЕРСПЕКТИВЫ РАЗВИТИЯ ИНФРАСТРУКТУРЫ СТРОИТЕЛЬНЫХ ОБЪЕКТОВ НА СЕЛЬСКИХ ТЕРРИТОРИЯХ24	15
ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ СТАТЕЙ	55

Ministry of Education and Science of the Russian Federation Federal State Budget Educational Establishment of Higher Education «Daghestan State Technical University»

HERALD OF DAGHESTAN STATE TECHNICAL UNIVERSITY. TECHNICAL ŚCIENCES. V o l u m e 4 5, N o . 1, 2 0 1 8.

Editor- in-Chief:

Tagir A. Ismailov, Doctor of Technical Science, Professor, Rector, Daghestan State Technical University, Makhachkala, Russia; **Deputy Editor:**

Aida M. Esetova, Doctor of Economics, Professor, Head of the Department, Daghestan State TechnicalUniversity, Makhachkala, Russia:

Editorial Board:

Abakar D. Abakarov, Doctor of Technical Science, Professor, Head of the Department, Daghestan State TechnicalUniversity, Makhachkala, Russia:

Gasan M. Abakarov, Doctor of Chemical Science, Professor, Head of the Department, Daghestan State TechnicalUniversity, Makhachkala, Russia;

Abdulgalim M. Abdulgalimov, Doctor of Economics, Professor, Head of the Department, Daghestan State Technical University. Makhachkala, Russia;

Alexander P. Adamov, Doctor of Technical Science, Professor, Daghestan State Technical University, Makhachkala, Russia; Vladimir I. Andreev, Doctor of Technical Science, Professor, Head of the Department, Moscow State University of Civil Engineer-

ing (National Research University), Moscow, Russia; Muhtaritdin M. Batdalov, Doctor of Technical Science, Corresponding member of Russian Academy of Architecture and Constrution

Sciences, Professor, Daghestan State Technical University, Makhachkala, Russia; Bilal A. Bilalov, Doctor of Physics and Mathematics, Professor, Head of the Department, Daghestan State Technical University, Makhachkala, Russia;

Viktor M. Volodin, Doctor of Economics, Professor, Dean, Penza State University, Penza, Russia.

Mushfig E. Guliev, Doctor of Economics, Professor, Azerbaijan State University of Economics, Baku, Azerbaijan;

Alexey N.Davidyuk, Doctor of Technical Science, Honored Builder of Russia, Director, Gvozdev NIIZHB, JSC «SIC Construction»

Alexander P. Ivanov, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia.

Marzhanat N. Isalova, Doctor of Economics, Professor, Head of the Department, Daghestan State Technical University, Makhachkala. Russia:

Elder Sh. Ismailov, Doctor of Biology, Professor, Daghestan State Technical University, Makhachkala, Russia;

Vladimir G. Kazachek, Doctor of Technical Science, Professor, senior researcher, Ataev Institute of Dwelling - NIPTIS Director of Mobile diagnostics in construction, Minsk, Republic of Belarus.

Nicholay I. Kargin, Doctor of Technical Science, Professor, DirectorInstitute of Nanoengineering in Electronics, Spintronics and Photonics National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia;

Alexander A. Krugljakow, Doctor of Technical Science, Professor, General Director Wissenschaftliche Beratung und Handelsvertretung, Berlin, Germany /Deutschland.

Vladimir M. Kutuzov, Doctor of Technical Science, Professor, St. Petersburg Electrotechnical University «LETI», Saint-Petersburg Russia:

Arkady N. Larionov, Doctorof Economics, Professor, General Director LLC Research Center «Strategy», Moscow, Russia. Igor E. Lobanov, Doctor of Technical Science, Leading Researcher, Moscow Aviation Institute (National Research University), Moscow, Russia.

Magomed Kh. Magomedov, Doctor of Mathematics and Physics, General Director, "SAUNO"ltd. Moscow, Russia.

Khasan N. Mazhiev, Doctor of Technical Science, Professor, Milllionshchikov Grozny State Oil Technical University, Grozny, Russia. Vladimir B. Melekhin Doctor of Technical Science, Professor, Daghestan State Technical University, Makhachkala, Russia;

Rizwan G. Mitarov, Doctor of Physics and Mathematics, Professor, Daghestan State Technical University, Makhachkala, Russia: Gregory V. Nesvetaev, Doctor of Technical Science, Professor, Head of Construction Technologies Department, Don State Technical University, Rostov-on-Don, Russia.

Matvey S. Oborin, Doctor of Economics, Professor, Perm State University, Perm, Russia.

Elena I. Pavlyuchenko, Doctor of Economics, Professor, Daghestan State Technical University, Makhachkala, Russia;

Evgenii A. Rogozin, Doctor of Technical Science, Professor, Voronezh Institute of the Ministry of the Interior of Russia, Voronezh, Russia.

Tazhudin E. Sarkarov, Doctor of Technical Science, Professor, Head of the Department, Daghestan State Technical University, Makhachkala, Russia;

Gadzhimet K. Safaraliyev, Doctor of Physics and Mathematics, Professor, Scientific Director of the «Microelectronics and Nanotechnology» Research Institute, Daghestan State Technical University, Makhachkala, Russia;

Alexander B. Sulin, Doctor of Technical Science, Professor, Corresponding member, MAX, Institute of Industrial and Marine Medicine of Federal Medical and Biological Agency, St. Petersburg, Russia.

Valery I. Finayev, Doctor of Technical Science, Professor, Head of the Department, Southern Federal University, Rostov-on-Don. Russia:

Gadzhimurad N. Khadzhishalapov, Doctor of Technical Science, Professor, Daghestan State Technical University, Makhachkala, Russia Boris I. Shakhtarin, Doctor of Technical Science, Professor, Bauman Moscow State Technical University, Moscow, Russia. Yousuf N. Emirov, Doctor of Physics and Mathematics, research associate, Nanotechnology Research and Education Center, Univer-

sity of South Florida, USA.

Editorial council

Chairman of the editorial council:

Boris A.Yakimovich, Doctor of Technical Science, Professor, Kalashnikov Izhevsk State Technical University, Izhevsk, Russia. The co-chairs of the editorial council:

Konstantin M. Ivanov, Doctor of Technical Science, Professor, Rector, Ustinov Baltic State Technical University «VOENMECH» Saint-Petersburg, Russia

Tagir A. Ismailov, Doctor of Technical Science, Professor, Rector, DaghestanStateTechnical University, Makhachkala, Russia. VladimirM. Kutuzov, Doctor of Technical Science, Professor, St. Petersburg Electrotechnical University «LETI», Saint-Petersburg.

Members of the editorial Board

Mustafa B.-O. Babanly, Doctor of Technical Science, Professor, Rector, Azerbaijan State University of Oil and Industry, Baku, Azerbaijan.

Islam I. Djanzakov, Doctor of Technical Science, Professor, Corresponding member, SRA RK, Academician of MANEB, Atyrau, Republic of Kazakhstan.

Vyacheslav M. Khachumov, Doctor of Technical Science, Professor, Head of laboratory, Institute for Systems Analysis of RAS. Moscow, Russia.

Alexey G. Yakunin, Doctor of Technical Science, Professor, Head of the Department, Polzunov Altai State Technical University, Barnaul, Russia.

Research areas

Physicalmathematical science Mechanics

Technical science Power, Metallurgical and Chemical Mechanical Engineering

> Computer science, Computer Engineering Management

Building and architecture

Economic

science Herald of Daghestan State Technical University. Technical Šcience Volume 45, No.1 Makhachkala,

2018-260 p. Published by decision of the Academic

Council Daghestan StateTechnical University

Edition address:

70 I. Shamil Ave., Makhachkala, the Republic of Daghestan 367026, Russia. Daghestan StateTechnical University Tel./fax (8722)623715 (8722)623964

CONTENTS

PHYSICAL-MATEMATICAL SCIENCE
MECHANICS8
Alexey E. Buntov, Dmitriy V. Gotsev
INHOMOGENEOUS STRESS-DEFORMED STATE OF AN ELASTIC CYLINDRICAL BODY TAKING INTO ACCOUNT ITS MATERIAL INTERNAL STRUCTURE8
Rasul V. Guseynov
DYNAMOMETRIC EQUIPMENT FOR MEASURING THE COMPONENTS OF CUTTING STRENGTHS WHEN PROCESSING MATERIALS WITH AXIAL TOOLS22
Safura Sh. Muradova, Lyudmila V. Fedoseeva THE INFLUENCE OF STATIC ARCHES ON THE EFFICIENCY OF TECHNOLOGICAL PROCESSES IN A HOPPER
TECHNICAL SCIENCE POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING49
Evgeniy S. Avilov, Mikhail A. Korzhuev, Marina A. Kretova EXPRESS METHODS FOR ANALYSING THERMO-ELECTRIC MATERIALS AND CONVERTE CHARACTERISTICS
Oleg V. Evdulov, Dzhamilya K. Kadirova, Sarat G. Magomedova, Tamila A. Ragimova, Madina A. Khazamova
MODEL OF THERMOELECTRIC DEVICE FOR HEAT IMPACT ON FEET60
Andrey N. Makeev
EVALUATION OF OPERATIONAL RELIABILITY AND EFFICIENCY OF PRIMARY DESIGNS OF PULSE SUPERCHARGERS USING HYDRAULIC SHOCK ENERGY73
COMPUTER SCIENCE, COMPUTER ENGINEERING ANDMANAGEMENT88
Ruben B. Aghajanyan, Dina O. Baizhanova, Mher V. Markosyan
CONTROL RESEARCH AND AUTOMATION OF STOCHASTIC DEVIATIONS IN ORGANISATIONAL MANAGEMENT PRODUCTION PROCESS SYSTEMS88
Vladimir O.Antonov, Mikhail M. Gurchinsky, Vyacheslav I. Petrenko, Fariza B. Tebueva METHOD FOR PLANNING THE OPTIMAL TRAJECTORY OF A THREE-LINK MANIPULATO IN TRIDIMENSIONAL SPACE WITH AN OBSTACLE98
Anatoly N. Vetrov A COGNITIVE APPROACH FORMING THE BASIS OF SYSTEM AND FINANCIAL ANALYSIS OF COMPLEX RESEARCH OBJECTS
Yuriy P. Ehlakov, Elena K.Malakhovskaya SEMANTIC NETWORK FOR FORMING THE CONTENT OF TEXT MESSAGES FOR THE PROMOTION OF MOBILE APPLICATIONS TO THE CONSUMER MARKET12
Islamudin P. Kadiev, Pashaj A. Kadiev
FUNDAMENTALS OF INDEX STRUCTURISATION OF NXN-COMBINATORY CONFIGURATIONS

Gyulkhanum I. Kachaeva, Anton D. Popov, Evgeny A. Rogozin FUNCTIONAL PERFORMANCE INDICATORS DURING SYSTEMS DEVELOPMENT TO PROTECT INFORMATION FROM UNAUTHORISED ACCESS147
Tatyana V. Moiseeva, Natalya Yu. Polyaeva MODELING OF PROBLEMATIC SITUATIONS IN INTERSUBJECTIVE CONTROL THEORY
Olga N. Yurkova APPLICATION OF DATA ANALYSIS METHODS FOR AUTOMATION OF ONTOLOGY FORMATION
BUILDING AND ARCHITECTURE181
Ali K. Alibekov EVALUATION OF SCOURING AT PILE-SUPPORTED STRUCTURES CROSSING WATERCOURSES ACCORDING TO RELIABILITY AND INHOMOGENEITY INDICATORS OF GROUNDING FOUNDATIONS
Timur S. Gamidov PROBLEMS OF MONUMENTAL SCULPTURE SYNTHESIS IN ENSEMBLES OF THE CITY OF MAKHACHKALA
Side-Alvi Y. Murtazaev, Arif O.Omarov, Madina Sh. Salamanova HIGH-STRENGTH CONCRETE BASED ON THE USE OF SECONDARY TECHNOGENIC RESOURCES
ECONOMIC SCIENCE214
Tamara K. Abdullaeva, Patimat A. Aliyeva THE ROLE OF COMMUNICATION NETWORKS IN THE ORGANISATION OF MATERIAL AND TECHNICAL SUPPORT FOR CONSTRUCTION ENTERPRISES214
Tatyana A. Alyokhina , Natalya V. Zakharkina IMPORT SUBSTITUTION AS A BASIC DEVELOPMENT TOOL OF THE RUSSIAN ECONOMY
Shani T. Ismailova, A.M.Yusufova STIMULATION AS AN EFFECTIVE DEVELOPMENT INSTRUMENT FOR BUILDING ORGANISATIONS
Matvey S. Oborin PROSPECTIVE INFRASTRUCTURAL DEVELOPMENT OF BUILDING OBJECTS IN RURAL TERRITORIES245
FORMATTING REQUIREMENTS FOR PAPERS255

Для цитирования: Бунтов А.Е., Гоцев Д.В. Неоднородное напряженно-деформированное состояние упругого цилиндрического тела с учетом внутренней структуры материала. Вестник Дагестанского государственного технического университета. Технические науки. 2018;45(1):8-21.DOI:10.21822/2073-6185-2018-45-1-8-21

For citation: Buntov A.E., Gotsev D.V. Inhomogeneous stress-deformed state of an elastic cylindrical body taking into account its material internal structure. Herald of Daghestan State Technical University. Technical Sciences. 2018;45(1):8-21. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-8-21

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ МЕХАНИКА

УДК 539.374

DOI: 10.21822/2073-6185-2018-45-1-8-21

НЕОДНОРОДНОЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ УПРУГОГО ЦИЛИНДРИЧЕСКОГО ТЕЛА С УЧЕТОМ ВНУТРЕННЕЙ СТРУКТУРЫ МАТЕРИАЛА

Бунтов А.Е.¹, Гоцев Д.В.²

Военный учебно-научный центр военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е Жуковского и Ю.А. Гагарина», 394064, г. Воронеж, ул. Старых Большевиков, 54a, Россия, ¹e-mail:alexey.buntov@mail.ru, ²e-mail: rbgotsev@mail.ru

Резюме. Цель. Исследование напряженно-деформированного состояния пороупругого цилиндрического тела при радиальном равномерном сжатии. Метод. Математическое моделирование на основе феноменологического подхода для описания пористых сред, а также в рамках геометрически линейных соотношений теории упругости. Результат. Построена математическая модель, описывающая неоднородное напряженно-деформированное состояние цилиндрического тела для материалов с пористой структурой при упругой работе полностью сжатой матрицы. Деформирование пористой среды под действием заданных равномерно распределенных сжимающих нагрузок разделяется на два взаимосвязанных этапа: упругое деформирование пористой сжимаемой среды и упругое деформирование полностью сжатой матрицы, обладающей свойством дальнейшей не сжимаемости. Задача нахождения напряженно-деформированного состояния цилиндрического тела на каждом этапе деформирования решается в рамках плоской деформации. При этом не учитываются эффекты, связанные с тем, что рассматриваемое цилиндрическое тело имеет конечную высоту. Получены соотношения, определяющие поля напряжений и перемещений на каждом этапе деформирования. Определена зависимость внешних нагрузок, при которых начальная пористость материала достигает во всем теле нулевого значения. Построены графические зависимости компонент напряжений от координаты при различных значениях величины начального раствора пор и других физико-механических и геометрических параметров материала и конструкции. Вывод. Построенные аналитические зависимости описывают неоднородное распределение полей напряжений и перемещений, как на этапе деформирования материала с пористой структурой, так и на этапе деформирования материала цилиндрического тела с полностью сжатой матрицей. Данные соотношения согласуются с общими физическими представлениям о рассматриваемых процессах и допускают предельный переход к известным решениям.

Ключевые слова: пористые материалы, цилиндрическое тело, неоднородное напряженно-деформированное состояние

PHYSICAL-MATEMATICAL SCIENCE MECHANICS

INHOMOGENEOUS STRESS-DEFORMED STATE OF AN ELASTIC CYLINDRICAL BODY TAKING INTO ACCOUNT ITS MATERIAL INTERNAL STRUCTURE

Alexey E. Buntov 1, Dmitriy V. Gotsev 2

The military educational and scientific center of the Air Force "The Air Force Academy named after Professor N.Ye. Zhukovsky and Yu.A. Gagarin", Starykh Bolshevikov Str., 54a, Voronezh 394064, Russia, ¹e-mail: alexey.buntov@mail.ru, 2e-mail: rbgotsev@mail.ru

Abstract Objectives. An investigation of the stress-deformed state of a poroelastic cylindrical body under uniform radial compression. Methods. Mathematical modeling based on the phenomenological approach for the description of porous media, as well as within the framework of geometrically linear relations of the theory of elasticity. Results. A mathematical model is constructed to describe the inhomogeneous stress-deformed state of a cylindrical body for materials having a porous structure under elastic operation of a fully compressed matrix. The deformation of the porous medium under uniformly distributed compressive loads is divided into two interrelated stages: the elastic deformation of the porous compressible medium and the elastic deformation of a fully compressed matrix for which further incompressibility is a defining property. The problem of determining the stress-deformed state of a cylindrical body at each stage of deformation is solved within the framework of a planar deformation. This does not take into account effects associated with the fact that the cylindrical body under consideration has a finite height. Relations determining the stress and displacement fields at each stage of deformation are obtained. The dependency of external loads is determined for which the initial porosity of the material reaches zero throughout the entire body. The graphical dependencies of the stress components on the coordinate are constructed for the different values of initial pore solution and other physical-mechanical and other material and structural geometric parameters. Conclusion. The constructed analytical dependencies describe the inhomogenous distribution of stress and displacement fields at the deformation stage of materials having a porous structure and a cylindrical body with a fully compressed matrix. These relations are consistent with the general physical concepts of the processes under consideration and allow for a limiting transition to known solutions

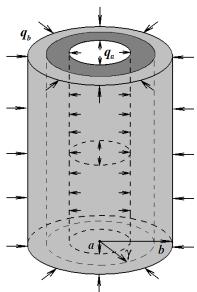
Keywords: porous materials, cylindrical body, inhomogenous stress-deformed state

Введение. При проходке и эксплуатации подземных сооружений различного назначения (горные выработки, подземные полости, шахтные стволы и др.) возникает необходимость решения ряда сопутствующих задач, таких как: борьба с горными ударами, взрывные подземные работы, охрана окружающей среды от загрязнения, проблемы сейсмобезопасности и др. В связи с этим возникают требования по проведению укрепительных работ горных выработок и подземных сооружений, то есть создание крепежных конструкций – крепей. Цилиндрические конструкции являются основными объектами, используемыми при возведении крепей указанных объектов подземного строительства.

Цель расчета подземных конструкций заключается в определении полей напряжений и перемещений, возникающих в элементах этих сооружений и установлении условий их прочности и устойчивости. В соответствии с результатами расчета выбираются рациональные конструкции крепей и оптимальные размеры их сечений, обеспечивающих надежную работу сооружений при минимальных затратах [1-8, 13-15].

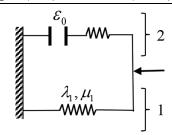
Помимо объектов исследования механики подземных сооружений цилиндрические конструкции находят широкое применение в различных областях машиностроения и строительной механики. В работах [16-20, 22-24] строятся модели для исследования напряженно-деформированных состояний как изотропных, так и анизотропных тел при их неупругой работе.

Характерной особенностью большинства материалов является их пористость, изменяющаяся под влиянием внешних воздействий. Поэтому для решения ряда задач в областях машиностроения, строительной и горной механики необходимым является учет закономерностей, вытекающих из изучения пористых сред: закон уплотнения, характеризующий сжимаемость материалов в результате уменьшения объема пор; зависимость между деформациями и напряжениями, характерную для пористых сред.


Следует отметить, что математическому моделированию поведения пористых сред под действием статических и динамических нагрузок посвящено достаточно большое число работ [5 - 9, 21]. Однако единой теории к настоящему времени еще не создано. Основные трудности на этом пути связаны с тем, что пористые материалы также обладают свойством разносопротивляемости — под действием сжимающих напряжений вплоть до момента схлопывания пор такие материалы оказываются более податливыми, чем при дальнейшем сжатии.

Учитывая вышесказанное, проведенное в этой работе аналитическое исследование неоднородного напряженно-деформированного состояния цилиндрического тела при радиальном сжатии в рамках модели среды, учитывающей пористую структуру материала при упругой работе полностью сжатой матрицы, является актуальной задачей, имеющей большое прикладное значение.

Постановка задачи. Рассмотрим вопрос об определении напряженно-деформированного состояния протяженного цилиндрического тела, с внешним радиусом b и внутренним – a (рис. 1). По внешней поверхности рассматриваемого тела действует равномерно распределенная сжимающая нагрузка интенсивностью q_b , по внутренней – равномерно распределенная сжимающая нагрузка интенсивностью q_a .


При определении напряженно-деформированного состояния не учитываются краевые эффекты, связанные с тем, что цилиндрическое тело имеет конечную длину, то есть, как было указано выше, рассматривается протяженное цилиндрическое тело.

Процесс деформирования пористого материала толстостенного цилиндрического тела, находящегося под действием равномерного радиального сжатия, разделим на два взаимосвязанных этапа. Первый – упругое деформирование сжимаемой пористой среды, второй – упругое деформирование полностью сжатой матрицы, обладающей свойством дальнейшей несжимаемости.

Puc. 1. Толстостенное цилиндрическое тело под действием равномерного радиального сжатия Fig. 1. Thick-walled cylindrical body under the action of uniform radial compression

Методы исследования. Свойства пористого материала будем определять в рамках модели, механическая схема которой представлена на рис. 2.

Puc. 2. Механическая модель пористого упругого тела Fig. 2. Mechanical model of a porous elastic body

Модель представляет собой параллельное соединение упругого сжимаемого элемента «1», характеризуемого коэффициентами Лямэ λ_1 , μ_1 с последовательной связкой «2» элемента жесткого контакта, характеризуемого величиной начальной деформации этого элемента - \mathcal{E}_0 (определяется удельным объемом пор), и упругого несжимаемого элемента с модулем сдвига μ_2

Напряжения в параллельном соединении «1-2» находятся как сумма напряжений элемента «1» и последовательной связки «2».

$$\sigma_j^{\beta} = \left(\sigma_j^{\beta}\right)_1 + \left(\sigma_j^{\beta}\right)_2,\tag{1}$$

где σ_{j}^{β} – компоненты тензора напряжений.

Связь между напряжениями и деформациями в упругом элементе «1» определим законом Γ ука для сжимаемого тела

$$\left(\sigma_{j}^{\beta}\right)_{1} = \lambda_{1} \varepsilon_{\alpha}^{\alpha} g_{j}^{\beta} + 2\mu_{1} \varepsilon_{j}^{\beta}, \tag{2}$$

где g_j^{β} , ε_j^{β} смешанные компоненты метрического тензора и тензора упругих деформаций соответственно.

Уравнение жесткого контакта, входящего в последовательное соединение «2», согласно [9] имеет вид

$$\left(\sigma_{j}^{\beta}\right)_{2}\left(\varepsilon_{\alpha}^{\alpha}+\varepsilon_{0}\right)=0,\tag{3}$$

причем $\left(\sigma_{j}^{\beta}\right)_{2}=0$ до полного сжатия пор, и $\varepsilon_{\alpha}^{\alpha}=-\varepsilon_{0}$ после.

Связь между напряжениями и деформациями в упругом элементе, входящем в «2», определим законом Гука для несжимаемого тела

$$\left(s_{j}^{\beta}\right)_{2} = 2\mu_{2}\left(\varepsilon_{j}^{\beta}\right)_{2},\tag{4}$$

 $_{\Gamma \text{Де}} \left(s_{j}^{\beta} \right)_{2} = \left(\sigma_{j}^{\beta} \right)_{2} - \frac{1}{3} \left(\sigma_{k}^{k} \right)_{2} g_{j}^{\beta}$ - компоненты девиатора тензора напряжений.

С учетом (3) и (4), согласно [5] зависимость напряжений через деформации в последовательном соединении «2» определяется соотношением

$$\left(\sigma_{j}^{\beta}\right)_{2} = \begin{cases} 0, & ec\pi u - \varepsilon_{\alpha}^{\alpha} < \varepsilon_{0}, \\ 2\mu_{2}\left(\varepsilon_{j}^{\beta} - \varepsilon_{j}^{\beta}\right) + \frac{1}{3}\left(\sigma_{\alpha}^{\alpha}\right)_{2}g_{j}^{\beta}, & ec\pi u - \varepsilon_{\alpha}^{\alpha} \geq \varepsilon_{0}, \end{cases}$$

$$(5)$$

, (5) где ε_j^β — деформации компонента «2» до момента полного сжатия пор и $\varepsilon_\alpha^\alpha = -\varepsilon_0$ — после.

Для осесимметричного случая напряженно-деформированное состояние, рассматриваемой цилиндрической конструкции в рамках плоского деформированного состояния в цилин-

дрической системе координат (r, θ , z) будем моделировать следующими соотношениями геометрически линейной теории

- уравнение равновесия

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \tag{6}$$

- соотношения Коши

$$\varepsilon_r = \frac{du}{dr}, \ \varepsilon_\theta = \frac{u}{r},$$
 (7)

где и – радиальная составляющая вектора перемещений;

- граничные условия в напряжениях

$$\sigma_r|_{r=b} = -q_b, \ \sigma_r|_{r=a} = -q_a, \ (q_a > 0, \ q_b > 0)$$
 (8)

Связь (2) между напряжениями и деформациями при упругом деформировании пористой среды при принятых допущениях перепишется в форме

$$\sigma_r = (\lambda_1 + 2\mu_1)\varepsilon_r + \lambda_1\varepsilon_\theta, \quad \sigma_\theta = \lambda_1\varepsilon_r + (\lambda_1 + 2\mu_1)\varepsilon_\theta, \quad \sigma_z = \lambda_1(\varepsilon_r + \varepsilon_\theta). \tag{9}$$

Упругие деформации сжатого скелета связаны с напряжениями соотношениями (5), которые в нашем случае примут вид

$$S_{r} = 2(\mu_{0} + \mu_{1})\varepsilon_{r} - 2\mu_{0}(\varepsilon_{r})_{0} + \frac{2}{3}\mu_{1}\varepsilon_{0}, S_{\theta} = 2(\mu_{0} + \mu_{1})\varepsilon_{\theta} - 2\mu_{0}(\varepsilon_{\theta})_{0} + \frac{2}{3}\mu_{1}\varepsilon_{0},$$

$$S_{z} = \frac{2}{3}\mu_{1}\varepsilon_{0}$$
(10)

В (10) и далее индекс «0» внизу компонент деформаций, напряжений и перемещений обозначает, что они вычислены на момент полного сжатия пор.

Условие несжимаемости на этапе упругого деформирования материала с полностью сжатой матрицей в случае плоского деформированного состояния для нашей задачи запишется в форме

$$\mathcal{E}_r + \mathcal{E}_\theta = -\mathcal{E}_0 \,. \tag{11}$$

Определим НДС рассматриваемого цилиндрического тела на первом этапе, то есть при наличии несхлопнутых пор следующим образом.

Запишем уравнение равновесия (6) в перемещениях, для чего подставим (7) в (9), а получившееся напряжения в (6), получим обыкновенное однородное дифференциальное уравнение второго порядка

$$r^2 \frac{d^2 u}{dr^2} + r \frac{du}{dr} - u = 0$$

общее решение которого, имеет вид

$$u = C_1 r + \frac{C_2}{r} {12}$$

Тогда деформации и напряжения, согласно (7), (9) и (12) определятся в форме

$$\varepsilon_r = C_1 - \frac{C_2}{r^2}, \quad \varepsilon_\theta = C_1 + \frac{C_2}{r^2}, \tag{13}$$

$$\sigma_r = 2(\lambda_1 + \mu_1)C_1 - 2\mu_1 \frac{C_2}{r^2}, \quad \sigma_\theta = 2(\lambda_1 + \mu_1)C_1 + 2\mu_1 \frac{C_2}{r^2}. \tag{14}$$

Согласно (11) и (13) объемная деформация на этом этапе имеет вид

$$\varepsilon_r + \varepsilon_\theta = C_1 - \frac{C_2}{r^2} + C_1 + \frac{C_2}{r^2} = 2C_1$$
 (15)

Как следует из (15) объемная деформация не зависит от координаты, то есть она одина-

кова во всем теле. Поэтому полное сжатие пор произойдет одновременно во всем теле при достижении объемной деформацией своего предельного значения, равного значению начального раствора пор ε_0 ($\varepsilon_0 > 0$), взятого с противоположным знаком.

С учетом этого условие наличия несхлопнутых пор в теле запишем в форме

$$-\big(\varepsilon_r+\varepsilon_\theta\big)<\varepsilon_0,$$
 или с учетом (13)
$$-2C_1<\varepsilon_0. \tag{16}$$

Константы интегрирования C_1 , C_2 определим из граничных условий (8) следующим образом

$$\begin{cases}
2(\lambda_{1} + \mu_{1})C_{1} - 2\mu_{1} \frac{C_{2}}{b^{2}} = -q_{b} \\
2(\lambda_{1} + \mu_{1})C_{1} - 2\mu_{1} \frac{C_{2}}{a^{2}} = -q_{a}
\end{cases} \Rightarrow
\begin{cases}
C_{2} = \frac{q_{b} - q_{a}}{2\mu_{1}} \cdot \frac{a^{2}b^{2}}{a^{2} - b^{2}} \\
2(\lambda_{1} + \mu_{1})C_{1} = -q_{a} + 2\mu_{1} \frac{C_{2}}{a^{2}}
\end{cases} \Rightarrow
\begin{cases}
C_{2} = \frac{q_{b} - q_{a}}{2\mu_{1}} \cdot \frac{a^{2}b^{2}}{a^{2} - b^{2}} \\
C_{1} = \frac{1}{a^{2} - b^{2}} \cdot \frac{(q_{b}b^{2} - q_{a}a^{2})}{2(\lambda_{1} + \mu_{1})}
\end{cases}$$

$$C_{1} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})}, C_{2} = \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})}.$$

$$C_{1} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})}, C_{2} = \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})}.$$

$$C_{1} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})}, C_{2} = \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})}.$$

$$C_{1} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})}, C_{2} = \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})}.$$

$$C_{1} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})}, C_{2} = \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})}.$$

$$C_{1} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})}, C_{2} = \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})}.$$

Тогда условие (16) при учете (17) примет вид

$$q_b b^2 - q_a a^2 < \varepsilon_0 \left(\lambda_1 + \mu_1 \right) \left(b^2 - a^2 \right). \tag{18}$$

При этом поля перемещений, деформаций и напряжений согласно (12) – (14) с учетом найденных констант (17) перепишутся в форме

$$u = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})} \cdot r + \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})} \cdot \frac{1}{r},$$

$$\varepsilon_{r} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})} - \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})} \cdot \frac{1}{r^{2}}, \quad \varepsilon_{\theta} = \frac{q_{b}b^{2} - q_{a}a^{2}}{2(\lambda_{1} + \mu_{1})(a^{2} - b^{2})} + \frac{(q_{b} - q_{a})a^{2}b^{2}}{2\mu_{1}(a^{2} - b^{2})} \cdot \frac{1}{r^{2}},$$

$$\sigma_{r} = q_{a} \cdot \frac{a^{2}(r^{2} - b^{2})}{r^{2}(b^{2} - a^{2})} + q_{b} \cdot \frac{b^{2}(a^{2} - r^{2})}{r^{2}(b^{2} - a^{2})}, \quad \sigma_{\theta} = q_{a} \cdot \frac{a^{2}(r^{2} + b^{2})}{r^{2}(b^{2} - a^{2})} - q_{b} \cdot \frac{b^{2}(r^{2} + a^{2})}{r^{2}(b^{2} - a^{2})},$$

$$\sigma_{z} = q_{a} \cdot \frac{\lambda_{1}a^{2}}{(\lambda_{1} + \mu_{1})(b^{2} - a^{2})} - q_{b} \cdot \frac{\lambda_{1}b^{2}}{(\lambda_{1} + \mu_{1})(b^{2} - a^{2})}.$$

$$(19)$$

Как следует из (18) достижение величины начального раствора пор своего нулевого значения (иначе - достижение объемной деформацией величины $^{-\mathcal{E}_0}$) при упругом деформировании материала происходит одновременно во всем теле под действием внешних сжимающих нагрузок удовлетворяющих условию

$$q_b b^2 = \varepsilon_0 (\lambda_1 + \mu_1) (b^2 - a^2) + q_a \cdot f(\varepsilon_0) a^2,$$

$$f(\varepsilon_0) = \begin{cases} 1, & \text{если } \varepsilon_0 \neq 0 \\ 0, & \text{если } \varepsilon_0 = 0 \end{cases}$$

$$(20)$$

где

При этом напряженно-деформированное состояние (19) на момент полного сжатия пор, то есть при выполнении условия (20), определится соотношениями

$$(u)_0 = -\frac{\varepsilon_0}{2} \cdot r + \frac{\left(q_a \cdot f(\varepsilon_0) - \varepsilon_0 \left(\lambda_1 + \mu_1\right)\right)}{2\mu_1} \cdot \frac{a^2}{r}$$

$$(\varepsilon_{r})_{0} = -\frac{\varepsilon_{0}}{2} - \frac{\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{2\mu_{1}} \frac{a^{2}}{r^{2}}, \quad (\varepsilon_{\theta})_{0} = -\frac{\varepsilon_{0}}{2} + \frac{\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{2\mu_{1}} \frac{a^{2}}{r^{2}}, \quad (21)$$

$$(\sigma_{r})_{0} = -\varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right) - \frac{\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)a^{2}}{r^{2}}, \quad (\sigma_{\theta})_{0} = -\varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right) + \frac{\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)a^{2}}{r^{2}}, \quad (\sigma_{z})_{0} = -\lambda_{1}\varepsilon_{0}, \quad (\sigma_{z})_{0} =$$

Если после полного сжатия пор среда испытывает дальнейшие деформации, то записанное напряженно-деформированное состояние (21) будет частью напряженно-деформированного состояния после закрытия пор, которое реализуется при выполнении неравненства

$$q_b > q_a \cdot f\left(\varepsilon_0\right) \left(\frac{a}{b}\right)^2 + \varepsilon_0 \left(\lambda_1 + \mu_1\right) \left(1 - \frac{a^2}{b^2}\right). \tag{22}$$

Перейдем теперь к определению полей напряжений, деформаций и перемещений на втором этапе деформирования, то есть на этапе деформирования материла с полностью сжатой матрицей, обладающей свойством дальнейшей несжимаемости.

Если внешние нагрузки таковы, что выполняется неравенство (22), то полностью сжатый скелет будет деформироваться как несжимаемая упругая среда с модулем сдвига $\mu = \mu_1 + \mu_0$.

Записывая условие (11) в перемещениях с использованием формул Коши (7) получим неоднородное дифференциальное уравнение первого порядка

$$\frac{du}{dr} + \frac{u}{r} = -\varepsilon_0$$

общим решением которого, будет

$$u = \frac{D}{r} - \frac{\varepsilon_0}{2} r \tag{23}$$

Из (7) с учетом (23) деформации на втором этапе деформирования определятся в форме

$$\varepsilon_r = -\frac{D}{r^2} - \frac{\varepsilon_0}{2}, \quad \varepsilon_\theta = \frac{D}{r^2} - \frac{\varepsilon_0}{2}. \tag{24}$$

Запишем разность напряжений $\sigma_r - \sigma_\theta$, входящую в уравнение равновесия (6) через разность компонент девиатора напряжений $\sigma_r - \sigma_\theta = S_r - S_\theta$, которая в свою очередь с учетом (10) представима в форме

$$\sigma_r - \sigma_\theta = S_r - S_\theta = 2(\mu_0 + \mu_1)(\varepsilon_r - \varepsilon_\theta) - 2\mu_0((\varepsilon_r)_0 - (\varepsilon_\theta)_0). \tag{25}$$

При этом разность деформаций с учетом (24) имеет вид

$$\varepsilon_r - \varepsilon_\theta = -\frac{2D}{r^2} \,; \tag{26}$$

разность деформаций на момент полного сжатия пор определим из (21) в виде

$$\left(\varepsilon_{r}\right)_{0} - \left(\varepsilon_{\theta}\right)_{0} = -\frac{\left(q_{a} \cdot f(\varepsilon_{0}) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}} \frac{a^{2}}{r^{2}}.$$
(27)

Соотношение (25) с учетом (26) и (27) перепишется в форме

$$\sigma_r - \sigma_\theta = -4\left(\mu_0 + \mu_1\right) \frac{D}{r^2} + \frac{2\mu_0 \left(q_a \cdot f(\varepsilon_0) - \varepsilon_0 \left(\lambda_1 + \mu_1\right)\right)}{\mu_1} \frac{a^2}{r^2} \tag{28}$$

Подставляя полученную разность (28) в уравнение равновесия (6) приходим к дифференциальному уравнению с разделяющимися переменными вида

$$\frac{d\sigma_{r}}{dr} = 4\left(\mu_{0} + \mu_{1}\right)\frac{D}{r^{3}} - \frac{2\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\frac{a^{2}}{r^{3}}$$

интегрируя которое получим:

$$\sigma_{r} = \left(\frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)a^{2}}{\mu_{1}} - 2\left(\mu_{0} + \mu_{1}\right)D\right)\frac{1}{r^{2}} + C$$
(29)

где C — константа интегрирования, которую с помощью граничного условия (8) на внешней поверхности крепи можно выразить через константу D следующим образом:

$$C = -q_b - \left(\frac{\mu_0 \left(q_a \cdot f\left(\varepsilon_0\right) - \varepsilon_0 \left(\lambda_1 + \mu_1\right)\right) a^2}{\mu_1} - 2\left(\mu_0 + \mu_1\right) D\right) \frac{1}{b^2}$$
(30)

Тогда из (29) и (28) с учетом (30) напряжения на втором этапе деформирования при реализации условия (22) определятся в виде

$$\sigma_{r} = \left(2(\mu_{0} + \mu_{1})D - \frac{\mu_{0}(q_{a} \cdot f(\varepsilon_{0}) - \varepsilon_{0}(\lambda_{1} + \mu_{1}))a^{2}}{\mu_{1}}\right)\left(\frac{1}{b^{2}} - \frac{1}{r^{2}}\right) - q_{b},$$

$$\sigma_{\theta} = \left(2(\mu_{0} + \mu_{1})D - \frac{\mu_{0}(q_{a} \cdot f(\varepsilon_{0}) - \varepsilon_{0}(\lambda_{1} + \mu_{1}))a^{2}}{\mu_{1}}\right)\left(\frac{1}{b^{2}} + \frac{1}{r^{2}}\right) - q_{b}.$$

$$(31)$$

Константу интегрирования D определим из второго граничного условия (8) на внутренней поверхности крепи

$$2(\mu_0 + \mu_1)D = \frac{(q_b - q_a)a^2b^2}{a^2 - b^2} + \frac{\mu_0(q_a \cdot f(\varepsilon_0) - \varepsilon_0(\lambda_1 + \mu_1))a^2}{\mu_1}.$$
(32)

Подставляя (32) в (31), (24), (23) получим, что напряжения, деформации и перемещения соответственно перепишутся в виде

$$\sigma_{r} = q_{b} \frac{\left(r^{2} - a^{2}\right)b^{2}}{\left(a^{2} - b^{2}\right)r^{2}} - q_{a} \frac{\left(r^{2} - b^{2}\right)a^{2}}{\left(a^{2} - b^{2}\right)r^{2}}, \quad \sigma_{\theta} = q_{b} \frac{\left(a^{2} + r^{2}\right)b^{2}}{\left(a^{2} - b^{2}\right)r^{2}} - q_{a} \frac{\left(r^{2} + b^{2}\right)a^{2}}{\left(a^{2} - b^{2}\right)r^{2}}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(b^{2} - a^{2}\right)} + \frac{\mu_{0}\left(\varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right) - q_{a} \cdot f\left(\varepsilon_{0}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^{2} - b^{2}\right)} + \frac{\mu_{0}\left(q_{a} \cdot f\left(\varepsilon_{0}\right) - \varepsilon_{0}\left(\lambda_{1} + \mu_{1}\right)}{\mu_{1}}\right) - \frac{\varepsilon_{0}}{2}, \quad c_{\theta} = \frac{a^{2}}{2\mu r^{2}} \left(\frac{\left(q_{b} - q_{a}\right)b^{2}}{\left(a^$$

где $\mu = \mu_0 + \mu_1$.

Таким образом, если выполнено условие (18), то реализуется этап упругого деформирования пористого материала толстостенного цилиндрического тела при равномерном радиальном сжатии. При этом напряженно-деформированное состояние определяется соотношениями (19).

Выполнение равенства (20) соответствует моменту полного сжатия пор для всей области рассматриваемого цилиндрического тела. Поля перемещений, деформаций и напряжений при

этом выражаются формулами (21).

При выполнении неравенства (22) реализуется этап упругого деформирования материала исследуемой цилиндрической конструкции с полностью сжатой матрицей, которому соответствует напряженно-деформированное состояние, определяемое по формулам (33).

Обсуждение результатов. Графические зависимости, построенные согласно соотношениям (22), (33) представлены на рис. 3-5.

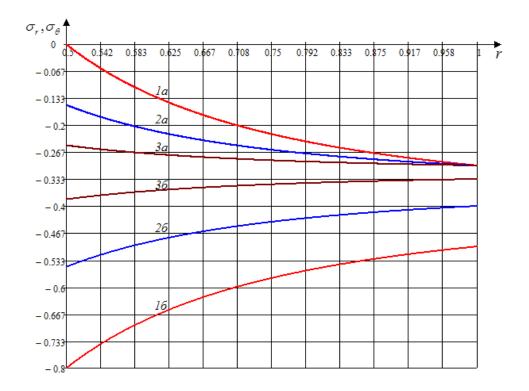
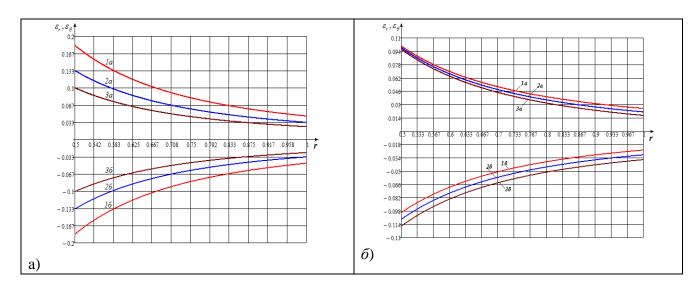



Рис. 3. Зависимость компонент напряжений σ_r и σ_{θ} от текущего радиуса при различных значениях внутреннего давления

Fig. 3. Dependence of stress components σ_r and σ_θ on the current radius for different values of internal pressure

Зависимости, представленные на рисунках 3-5 соответствуют безразмерным значениям соответствующих величин. При этом все величины, имеющие размерность напряжений отнесены к величине μ_1 , а имеющие размерность длины – к внешнему радиусу цилиндрического тела b.

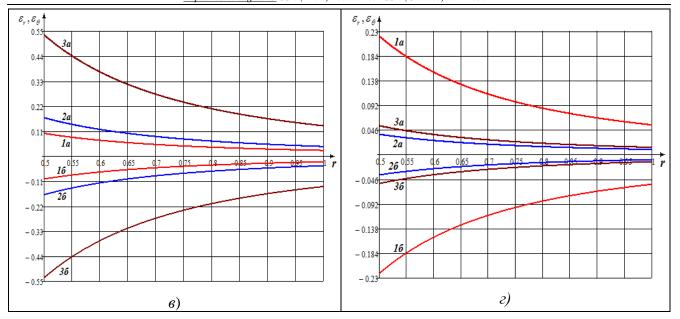
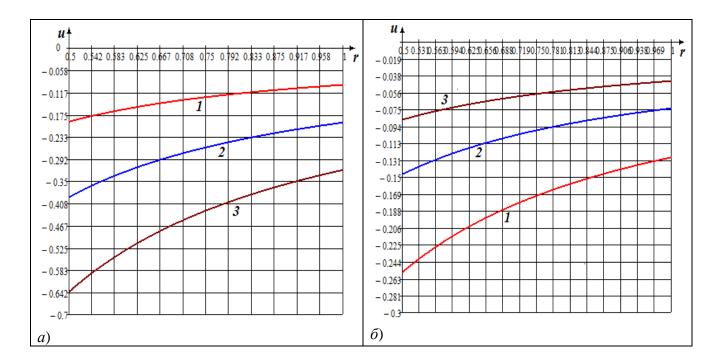



Рис. 4. Зависимость компонент деформаций ε_r и ε_θ от текущего радиуса при различных значениях физико-механических и геометрических параметров материала крепи Fig. 4. Dependence of the deformation components ε_r and ε_θ on the current radius for different values of physicomechanical and geometric parameters of the support material

Puc. 5. Зависимость радиальной компоненты вектора перемещений от текущей координаты при различных значениях толщины крепи и внутреннего давления

Fig. 5. Dependence of the radial component of the displacement vector on the current coordinate for different values of the thickness of the support and internal pressure

Безразмерные значения физико-механических параметров материала цилиндрической конструкции и ее геометрических размеров для каждой из кривых выбирались согласно данным, приведенным в табл. 1.

Таблица 1. Геометрические размеры кривых Table 1. Geometrical dimensions of curves

№	№ кривой	зависимость	λ	μ	\mathcal{E}_0	а	b	q_a	$q_{\scriptscriptstyle b}$
	Кривая 1а		0.5	2	10^{-2}	0.5	1	0	0.3
Рис. 3	Кривая 2а	$\sigma_r(r)$	0.5	2	10^{-2}	0.5	1	0.15	0.3
	Кривая За	_	0.5	2	10^{-2}	0.5	1	0.25	0.3
	Кривая 1 <i>б</i>	$\sigma_{ heta}(r)$	0.5	2	10^{-2}	0.5	1	0	0.3
	Кривая 2б		0.5	2	10^{-2}	0.5	1	0.15	0.3
	Кривая 3б		0.5	2	10^{-2}	0.5	1	0.25	0.3
Рис. 4а	Кривая 1 <i>а</i>	$\varepsilon_r(r)$	0.5	1.1	10^{-2}	0.5	1	0	0.3
	Кривая 2а		0.5	1.5	10^{-2}	0.5	1	0	0.3
	Кривая За		0.5	2	10^{-2}	0.5	1	0	0.3
	Кривая 1б		0.5	1.1	10^{-2}	0.5	1	0	0.3
	Кривая 2б	$arepsilon_{ heta}(r)$	0.5	1.5	10^{-2}	0.5	1	0	0.3
	Кривая 3б		0.5	2	10^{-2}	0.5	1	0	0.3
	Кривая 1а		0.5	2	10^{-6}	0.5	1	0	0.3
	Кривая 2а	$\varepsilon_r(r)$	0.5	2	10^{-2}	0.5	1	0	0.3
D 45	Кривая За]	0.5	2	$2 \cdot 10^{-2}$	0.5	1	0	0.3
Рис. 46	Кривая 1 <i>б</i>		0.5	2	10^{-6}	0.5	1	0	0.3
	Кривая 2б	$arepsilon_{ heta}(r)$	0.5	2	10^{-2}	0.5	1	0	0.3
	Кривая 3б		0.5	2	$3 \cdot 10^{-2}$	0.5	1	0	0.3
	Кривая 1 <i>а</i>	$\varepsilon_r(r)$	0.5	2	10^{-2}	0.5	1	0	0.3
	Кривая 2а		0.5	2	10^{-2}	0.6	1	0	0.3
	Кривая За		0.5	2	10^{-2}	0.8	1	0	0.3
Рис. 4в	Кривая 16	$arepsilon_{ heta}(r)$	0.5	2	10^{-2}	0.5	1	0	0.3
	Кривая 2б		0.5	2	10^{-2}	0.6	1	0	0.3
	Кривая 3б		0.5	2	10^{-2}	0.8	1	0	0.3
	Кривая 1 <i>а</i>	$\varepsilon_{r}(r)$	0.5	2	10^{-2}	0.5	1	0.1	0.8
	Кривая 2а		0.5	2	10^{-2}	0.5	1	0.5	0.8
D 4-	Кривая За		0.5	2	10^{-2}	0.5	1	0.7	0.8
Рис. 4г	Кривая 1б	$arepsilon_{ heta}(r)$	0.5	2	10^{-2}	0.5	1	0.2	0.8
	Кривая 2б		0.5	2	10^{-2}	0.5	1	0.5	0.8
	Кривая 3б		0.5	2	10^{-2}	0.5	1	0.7	0.8
	Кривая 1	u(r)	0.5	2	10^{-2}	0.7	1	0	0.3
Рис. 5 <i>a</i>	Кривая 2		0.5	2	10^{-2}	0.85	1	0	0.3
	Кривая 3		0.5	2	10^{-2}	0.9	1	0	0.3
Рис. 56	Кривая 1	u(r)	0.5	2	10^{-2}	0.8	1	0.01	0.3
	Кривая 2		0.5	2	10^{-2}	0.8	1	0.1	0.3
	Кривая 3		0.5	2	10^{-2}	0.8	1	0.25	0.3

Отметим, что безразмерные значения физико-механически параметров материала толстостенного цилиндрического тела выбирались произвольно в ввиду сугубо фундаментальных целей исследования и отсутствия строгой привязки к конкретному материалу. В тоже время для того чтобы получить качественно верное поведение модели все параметры брались только в диапазонах допустимых для различных марок бетона и растворов, используемых для подземного шахтного строительства, основываясь на информации, приведенной работах [10 - 11].

Вывод. Из анализа результатов, представленных зависимостей следует, что распределение компонент напряжений σ_r и σ_θ происходит почти симметричным образом вдоль значения, определяемого интенсивностью внешнего давления q_b , при этом, чем больше разница внутреннего и внешнего давлений, тем больше отклонение напряжений от внешнего давления (рис. 3);

- при увеличении относительного модуля сдвига μ материала с полностью сжатой матрицей деформации уменьшаются (рис. 4a); с ростом величины \mathcal{E}_0 , определяемой удельным объемом пор, абсолютное значение радиальной компоненты деформаций \mathcal{E}_r тела с полностью сжатой матрицей уменьшаются, в то время как модули двух других компонент \mathcal{E}_{θ} , \mathcal{E}_{φ} тензора деформаций увеличиваются (рис. 4δ);
- с ростом относительного внутреннего радиуса цилиндрического тела деформации материала с полностью сжатой матрицей увеличиваются (рис. 48);
- при уменьшении разности внешнего и внутреннего давлений деформации уменьшаются (рис. 4г);
- абсолютные значения радиальных компонент вектора перемещения увеличиваются с ростом относительного внутреннего радиуса рассматриваемого цилиндрического тела и уменьшаются при уменьшении разности внутреннего и внешнего давлений (рис. 5a, 5 δ).

Необходимо отметить, что если в формулах (18), (33), описывающих напряженно-деформированное состояние цилиндрического тела на этапе упругого деформирования материла с полностью сжатой матрицей, предположить $\varepsilon_0 = 0$, то получим результаты работы [12].

Библиографический список:

- 1. Булычев Н.С. Механика подземных сооружений. М., Недра, 1982. 270 с.
- 2. Кацауров И.Н. Механика горных пород. М.: Недра. 1981. 161 с.
- 3. Алимжанов М.Т. Проблемы устойчивости равновесия в задачах геомеханики // Успехи механики, 1990, 13, №3, С. 21-57.
- 4. Гоцев Д.В., Ененко И.А., Спорыхин А.Н. Локальная неустойчивость горизонтальных выработок многоугольной формы в упруго-вязко-пластических массивах.//Прикладная механика и техническая физика, СО РАН.-2005.-Т46, №2. С. 141-150.
- 5. Гоцев Д.В., Спорыхин А.Н. Метод возмущений в задачах устойчивости подкрепленных горных выработок. Воронеж: Воронежский государственный университет, 2010. 299 с.
- 6. Гоцев Д. В., Бунтов А.Е. Устойчивость монолитной крепи вертикальной горной выработки с учетом начальной пористости материала и неупругой работы сжатого скелета // Вестник Самарского государственного технического университета. Сер Физ.-мат. науки», 2016. Т. 20, №3. С. 457 474..
- 7. Гоцев Д. В., Бунтов А.Е., Перунов Н.С. Математическая модель процесса деформирования крепи вертикальной горной выработки с учетом начальной пористости материала и упруговязкопластических свойств сжатого скелета // Проблемы прочности и пластичности. Т.78, №3.-

- Нижний Новгород: Изд-во Нижегородского госуниверситета, 2016. С. 289 299.
- 8. Гузь А.Н. Основы теории устойчивости горных выработок. Киев: Наук. думка, 1977. 204 с.
- 9. Садовская О. В., Садовский В.М. Математическое моделирование в задачах механики сыпучих сред. М.: ФИЗ-МАТЛИТ, 2008. 368 с.
- 10. Докунин О.С., Косков И.Г., Друцко В.П., Бернштейн С.А. Бетоны и растворы для подземного шахтного строительства. Справочное пособие. М.: Недра,1989. 216 с.
- 11. Баженов Ю.М. Технология бетона. Учебник. -М.: Издво АСВ, 2003 500 с.
- 12. Лурье А.И. Пространственные задачи теории упругости. М.: ГИТЛ, 1955. —491 с.
- 13. Jefferies M.G., Shuttle D.A. Calibration and use. Prediction, analysis and design in geomechanical applications // Norsand (The 11th Conf. of IACMAG vol 1), 2005. P. 345–352
- 14. Tien Y.M., Kuo M.C. A failure criterion for transversely isotropic rocks // Int. J Rock Mech Min 38, 2001. P. 399–412
- 15. Vervoort A., Min K., Konietzkyc H., Cho J. W., Debecker B., Dinh Q., Frühwirt T., Tavallali A. Failure of transversely isotropic rock under Brazilian test conditions // Int. J Rock Mech Min 70, 2014. P. 343–352
- 16. Borja R.I., Lin C.H., Montans F.J., Cam-clay plasticity, Part IV: Implicit integration of anisotropic, bounding surface model with nonlinear hyperelasticity and ellipsoidal loading

- function // Comp. Meth. Appl. Mach. Engng., Vol. 190(26-27), 2001. P.3293-3323.
- 17. Desai C.S. Mechanics of Materials and Interfaces, The Disturbed State Concept // CRC Press, Boca Raton,FL,USA, 2001.
- 18. Ingham T.J. Issues in the seismic analysis of bridges // Bathe, K.J., ed., Computational Fluid and Solid Mechanics, Elsevier Science, 2001.
- 19. Jeremic B., Runesson K., Sture S. A model for elastic-plastic pressure sensitive materials subjected to large deformations // Int. J.Solids and Structures, Vol. 36, 1999. P.4901-4918.
- 20. Kawka M., Bathe K.J. Implicit integration for solution of metal forning processes// Bathe, K.J., ed., Computational Fluid and Solid Mechanics, Elsevier Science, 2001.

References:

- 1. Bulychev N.S. Mekhanika podzemnykh sooruzhenii. M.: Nedra; 1982. 270 s. [Bulychev N.S. Mechanics of underground constructions. M.: Nedra; 1982. 270 p. (In Russ.)]
- 2. Katsaurov I.N. Mekhanika gornykh porod. M.: Nedra; 1981. 161 s. [Katsaurov I.N. Mechanics of rocks. M.: Nedra; 1981. 161 p. (In Russ.)]
- 3. Alimzhanov M.T. Problemy ustoichivosti ravnovesiya v zadachakh geomekhaniki. Uspekhi mekhaniki. 1990;13(3):21-57. [Alimzhanov M.T. Equilibrium stability issues in the problems of geomechanics. Uspekhi mekhaniki. 1990;13(3):21-57. (In Russ.)]
- 4. Gotsev D.V., Enenko I.A., Sporykhin A.N. Lokal'naya neustoichivost' gorizontal'nykh vyrabotok mnogougol'noi formy v uprugo-vyazko-plasticheskikh massivakh. Prikladnaya mekhanika i tekhnicheskaya fizika. 2005;46(2):141-150. [Gotsev D.V., Enenko I.A., Sporykhin A.N. Local instability of horizontal mines of polygonal shape in elastic-viscous-plastic massifs. Journal of Applied Mechanics and Technical Physics. 2005;46(2):141-150. (In Russ.)]
- 5. Gotsev D.V., Sporykhin A.N. Metod vozmushchenii v zadachakh ustoichivosti podkreplennykh gornykh vyrabotok. Voronezh: Voronezhskii gosudarstvennyi universitet; 2010. 299 s. [Gotsev D.V., Sporykhin A.N. The perturbation method in the problems of the stability of reinforced mines. Voronezh: Voronezh State University; 2010. 299 p. (In Russ.)]
- 6. Gotsev D. V., Buntov A.E. Ustoichivost' monolitnoi krepi vertikal'noi gornoi vyrabotki s uchetom nachal'noi poristosti materiala i neuprugoi raboty szhatogo skeleta. Vest. Sam. gos. tekhn. un-ta. Ser Fiz.-mat. nauki. 2016;20(3):457 474. [Gotsev D. V., Buntov A.E. Stability of a monolithic support of vertical mining with regard to the initial porosity of the material and the inelastic work of the compressed skeleton. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2016;20(3):457 474. (In Russ.)]
- 7. Gotsev D. V., Buntov A.E., Perunov N.S. Matematicheskaya model' protsessa deformirovaniya krepi vertikal'noi gornoi vyrabotki s uchetom nachal'noi poristosti materiala i uprugovyazkoplasticheskikh svoistv szhatogo skeleta. Problemy prochnosti i plastichnosti. 2016;78(3):289 299. [Gotsev D. V., Buntov A.E., Perunov N.S. A mathematical model of the deformation process of the vertical mining support with with regard to the initial porosity of the material and the elastic-viscous-plastic properties of the compressed skeleton.

Problems of strength and plasticity. 2016;78(3):289 - 299. (In Russ.)]

- 21. Kojic M. Stress integration procedures for inelastic material models within the finite element method // Appl. Mech. Reviews, Vol. 55, No. 4, 2002. P.389-414
- 22. Montans F.J., Bathe K.J. On the stress integration in large strain elasto-plasticity // Bathe, K.J., ed. Computational Fluid and Solid Mechanics, Proc. Second M.I.T. Conference on Computational Fluid and Solid Mechanics, Elsevier Science, 2003.
- 23. Ulm F.J., Coussy O. Mechanics and Durability of Solids //Vol.1, Solid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 2003
- 24. Simo J.C., Hughes T.J.R. Computational Inelasticity // Springer-Verlag, New York., 1998.
- 8. Guz' A.N. Osnovy teorii ustoichivosti gornykh vyrabotok. Kiev: Nauk. dumka; 1977. 204 s. [Guz' A.N. Fundamentals of the theory of stability of mines. Kiev: Nauk. dumka; 1977. 204 p. (In Russ.)]
- 9. Sadovskaya O.V., Sadovskii V.M. Matematicheskoe modelirovanie v zadachakh mekhaniki sypuchikh sred. M.: FIZ-MATLIT; 2008. 368 s. [Sadovskaya O.V., Sadovskii V.M. Mathematical modeling in problems of mechanics of loose media. M.: FIZMATLIT; 2008. 368 p. (In Russ.)]
- 10. Dokunin O.S., Koskov I.G., Drutsko V.P., Bernshtein S.A. Betony i rastvory dlya podzemnogo shakhtnogo stroitel'stva. Spravochnoe posobie. M.: Nedra; 1989. 216 s. [Dokunin O.S., Koskov I.G., Drutsko V.P., Bernshtein S.A. Concretes and solutions for underground mine construction. Reference book. M.: Nedra; 1989. 216 p. (In Russ.)]
- 11. Bazhenov Yu.M. Tekhnologiya betona. Uchebnik. M.: Izdvo ASV; 2003. 500 s. [Bazhenov Yu.M. Technology of concrete. A tutorial. M.: Izd-vo ASV; 2003. 500 p. (In Russ.)]
- 12. Lur'e A.I. Prostranstvennye zadachi teorii uprugosti. M.: GITL; 1955. 491 s. [Lur'e A.I. Spatial problems in the theory of elasticity. M.: GITL; 1955. 491 p. (In Russ.)]
- 13. Jefferies M.G., Shuttle D.A. Calibration and use. Prediction, analysis and design in geomechanical applications. Norsand (The 11th Conf. of IACMAG vol 1). 2005. pp. 345–352.
- 14. Tien Y.M., Kuo M.C. A failure criterion for transversely isotropic rocks. Int. J Rock Mech Min. 2001;38:399–412.
- Vervoort A., Min K., Konietzkyc H., Cho J. W., Debecker B., Dinh Q., Frühwirt T., Tavallali A. Failure of transversely isotropic rock under Brazilian test conditions. Int. J Rock Mech Min. 2014;70:343–352.
- 16. Borja R.I., Lin C.H., Montans F.J., Cam-clay plasticity, Part IV: Implicit integration of anisotropic, bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function. Comp. Meth. Appl. Mach. Engng. 2001;190(26-27):3293-3323.
- 17. Desai C.S. Mechanics of Materials and Interfaces, The Disturbed State Concept. CRC Press: Boca Raton, FL,USA; 2001.
- 18. Ingham T.J. Issues in the seismic analysis of bridges. Computational Fluid and Solid Mechanics (Ed. Bathe K.J.). Elsevier Science; 2001.
- 19. Jeremic B., Runesson K., Sture S. A model for elastic-plastic pressure sensitive materials subjected to large deformations. Int. J.Solids and Structures. 1999;36:4901-4918. 20. Kawka M., Bathe K.J. Implicit integration for solution of metal forning processes. Computational Fluid and Solid Mechanics (Ed. Bathe K.J.). Elsevier Science; 2001.

- 21. Kojic M. Stress integration procedures for inelastic material models within the finite element method. Appl. Mech. Reviews. 2002;55(4):389-414.
- 22. Montans F.J., Bathe K.J. On the stress integration in large strain elasto-plasticity. Computational Fluid and Solid Mechanics (Ed. Bathe K.J.). Elsevier Science; 2003.
- 23. Ulm F.J., Coussy O. Mechanics and Durability of Solids. Solid Mechanics. Vol.1. Prentice-Hall: Englewood Cliffs, N.J.; 2003.
- 24. Simo J.C., Hughes T.J.R. Computational Inelasticity. Springer-Verlag: New York; 1998.

Сведения об авторах:

Бунтов Алексей Евгеньевич – капитан, старший научный сотрудник.

Гоцев Дмитрий Викторович – доктор физико-математических наук, профессор, кафедра математики. **Information about the authors.**

Alexey E. Buntov – Captain, Senior Researcher.

Dmitriy V. Gotsev – Dr. Sci. (Physical and Mathematical), Prof., Department of Mathematics.

Конфликт интересов. Conflict of interest.

Авторы заявляют об отсутствии конфликта интересов. The authors declare no conflict of interest.

Поступила в редакцию 28.12.2017. Received 28.12.2017

Принята в печать 28.01.2018. Accepted for publication 28.01.2018.

Для цитирования: Гусейнов Р.В. Динамометрическая аппаратура для измерения составляющих сил резания при обработке осевым инструментом. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1):22-29. DOI:10.21822/2073-6185-2018-45-1-22-29

For citation: Guseinov R. V. Dynamometric equipment for measuring the components of cutting strengths when processing materials with axial tools. Herald of Daghestan State Technical University. Technical Sciences.2018;45 (1):22-29.(In Russ.) DOI:10.21822/2073-6185-2018-45-1-22-29

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ МЕХАНИКА

УДК 67.05

DOI: 10.21822/2073-6185-2018-45-1-22-29

ДИНАМОМЕТРИЧЕСКАЯ АППАРАТУРА ДЛЯ ИЗМЕРЕНИЯ СОСТАВЛЯЮЩИХ СИЛ РЕЗАНИЯ ПРИ ОБРАБОТКЕ ОСЕВЫМ ИНСТРУМЕНТОМ

Гусейнов Р.В.

Дагестанский государственный технический университет, 367026, г. Махачкала, пр. Имама Шамиля, 70, Россия, e-mail:ragus05@mail.ru

Резюме. Цель. Целью исследования является разработка динамометрической аппаратуры для измерения составляющих сил резания при обработке осевым инструментом в динамическом режиме. Метод. Исследование основано на применении электрических методов с использованием пьезоэлектрических и тензометрических преобразователей, главным преимуществом которых является возможность регистрации и записи быстропротекающих динамических процессов. Результат. На основе анализа существующих динамометров обоснована необходимость разработки нового современного динамометрического устройства, позволяющего регистрировать и записывать колебания составляющих сил резания в динамическом режиме. Указано на преимущество использования тензометрических датчиков для динамометра. Анализ используемых конструкций динамометров показал, что датчики для измерения осевых сил и крутящего момента располагались на одном упругом элементе, что отражается на точности их измерения из-за их взаимовлияния. Поэтому потребовалось располагать их на различных упругих элементах. Представлена разработанная и изготовленная динамометрическая аппаратура для проведения исследовательских работ в области технологии обработки осевым инструментом. Рассчитана относительная погрешность измерений. Вывод. Динамометрическая аппаратура позволяет регистрировать без искажения периодические и квазипериодические колебания двух составляющих сил резания для различных процессов нарезания резьб метчиками, сверления и зенкерования, происходящие с частотой до 1500 Гц в режиме реального времени, и может быть использована для оптимизации параметров резания. С помощью динамометрической аппаратуры возможна регистрация сигналов с датчиков силы в количестве до 8 в режиме реального времени, усиление сигналов, трансформация сигнала с аналогового в цифровой; визуализация данных; процедура вывода на печать результатов экспериментальных данных. Аппаратура может быть использована в научно- исследовательских лабораториях машиностроительных предприятий, вузов и других научных учреждениях.

Ключевые слова: датчики измерения сил резания; динамометры; обработка отверстий; динамика резания; относительная погрешность динамометра; экспериментальное измерение силы резания

PHYSICAL-MATEMATICAL SCIENCE MECHANICS

DYNAMOMETRIC EQUIPMENT FOR MEASURING THE COMPONENTS OF CUTTING STRENGTHS WHEN PROCESSING MATERIALS WITH AXIAL TOOLS

Rasul V. Guseynov

Daghestan State Technical University, 70 I. Shamilya Ave., Makhachkala 367026, Russia, e-mail: ragus05@mail.ru

Abstract Objectives. The purpose of the study is to develop dynamometric equipment for measuring the components of cutting forces when processing materials with an axial tool in a dynamic mode. Methods. The study is based on the application of electrical methods using piezoelectric and strain gauge transducers, whose main advantage is the ability to register and record fast-moving dynamic processes. Results. Based on an analysis of existing dynamometers, the necessity of developing a new modern dynamometer device, which would allow the oscillations of the cutting force components to be registered and recorded in dynamic mode, is justified. The advantages of using strain sensors for a dynamometer are described. An analysis of the selected dynamometer design indicated that the sensors for measuring the axial forces and torque are located on one elastic element, which affects the accuracy of their measurement due to their mutual influence. Therefore, it was necessary to place them on different elastic elements. The developed and manufactured dynamometric equipment for carrying out the research work in the field of axial tools for processing materials is presented. The relative measurement error is calculated. Conclusion. The dynamometric equipment makes it possible to record the periodic and quasiperiodic oscillations of two components of the cutting forces without distortion for various tapping, drilling and countersinking processes, occurring at a frequency of up to 1500 Hz in real time mode, and can be used to optimise the cutting parameters. Using the dynamometric equipment, it is possible to register the signals from up to 8 force sensors in real time, amplify signals, transform the signal from analogue to digital, visualise data and print out the results of experimental data. The equipment is suitable for use in research laboratories of machine-building enterprises, universities and other scientific institutions.

Keywords: measuring sensors for cutting forces, dynamometers, processing of holes, cutting dynamics, relative dynamometer error, experimental measurement of cutting force

Введение. Для измерения составляющих сил резания требуется специальная малоинерционная высокочувствительная аппаратура. Как правило, к ней предъявляются высокие требования по компактности, точности определения сил резания, возможности определения сил, как в динамических, так и статических режимах, к высокой устойчивости к помехам, к воздействию смазочно-охлаждающих жидкостей, к возможности подключения к персональным ЭВМ, к высокой собственной частотой колебаний и др.

Известны динамометры ДТУ, УДМ [1]. Анализ динамометров ДТУ показал, что предельная частота гармоник измеряемых периодических колебаний трех составляющих сил резания, регистрируемых без искажения системой прибора, ограничивается 300... 400 Гц. Динамометры УДМ-600,1500 имеют частоту собственных колебаний механической части соответственно 1350 и 1180 Гц, однако они не отвечают современным требованиям к измерительным динамометрическим системам. Они не имеют электронно-цифровую шкалу показаний.

Хорошие результаты показывают динамометры Dyna-Z [2], динамометры трехкомпонентные M30-3-6к [3]. Однако они предназначены для количественной оценки составляющих сил резания при токарной и фрезерной обработке.

Существуют зарубежные динамометрические системы, например, четырехкомпонент-

ные модели 9272 известного поставщика измерительной техники фирмы Kistler (Швейцария) [4], позволяющие производить измерения крутящего момента и трех составляющих сил резания. Однако они обладают высокой стоимостью (порядка пяти миллионов рублей).

При исследовании таких процессов резания как обработка отверстий, частота автоколебаний парциальных систем общей замкнутой упругой системы СПИД изменяется обычно от 1200—1400 Гц и выше [5]. Силы резания во время вибраций могут менять свое направление.

Для повышения точности измерения динамических сил резания необходимо, чтобы частота собственных колебаний упругой механической системы динамометра превышала частоту регистрируемых колебаний не менее чем в 2–4 раза. Измеряемые перемещения упругой части динамометра относительно преобразователей перемещений при максимальных расчетных нагрузках должны быть не более 10–12 мкм [6].

Поэтому потребовалось создание недорогих динамометров, позволяющих измерять составляющие сил резания при обработке отверстий в динамическом режиме с высокой точностью.

Постановка задачи. Целью работы является разработка динамометрической аппаратуры для измерения составляющих сил резания при обработке осевым инструментом в динамическом режиме.

Методы исследования. Известны несколько методов измерения составляющих сил резания. Наибольшее применение нашли электрические методы с использованием пьезоэлектрических и тензометрических преобразователей. Главным преимуществом электрических преобразователей является возможность регистрации и записи быстропротекающих динамических процессов с использованием осциллографа и компьютера.

Пьезодатчики высокочувствительны, характеризуются линейностью передаточной характеристики в широком диапазоне частот, однако их основным недостатком является невозможность их использования для измерения сил резания в длительный период из-за потери заряда пьезокварца после приложения нагрузки, хотя они используются в динамометрических системах, например в динамометрах Dyna-Z, где используются кварцевые резонансные датчики ЭПКВ-10М [7], в динамометрах фирмы Kistler.

В большинстве конструкций динамометров в основном используются тензодатчики [8-13], которые позволяют регистрировать значения сил, как в статическом режиме, так и в динамическом. Частотный диапазон тензометрических динамометров ограничен собственной частотой колебания конструкции [14].

Анализ используемых конструкций динамометров показал, что датчики для измерения осевых сил и крутящего момента располагались на одном упругом элементе, что отражается на точности их измерения из-за их взаимовлияния. Поэтому потребовалось располагать их на различных упругих элементах.

На рис. 1 показана схема динамометрической системы для измерения составляющих сил резания при обработке осевым инструментом.

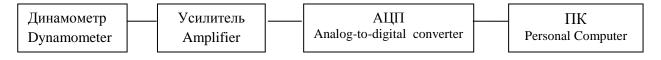


Рис.1. Схема динамометрической системы для измерения составляющих сил резания при обработке осевым инструментом

Fig.1. Scheme of a dynamometer system for measuring the components of cutting forces when machining with an axial tool

В качестве измерительных преобразователей используются тензодатчики. В этом случае выходное напряжение динамометра достаточно мало (не превышает 10^{-2} мВ).

Для его усиления нами использован восьмиканальный дифференциальный усилитель МДУ-8, в составе которого предусмотрен источник питания тензомостов. Входные цепи усили-

теля имеют защиту, рассчитанную на напряжение до 100~B, и высокочастотный фильтр для защиты от помех. Это обеспечивает широкую полосу пропускания (по уровню - 3 дБ) в пределах $9~\kappa\Gamma$ ц, что значительно превышает частоту регистрируемых механических колебаний. Каждый канал управляется независимо от других и имеет до трех оперативно переключаемых коэффициентов усиления 1,10,100.

Отличительной особенностью данного усилителя является высокая нагрузочная способность выходов, что позволяет использовать кабель повышенной длины вплоть до 300 м. Питание устройства МДУ–8 осуществляется от внешнего источника постоянного напряжения в диапазоне 10...27 В.

Для преобразования аналогового сигнала с выхода усилителя в цифровую форму, удобную для последующей обработки в персональном компьютере (ПК), использован аналоговоцифровой преобразователь (АЦП) ЛА-2-USB.

Внешний вид АЦП показан на рис. 2.

Puc. 2. Внешний вид АЦП ЛА-2-USB Fig. 2. Appearance of the ADC LA-2-USB

Обмен данными аналогово-цифрового преобразования межу ПК и устройством осуществляется через интерфейс USB.

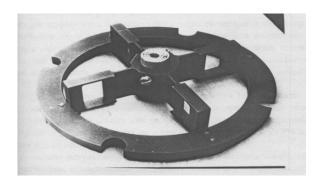
Персональный компьютер при помощи специальной программы, входящей в состав поставки, осуществляет обработку поступающих от устройства данных аналого-цифрового преобразования и управления устройством через USB интерфейс.

Таким образом, динамометрическая система включает в себя три звена: динамометра, усилителя и АЦП.

Обсуждение результатов. Относительная погрешность преобразования цепи складывается из относительных погрешностей составляющих звеньев: динамометра δ_o , усилителя δ_y и АЦП δ_{AUII}

$$\delta_c = \delta_{\partial} + \delta_{v} + \delta_{AIII}. \tag{1}$$

Пределы относительной погрешности усилителя и АЦП заявлены в руководстве по эксплуатации и равны [15-16]


$$\delta_{v} = \pm 1,5\%; \, \delta_{AIIII} = \pm 0,2\%$$
 (2)

Подставляя $\delta_{\nu}u\delta_{AUII}$ из формулы (2) в (1) получим

$$\delta_c = \delta_{\dot{\alpha}} \pm 1.5\% \pm 0.2\%.$$
 (3)

Из (3) видно, что предельные погрешности динамометрической системы не должны превышать 3-5%, нам необходимо разработать динамометр с относительной погрешностью не более 2%.

Механическая часть разработанного двухкомпонентного динамометра показана на рис. 3.

Puc. 3. Механическая часть динамометра Fig. 3. Mechanical part of dynamometer

Для того чтобы избежать деформаций в стыках, механическая часть изготовлена из одного цельного куска металла. В качестве материала для механической части выбрана сталь 30XГСА в термообработанном состоянии, имеющая следующие механические показатели: 6_6 =1080 МПа, δ =10%, НВ 313. Эта сталь имеет наименьшее расхождение значений статического и динамического модулей упругости и почти не имеет гистерезисной петли в зоне упругих деформаций [17].

Упругие вертикальные измерительные элементы динамометра представляют собой рамы для измерения крутящего момента и горизонтальные — для измерения осевой силы. Взаимное влияние составляющих сил резания при таком конструктивном решении не превышает 5-6%.

Для увеличения частоты собственных колебаний упругой двигающейся части динамометра упругие элементы выполнены достаточно жесткими, а масса столика предельно уменьшена и закрепляется на столе станка четырьмя болтами. С этой целью обрабатываемый образец в форме втулки с минимально возможным размером крепят непосредственно к столику. Корпус динамометрического столика весьма жесткий, поэтому он не деформируется при работе.

Частота свободных колебаний столика по направлениям действия осевых сил и крутящего момента $f = 3600 \, \Gamma$ ц подсчитана по формуле

$$f = \frac{1}{2\pi} \sqrt{\frac{c}{m}},\tag{4}$$

где c – жесткость в данном направлении подвижной части динамометра;

m — приведенная масса перемещающейся в этом же направлении части динамометра вместе с закрепленным образцом, и проверенная экспериментальным путем.

Датчики динамометра состоят из тензорезисторов ПКБ-2-200-Ш ТУ- 01-17-66, которые подключены по схеме полумоста и защищены от механических повреждений.

Для уменьшения гистерезиса, смонтированные на металле тензорезисторы подвергают на 10–15 мин воздействию электромагнитных колебаний от автогенератора УВЧ-4. Это позволяет уменьшить гистерезис в 2,8 раз без изменения чувствительности [18].

При наибольших расчетных значениях сил перемещения упругих частей динамометра, не должны превышать значений ω = 8-10 мкм, что достигается выбором толщины упругого элемента h.

Толщина упругого элемента h определена по величине ω прогиба упругого элемента 2, на котором монтируются тензодатчики для измерения осевых сил, с использованием известной из теории упругости формулы

$$h = \sqrt[3]{\frac{E\omega}{KP_{oc}l^2}},\tag{5}$$

где P_{oc} – осевая составляющая силы резания;

1 – половина длины упругого элемента;

Е – модуль упругости материала 30ХГСА;

Н – толщина элемента;

К – коэффициент пропорциональности.

Коэффициент К определяется по формуле

$$K = \frac{3(1-\mu^2)}{\pi} \left[\frac{b^2 - 1}{4b^2} - \frac{\ln^2 b}{b^2 - 1} \right],\tag{6}$$

где μ – коэффициент Пуассона, равен 0,3.

Величина в равна

$$b = \frac{2l}{a}; (7)$$

где a- длина контактной нагрузки, которая в соответствие с теорией упругости определяется по формуле Герца

$$a = 1,109 \sqrt[3]{\frac{P_{oc}A}{E}}$$
 (8)

Выбранная электрическая схема обеспечивает высокую чувствительность и стабильность показаний прибора.

Градировочные графики динамометра весьма близки к прямым линиям.

Исследование разработанного динамометра показало, что он позволяет регистрировать без искажения периодические и квазипериодические колебания двух составляющих силы резания для различных процессов резьбонарезания метчиками, сверления и зенкерования, происходящие с частотой до 1500 Гц.

Динамическую градуировку динамометра производили по методу, основанному на нагружении динамометра инерционными силами, значения которых определяли как результат косвенных измерений. При этом погрешности динамометра не превосходят величин \pm 2-3% и при статическом, и динамическом нагружении.

Анализ результатов экспериментальных исследований, сравнение их с расчетами, исследование метрологических характеристик приборов показали, что разработанная динамометрическая аппаратура позволяет с достаточной точностью исследовать силовые характеристики при обработке осевым инструментом.

Вывод:

- 1. Разработанная динамометрическая аппаратура предназначена для выполнения экспериментальных научно-исследовательских работ в области обработки отверстий;
- 2. Разработанная аппаратура содержит современную электронную аппаратуру, с использованием которой возможна регистрация сигналов с датчиков силы в количестве до 8 в режиме реального времени, усиление сигналов, трансформация сигнала с аналогового в цифровой, визуализация данных, процедура вывода на печать результатов экспериментальных данных;
- 3. Динамометрическая аппаратура может быть использована для оптимизации параметров резания;
- 4. Предложенная аппаратура может быть использована в лабораториях вузов для инструментальной поддержки учебных циклов (например, циклов «Основы формообразования и режущий инструмент», «Технология машиностроения», «Основы научных исследований», «Планирование экспериментов»), в научно-исследовательских лабораториях машиностроительных предприятий с целью выбора оптимальных параметров резания при обработке конкретных материалов.

Также целесообразно использовать динамометрическую аппаратуру для проведения научных исследований магистрантов и аспирантов.

Библиографический список:

- 1. Древаль А.Е. Устройства диагностирования состояния режущего инструмента по динамическим показателям [Текст] /А.Е. Древаль, С.В. Андрушко, Н.И.Федотов // Диагностика технологических процессов: матер.семинара. М.: Знание, 1990. С. 69-74.
- 2. Безъязычный В.Ф Разработка динамометрической системы для измерения силы резания при точении [Текст] /В.Ф. Безъязычный, А.В. Кордюков, М.В.Тимофеев, Р.Н. Фоменко // Известия МГТУ «МАМИ» № 1(19), 2014, т. 2. С.171-176.
- 3. Tilcom:caйт компании. Режим доступа :(http://www.tilkom.com). Дата обращения 04.03.2018.
- 4. Kistler: сайт компании. Режим доступа : (http://www.kistler.com). Дата обращения 04.03.2018.
- 5. Гусейнов Р.В. Интенсификация технологических процессов обработки труднообрабатываемых материалов путем управления динамическими параметрами системы: Автореф. дис. докт. техн. наук: 05.02.08; 05.03.01/ Гусейнов Расул Вагидович; Санкт-Петербургский государственный морской технический университет. СПб., 1998.
- 6. Жарков И.Г.Вибрации при обработке лезвийным инструментом. Л.: Машиностроение, 1985.
- 7. Пьезоэлемент силочувствительный ЭПКВ-10М // http://qsens.ru/products/epkv/54-epkv-10m.html.
- 8. Гусейнов Р.В.Универсальное устройство для измерения быстроменяющихся сил резания и амплитуд вибраций [Текст] /Р.В.Гусейнов//Вестник машиностроения.1993.№9.С. 24.
- 9. Мальков О.В.Экспериментальное определение модели силы при резьбофрезеровании [Текст] / О.В.Мальков, И.М. Головко// Международная молодежная конференция «Инновации в машиностроении»: сб. трудов. Томск: Изд-во Томского политехнического университета, 2012. С. 73-77.
- 10. Гусейнов Р.В. Математическое моделирование процес-

References:

- 1. Dreval' A.E., Andrushko S.V., Fedotov N.I. Ustroistva diagnostirovaniya sostoyaniya rezhushchego instrumenta po dinamicheskim pokazatelyam. Materialy seminara "Diagnostika tekhnologicheskikh protsessov". M.: Znanie; 1990. S. 69-74. [Dreval' A.E., Andrushko S.V., Fedotov N.I. Devices diagnosing the state of the cutting tool by dynamic indicators. Materials of the seminar "Diagnostics of technological processes". M.: Znanie; 1990. P. 69-74. (In Russ.)]
- 2. Bez"yazychnyi V.F., Kordyukov A.V., Timofeev M.V., Fomenko R.N. Razrabotka dinamometricheskoi sistemy dlya izmereniya sily rezaniya pri tochenii. Izvestiya MGTU "MA-MI". 2014;1(19):171-176. [Bez"yazychnyi V.F., Kordyukov A.V., Timofeev M.V., Fomenko R.N. Development of a dynamometric system for measuring cutting force during turning. Izvestiya MGTU MAMI. 2014;1(19):171-176. (In Russ.)]
- 3. Tilcom: sait kompanii. Rezhim dostupa: (http://www.tilkom.com). Data obrashcheniya 04.03.2018. [Tilcom: website. Available at: (http://www.tilkom.com). Access date 04.03.2018. (In Russ.)]
- 4. Kistler: sait kompanii. Rezhim dostupa: (http://www.kistler.com). Data obrashcheniya 04.03.2018. [Kistler: website. Available at: (http://www.kistler.com). Access date 04.03.2018. (In Russ.)]
- 5. Guseynov R.V. Intensifikatsiya tekhnologicheskikh protsessov obrabotki trudnoobrabatyvaemykh materialov putem upravleniya dinamicheskimi parametrami sistemy. Avtoreferat dissertatsii na soiskanie uchenoy stepeni dokt. tekhn. nauk. Sankt-Peterburg; 1998. [Guseynov R.V. Intensification of technological processing of the hardly processed materials by the management of system's dynamic parameters. Published summary of Doctor of Technical Sciences thesis. St.

- са резания коррозионно-стойких сталей [Текст] / P.В.Гусейнов // Вестник Астраханскогогосударственного технического университета. Серия: Морская техника и технология. 2015. №4. С.65-70.
- 11. Анісімов В. В.Перспективные направления исследований в области измерения усилия резания при точении [Текст] /В.В. Анісімов, В.М.Анісімов, О.Л.Чуприна//Технічні науки та технологіі . №1(3). С.37-43. Чернигов. 2016.
- 12. Гусейнов Р.В. Исследование влияния геометрических параметров инструмента на силы резания при обработке внутренних поверхностей методом планирования экспериментов [Текст] / Р.В.Гусейнов, М.Р. Рустамова // Вестник Дагестанского государственного технического университета. Технические науки. 2011. № 21. С.83-87.
- 13. Филиппов А.В. Повышение точности обработки нежестких валов путем оптимизации параметров бреющего точения: Дис. канд. техн. наук: 05.02.07/ Филиппов Андрей Владимирович; Юргинский технологический институт (филиал) Томского политехнического университета. Юрга.,2015.-194 С.
- 14. Сабиров Ф.С. Трехкомпонентные датчики вибраций для диагностики станков // Приборы. 2012, № 6, с. 10-22.
- 15. Руководство по эксплуатации ВКФУ411.539.008РЭ. Режим доступа: (http://www.rudshel.ru). Дата обращения 04.03.2018.
- 16. Руководство по эксплуатации ВКФУ411.619.044РЭ. Режим доступа: (http://www.rudshel.ru). Дата обращения 04.03.2018.
- 17. Мокеев И.И. Статические и динамические значения модуля упругости стали 30ХГСА [Текст] / И.И.Мокеев// Известия вузов. Машиностроение. №2.1959. С.107-113.
- 18. Хагунцев Э.А. Характеристика тензорезисторных связующих [Текст] /Э.А.Хагунцев // Измерительная техника. №10.1988. С.35-37.

Petersburg; 1998. (In Russ.)]

- 6. Zharkov I.G. Vibratsii pri obrabotke lezviinym instrumentom. L.: Mashinostroenie; 1985. [Zharkov I.G. Vibrations during processing with a blade tool. L.: Mashinostroenie; 1985. (In Russ.)]
- 7. P'ezoelement silochuvstvitel'nyi EPKV-10M // http://qsens.ru/products/epkv/54-epkv-10m.html. [EPKV-10M power sensitive piezoelement // http://qsens.ru/products/epkv/54-epkv-10m.html. (In Russ.)]
- 8. Guseinov R.V. Universal'noe ustroistvo dlya izmereniya bystromenyayushchikhsya sil rezaniya i amplitud vibratsii. Vestnik mashinostroeniya. 1993;9:24. [Guseinov R.V. Universal device for measuring rapidly changing cutting forces and vibration amplitudes. Russian Engineering Research.1993;9:24. (In Russ.)]
- 9. Mal'kov O.V., Golovko I.M. Eksperimental'noe opredelenie modeli sily pri rez'bofrezerovanii. Sbornik trudov Mezhdunarodnoi molodezhnoi konferentsii "Innovatsii v mashinostroenii". Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta; 2012:73-77. [Mal'kov O.V., Golovko I.M. Experimental determination of the force model for thread milling. Proceedings of the International Youth Conference "Innovations in Mechanical Engineering". Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta; 2012:73-77. (In Russ.)]
- 10. Guseinov R.V. Matematicheskoe modelirovanie protsessa rezaniya korrozionno-stoikikh stalei. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Morskaya tekhnika i tekhnologiya. 2015;4:65-70. [Guseinov R.V. Mathematical modeling of cutting process of corrosion-resistant steels. Vestnik of Astrakhan State Technical University. Series: marine engineering and technologies. 2015;4:65-70. (In Russ.)]

- 11. Anisimov V.V., Anisimov V.M., Chuprina O.L. Perspektivnye napravleniya issledovanii v oblasti izmereniya usiliya rezaniya pri tochenii. Tekhnichni nauki ta tekhnologii. 2016;1(3):37-43. [Anisimov V.V., Anisimov V.M., Chuprina O.L. Prospective directions of research in the field of measuring the cutting force during turning. Technical sciences and technology. 2016;1(3):37-43. (In Ukrainian)]
- 12. Guseinov R.V., Rustamova M.R. Issledovanie vliyaniya geometricheskikh parametrov instrumenta na sily rezaniya pri obrabotke vnutrennikh poverkhnostei metodom planirovaniya eksperimentov. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2011;21:83-87. [Guseinov R.V., Rustamova M.R. Investigation of the influence of the tool geometric parameters on the cutting forces during the processing of internal surfaces by the method of experiment planning. Herald of Daghestan State Technical University. Technical Sciences. 2011;21:83-87. (In Russ.)]
- 13. Filippov A.V. Povyshenie tochnosti obrabotki nezhestkikh valov putem optimizatsii parametrov breyushchego tocheniya: Dis. kand. tekhn. nauk. Yurginskii tekhnologicheskii institut (filial) Tomskogo politekhnicheskogo universiteta. Yurga; 2015. 194 s. [Filippov A.V. Increase of processing accuracy of non-rigid shafts by optimisation of the parameters of shaving turning. Candidate of technical sciences dissertation. Yurgin-

- skii tekhnologicheskii institut (filial) Tomskogo politekhnicheskogo universiteta. Yurga; 2015. 194 p. (In Russ.)]
- 14. Sabirov F.S. Trekhkomponentnye datchiki vibratsii dlya diagnostiki stankov. Pribory. 2012;6:10-22. [Sabirov F.S. Three-component vibration sensors for machine diagnostics. Instruments. 2012;6:10-22. (In Russ.)]
- 15. Rukovodstvo po ekspluatatsii VKFU411.539.008RE. Rezhim dostupa: (http://www.rudshel.ru). Data obrashcheniya 04.03.2018. [VKFU411.539.008RE Manual. Available at: (http://www.rudshel.ru). Access date 04.03.2018. (In Russ.)]
- 16. Rukovodstvo po ekspluatatsii VKFU411.619.044RE. Rezhim dostupa: (http://www.rudshel.ru). Data obrashcheniya 04.03.2018. [VKFU411.619.044RE. Manual. Available at: (http://www.rudshel.ru). Access date 04.03.2018. (In Russ.)]
- 17. Mokeev I.I. Staticheskie i dinamicheskie znacheniya modulya uprugosti stali 30KhGSA. Izvestiya vuzov. Mashinostroenie. 1959;2:107-113. [Mokeev I.I. Static and dynamic values of the elasticity modulus of 30XFCA steel. Proceedings of Higher Educational Institutions. Machine Building. 1959;2:107-113. (In Russ.)]
- 18. Khaguntsev E.A. Kharakteristika tenzorezistornykh svyazuyushchikh. Izmeritel'naya tekhnika. 1988;10:35-37. [Khaguntsev E.A. Characteristic of strain gauge binders. Measurement techniques. 1988;10:35-37. (In Russ.)]

Сведения об авторе:

Гусейнов Расул Вагидович - доктор технических наук, профессор, кафедра организация и безопасность движения.

Information about the author.

Rasul V. Guseynov - Dr. Sci. (Technical), Prof., Department organization and traffic safety.

Конфликт интересов.

Автор заявляет об отсутствии конфликта интересов. The author declare no conflict of interest.

Поступила в редакцию 30.12.2017.

Принята в печать 08.02.2018.

Conflict of interest.

Received 30.12.2017.

Accepted for publication 08.02.2018.

Для цитирования: Мурадова С.Ш., Федосеева Л.В. Влияние статических сводов на эффективность технологических процессов в бункере. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1):30-48. DOI:10.21822/2073-6185-2018-45-1-30-48

For citation: Muradova S. Sh., Fedoseeva L.Vl. The influence of static arches on the efficiency of technological processes in a hopper. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1):30-48 (In Russ.) DOI:10.21822/2073-6185-2018-45-1-30-48

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ МЕХАНИКА

УДК 62-405.6

DOI: 10.21822/2073-6185-2018-45-1-30-48

ВЛИЯНИЕ СТАТИЧЕСКИХ СВОДОВ НА ЭФФЕКТИВНОСТЬ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В БУНКЕРЕ

Mурадова $C.Ш.^1$, Федосеева $Л.В.^2$

Южный университет (Институт управления бизнеса и права), 344068, г. Ростов-на-Дону, пр. Михаила Нагибина, 33a/47, Россия, Донской государственный технический университет, 344000,г. Ростов-на-Дону, пл. Гагарина, 1, Россия, ¹e-mail: ssh.muradova@mail.ru,2e-mail:fedoseevvb@gmail.com

Резюме. Цель. Как показывает практика, процесс истечения сыпучих материалов из бункеров в различных технологических цепочках часто нарушается, в результате чего снижается эффективность переработки содержащихся сыпучих материалов. Одной из распространенных причин остановки истечения является образование динамических сводов в бункере. С этих позиций целью исследования является оценка влияния статических сводов на эффективность технологических процессов в бункере. Метод. Основу исследования составляет система дифференциальных уравнений, описывающая стационарное и равновесное состояние сыпучей среды, которое интегрируется в граничных условиях, соответствующих круглым силосам и бункерам. При этом выводятся аналитические выражения для компонент давления в сыпучем материале по различным направлениям. Результат. Полученные решения проверяются на логическую непротиворечивость, иллюстрируются с помощью графиков, построенных в среде символьной математики, для модельных и реальных параметров силосов и бункеров. Производится сравнение результатов математического моделирования с экспериментальными данными для типовых силосов. Разброс экспериментальных значений связан с процессами уплотнения сыпучего материала со временем его выдержки в силосе, с направлениями микровибрации сейсмического или техногенного характера. Сыпучий материал в силосе все время находится в промежуточном положении между стационарными и равновесными состояниями. Параметры сыпучего материала (насыпная плотность, углы внешнего и внутреннего трения) являются некоторыми обобщенными, мало соответствующими конкретному сыпучему материалу и, к тому же, меняющимися с течением времени. Вывод. Подтверждено, что ещё в статике в бункере образуются своды, которые при истечении материала переходят в динамические, что препятствует процессу истечения, понижая экономическую эффективность бункеров.

Ключевые слова: давление, сыпучий материал, дно и стенки бункеров, статические и динамические своды, истечение сыпучего материала

PHYSICAL-MATEMATICAL SCIENCE MECHANICS

THE INFLUENCE OF STATIC ARCHES ON THE EFFICIENCY OF TECHNOLOGICAL PROCESSES IN A HOPPER

Safura Sh. Muradova¹, Lyudmila Vl. Fedoseeva²

Southern University (Institute of Management, Business and Law), 33a/4 Nagibina Ave., Rostov-on-Don 344068, Russia, Don State Technical University,

1 Gagarina Sguare, Rostov-on-Don 344000, Russia,

¹e-mail: ssh.muradova@mail.ru, ²e-mail:fedoseevvb@gmail.com

Abstract Objectives. In practice, the process of loose material flowing from hoppers in different technological processes is often disrupted, resulting in reduced processing efficiency of contained loose materials. One of the most common reasons for the interruption of flows is the formation of dynamic arches in the hopper. From this perspective, the aim of the study is to assess the effect of static arches on the efficiency of technological processes in the hopper. Methods. The study was based on a system of differential equations describing the stationary and equilibrium state of the loose medium, which is integrated in the boundary conditions corresponding to round silos and hoppers. In this case, the analytical expressions for the pressure components of loose material in different directions are derived. Results. The obtained solutions are checked for logical consistency and illustrated with the help of graphs constructed in the area of symbolic mathematics for modeled and real parameters of silos and hoppers. The results of mathematical modeling are compared with experimental data for typical silos. The scatter of the experimental values is related to the processes of compacting the loose material, the time of its storage in the silo, as well as the microvibrational directions of a seismic or technogenic nature. The loose material in the silo resides in an intermediate position between stationary and equilibrium states at all times. The parameters of the loose material (bulk density, external and internal friction angles) represent some generalised values that do not correspond to a specific loose material, which, in addition, can vary over time. Conclusion. It is confirmed that arches formed in the hopper during the static state acquire a dynamic character during material flow, hampering the flow process and consequently reducing the efficiency of the hoppers.

Keywords: pressure, loose material, hopper bottom and walls, static and dynamic arches, loose material flow

Введение. Конические бункеры, силосы, находят широкое применение в различных сферах человеческой деятельности. Чтобы адекватно рассчитать давление, испытываемое стенками емкости со стороны сыпучего материала, необходимо правильно выбрать модель этого сыпучего материала. При этом очевидна важность аналитического, а не численного, решения, позволяющего прогнозировать изменения давления с изменением, как параметров самих емкостей, так и параметрами сыпучего материала, находящегося в них.

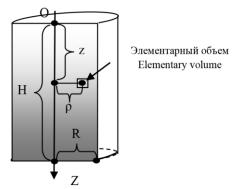
К сожалению, до сих пор нет законченной, общепризнанной модели сыпучих сред. В связи с этим рассматривают в основном два направления.

Первое – сыпучее тело моделируют сплошной средой. Основоположник такой модели французский физик и инженер Coulomb [1] еще в 1783 году сформулировал основные положения так называемой теории предельного равновесия. При этом предусматривается создание строгой теории предельного равновесия. Здесь необходимо отметить работы М.В. Малышева [2] и Г.К. Клейна [3]. Обобщением и развитием работ по статике сплошной среды занимался В.В. Соколовский [4]. Дальнейшее развитие модель сплошной среды получила в работах [5–8] и др. Второе направление – это, так называемая, дискретная модель сыпучего материала. Дискретную модель зернового материала впервые предложил английский инженер С. Дженкин [9] в 1931 г.

Отечественный ученый Л. В. Гячев развил идеи Coulomb и С. Дженкина, предложив дискретную модель сыпучего тела с сухим трением [10–11]. Развитием модели, предложенной Л.В. Гячевым, занимались и за рубежом [12–14].

Постановка задачи. Здесь необходимо отметить ещё одну проблему, как оказывается тесно связанную с данной – это проблема истечения сыпучего материала из бункеров. В большинстве случаев закономерности такого истечения не укладываются в общую схему, разработанную в [10–11]. Очень часто процесс истечения вообще останавливается по непонятным, казалось бы, причинам. Нашим учёным Богомягких В. А. и его школой [15–17] было показано, что всё дело в образовании динамических сводов, которые тормозят и даже останавливают процесс сам истечения. Это направление получило дальнейшее развитие в трудах [18–20].

Методы исследования. В данной работе под сыпучим материалом будем понимать вещество, состоящее из частиц различной величины и формы, взаимодействующих между собой и стенами ограждающей емкости посредством электромагнитных сил, сил сухого и вязкого трения, а также сил сцепления. Однако в отличие от модели Л.В. Гячева, здесь не вводится никаких предварительных предположений о форме частиц и вариантах их укладки в материале.


Если электромагнитные силы, силы вязкого трения и силы сцепления отсутствуют, а проявляются лишь силы сухого трения, то такое состояния вещества в нашей модели будем называть идеальным сыпучим материалом.

Дифференциальные уравнения, описывающие такую модель сыпучей среды, получены нами ранее и опубликованы в [21].

1. Давление сыпучего материала в круглом силосе.

Рассмотрим сыпучий материал в глубоком круглом силосе (рис. 1). Первое уравнение дифференциальной системы (система (11) нашей работы [21]) справедливо и для данного случая:

$$0 = \gamma \cdot 2\pi \cdot \rho \cdot d\rho \cdot dz - 2\pi \cdot \rho \cdot d\rho \cdot dz \cdot (1 + \mu_i^2) \cdot \frac{\partial P_z}{\partial z}$$

Puc. 1. Сыпучий материал в круглом силосе и цилиндрическая система координат Fig. 1. The bulk material in a round silo and a cylindrical coordinate system

Проинтегрируем это уравнение по координате ρ в пределах от θ до R:

$$0 = \pi \cdot y \cdot g \cdot R^2 \cdot dz - \pi \cdot R^2 \cdot dz \cdot (1 + \mu_i^2) \cdot \partial Pz / \partial z + C$$
 (1)

Отметим, что уравнение (1) справедливо на цилиндрической поверхности $\rho = R$. Очевидно, что константа интегрирования C по физическому смыслу представляет собой силу трения, действующую на боковую поверхность элементарного слоя со стороны стенки силоса:

$$C = -\mu_e \cdot P_\rho \cdot 2\pi \cdot R \cdot dz = -\mu_e \cdot k \cdot P_z \cdot 2\pi \cdot R \cdot dz \tag{2}$$

Здесь использована связь между вертикальной и горизонтальной компонентами давления через боковой коэффициент. Подставляя (2) в (1), получим

$$0 = \pi \cdot y \cdot g \cdot R^2 \cdot dz - \pi \cdot R^2 \cdot dz \cdot (1 + \mu_i^2) \cdot \partial Pz / \partial z - \mu_e \cdot k \cdot Pz \cdot 2 \pi \cdot R \cdot dz$$
 (3)

$$0 = \pi \cdot y \cdot g \cdot R^2 \cdot dz - \pi \cdot R^2 \cdot dz \cdot (1 + \mu_i^2) \cdot \frac{\partial Pz}{\partial z} - \mu_e \cdot k \cdot Pz \cdot 2 \pi \cdot R \cdot dz$$
(3)
Преобразуем уравнение (3) к стандартному виду:
$$\frac{\partial P_z}{\partial z} + \frac{2 \cdot \mu_e \cdot k \cdot P_z}{R \cdot (1 + \mu_i^2)} - \frac{\gamma \cdot g}{1 + \mu_i^2} = \mathbf{0}$$
(4)

Интеграл уравнения (4) имеет вид:

$$P_z = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_e \cdot k} + C \cdot exp\left(-\frac{2 \cdot \mu_e \cdot k \cdot z}{R \cdot (1 + \mu_i^2)}\right)$$

Из условия, что на поверхности силоса давление равно нулю, найдем константу интегрирования С. Выражение для давления при этом примет вид:

$$P_{z} = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_{e} \cdot k} \cdot \left(1 - exp\left(-\frac{2 \cdot \mu_{e} \cdot k \cdot z}{R \cdot (1 + \mu_{i}^{2})} \right) \right)$$
(5)

Напомним, что выражение (5) справедливо на поверхности $\rho = R$.

Соответственно, выражение для горизонтальной компоненты давления будет иметь вид:

$$P_{\rho} = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_{e}} \cdot \left(1 - exp \left(-\frac{2 \cdot \mu_{e} \cdot k \cdot z}{R \cdot (1 + \mu_{i}^{2})} \right) \right)$$
(6)

В случае равновесия $\mu_i \rightarrow 0$, $k \rightarrow 1$, соответственно решение (5) для равновесного состояния примет вид:

$$P_{\mathbf{o}} = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_{e}} \cdot \left(1 - exp\left(-\frac{2 \cdot \mu_{e} \cdot z}{R} \right) \right) \tag{7}$$

Очевидно, также, что при этом давление по горизонтали равно давлению по вертикали. Графики зависимости давлений, рассчитанных по формулам (5) и (7) приведены на рис. 2. Из рис. 2 следует, что вертикальное давление в стационарном состоянии (сплошная линия) больше давления в равновесном состоянии (линия из точек). В то же время горизонтальное давление в стационарном состоянии меньше давления в равновесном состоянии (пунктирная линия). Следовательно, в равновесном состоянии стены силоса берут на себя большую нагрузку, в результате чего давление на дно уменьшается.

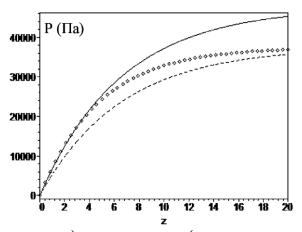


Рис. 2. Вертикальное (сплошная линия) и горизонтальное (пунктирная линия) давление в стационарном состоянии и давление (линия из точек) в равновесном состоянии для круглого силоса с сыпучим материалом (R = 3,5 м, ψ = 16^{0} , ϕ = 20^{0} , χ = 30^{0} , γ = 800 кг / м³)

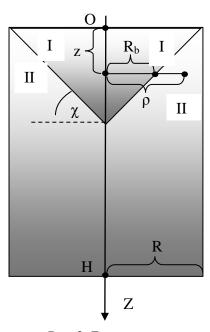
Fig. 2. Vertical (solid line) and horizontal (dashed line) pressure in the steady state and the pressure (line of dots) to the equilibrium condition for a circular silo with the bulk material

$$(R = 3.5m, \psi = 16^{0}, \phi = 20^{0}, \chi = 30^{0}, \gamma = 800 \text{ kg} / \text{m}^{3})$$

Таким образом, в стационарном состоянии (при движении сыпучего материала) на стены силоса оказывается меньшая нагрузка, чем в равновесном состоянии, когда сыпучий материал неподвижен.

При нахождении сыпучего материала в силосе формально он не перемещается и, следовательно, находится в равновесном состоянии. При этом давление в нем необходимо рассчитывать по формуле (7). Но в действительности, в сыпучем материале все время происходят процессы его уплотнения, т.е. он находится в состоянии микродвижения. Процессы уплотнения, слеживания происходят скачкообразно, под действием микроколебаний сейсмического или техногенного характера. Соответственно, сыпучий материал часть времени «проводит» в стационарном состоянии, а часть в равновесном. При этом и давление также меняется скачкообразно. Однако, в решение (5) нет зависимости от горизонтальной координаты. При определении зависимости от координаты ρ будем искать ее аналогично тому, как мы это делали для щелевого бункера:

$$P_{z} = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_{e} \cdot k} \cdot \left(1 - exp\left(-\frac{2 \cdot \mu_{e} \cdot k}{1 + \mu_{i}^{2}} \cdot \frac{z - (R - \rho) \cdot tg\chi}{R} \right) \right)$$
(8)


В таком виде решение (8) удовлетворяет второму уравнению системы (11) работы [21]. Действительно, найдем производные от (8) по координатам:

$$\frac{\partial P_z}{\partial \rho} = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_s \cdot k} \cdot exp\left(-\frac{2 \cdot \mu_s \cdot k}{\left(1 + \mu_i^2\right) \cdot R} \cdot [z - (R - \rho) \cdot tg\chi]\right) \frac{2 \cdot \mu_s \cdot k}{\left(1 + \mu_i^2\right) \cdot R} \cdot tg\chi$$

$$\frac{\partial P_z}{\partial z} = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_s \cdot k} \cdot exp\left(-\frac{2 \cdot \mu_s \cdot k}{\left(1 + \mu_i^2\right) \cdot R} \cdot [z - (R - \rho) \cdot tg\chi]\right) \frac{2 \cdot \mu_s \cdot k}{\left(1 + \mu_i^2\right) \cdot R}$$

Подставив найденные значения производных во второе уравнение системы (11, [21]), найдем, что оно удовлетворяется при $k \cdot tg\chi = \mu_i$, откуда следует, что $k = \frac{\mu_i}{t\,g\,\chi}$.

Кроме того, решение (8) удовлетворяет дифференциальному уравнению (4). Однако решение (8) не удовлетворяет граничному условию на поверхности z=0.

Puc. 3. Деление силоса на области Fig. 3. The division of the silage on the field

Поэтому, для нахождения более точного решения, разобьем весь объем силоса, занятый сыпучим материалом, на области, как показано на рис. 3.

В области I влияние стенок силоса еще не будет сказываться, т.к. эта область расположена выше плоскости естественного откоса, с углом естественного откоса χ .

Поэтому в этой области решение будет определяться формулой:

$$P_z^I(z) = \frac{\gamma \cdot g}{1 + \mu_i^2} \cdot z \tag{9}$$

Соответственно решение в области II можно было бы взять в виде (8).

Оно удобно тем, что на боковой поверхности силоса (при $\rho = R$) переходит в (5), которое является решением дифференциального уравнения (4).

На поверхности естественного откоса, определяемой уравнениями:

$$\rho = R_b \qquad z = (R - R_b) \cdot tg\chi \tag{10}$$

уравнение (8) обращается в ноль.

Однако на этой границе – (10), необходимо, чтобы искомое решение переходило бы в (9). Поэтому решение в области II представим в виде:

$$P_z^{II}(\rho, z) = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_e \cdot k} \cdot \left(1 - exp\left(-\frac{2 \cdot \mu_e \cdot k}{1 + \mu_i^2} \cdot \frac{z - (R - \rho) \cdot tg\chi}{R}\right)\right) + \frac{\gamma \cdot g}{1 + \mu_i^2} \cdot (R - \rho) \cdot tg\chi$$
(11)

Как видим, уравнение (11) при z=0 равно нулю, при $\rho=R$ (т.е. на боковой стенке силоса) переходит в уравнение (5). А при $\rho=R_b$ (на поверхности откоса, т.е. на границе областей) оно переходит в уравнение (9).

Таким образом, согласование решений в областях I и II выполнено.

Посмотрим, как будет вести себя решение (11) при предельных переходах.

Рассмотрим случай, когда сыпучий материал находится в силосе с абсолютно гладкими стенами ($\mu_e \rightarrow \mathbf{0}$).

$$\lim_{\mu_{e} \to \mathbf{0}} P_{z}^{II} = \frac{\gamma \cdot g}{1 + \mu_{i}^{2}} \cdot \left[z - (R - \rho) \cdot t g \chi \right] + \frac{\gamma \cdot g}{1 + \mu_{i}^{2}} \cdot (R - \rho) \cdot t g \chi = \frac{\gamma \cdot g}{1 + \mu_{i}^{2}} \cdot z$$

То есть, сыпучий материал в этом случае ведет себя как безграничная насыпь.

В данном случае влиянием стенок можно пренебречь, что не противоречит физическому смыслу задачи.

В области I решение имеет такой же вид. Если теперь и внутреннее трение стремится к нулю, то решение переходит в решение для идеальной жидкости, что вполне естественно.

Таким образом, решение (11) удовлетворяет граничным условиям.

Оно также удовлетворяет и предельным переходам. Из уравнения (11) вытекает частное решение для случая $\rho = R$.

Следовательно, оно описывает условие равновесия элементарного слоя, но не элементарного объема.

На рис. 4 показана зависимость вертикального и горизонтального давления в силосе, R=3.5~m, в котором находится сыпучий материал ($\gamma=800~\kappa c/m^3$, $\psi=16^0$, $\varphi=20^0$, $\chi=30^0$) непосредственно вдоль его стенки и по центру силоса.

Как видим, давление в центре несколько выше, чем непосредственно у стенки. Кроме того, и горизонтальное давление меньше вертикального.

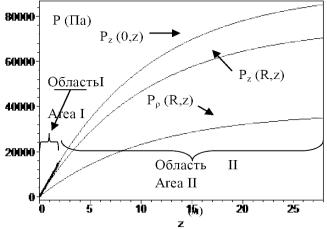
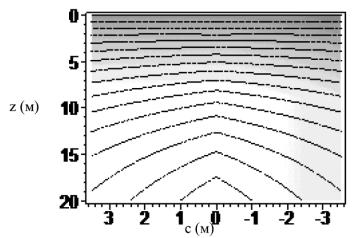



Рис. 4. Зависимость вертикального и горизонтального давления от координаты z при $\rho=R=3,5$ м (по стенке силоса) и $\rho=0$ (по осевой линии силоса, $\gamma=800$ кг/м 3 , $\psi=16^0$, $\phi=20^0$, $\chi=30^0$)

Fig. 4. The dependence of the vertical and horizontal pressure on the coordinate z at $\rho = R = 3.5$ m (along the wall of the silo) and $\rho = 0$ (centerline of the silo, $\gamma = 800$ kg/m³, $\psi = 16^{0}$, $\varphi = 20^{0}$, $\chi = 30^{0}$)

На рис. 5 представлены изолинии вертикального давления от координат при различных значениях координаты z в областях I и II.

Из данных рис. 5 также следует, что давление в центре силоса несколько выше, чем у стенок. Здесь также можно видеть тенденцию к образованию статических сводов.

Puc. 5. Изолинии вертикального давления на разных горизонтах R=3.5 м, $\gamma=800$ кг/м , $\psi=16^{^{^{0}}}$, $\phi=20^{^{^{0}}}$, $\chi=30^{^{^{0}}}$ Fig. 5. Contours of vertical pressures at different horizons R=3.5m, $\gamma=800$ kg/m , $\psi=16^{^{^{0}}}$, $\phi=20^{^{^{0}}}$, $\chi=30^{^{^{0}}}$

Кроме того, из рис. 5 следует, что в круглом силосе изолинии вертикального давления не являются горизонтальными. Следовательно, пласты сыпучего материала, формирующиеся под действием вертикального давления, также не будут горизонтальными. В данном случае они уже больше напоминают куполообразные поверхности сводов в сыпучем материале. Образовавшиеся своды уже будут оказывать некоторое дополнительное сопротивление движению сыпучего материала в круглой вертикальной трубе.

На рис. 6. представлен трехмерный график зависимости вертикального давления для того же сыпучего материала в областях I и II. Из графика (рис.6) следует, что при z=0 вертикальное давление также равно нулю. Кроме того, наглядно видна «сшиваемость» решений на границе областей, а также видно, что давление в центре силоса $(\rho=0)$ несколько превышает давление у его стен $(\rho=R=3,5~m)$.

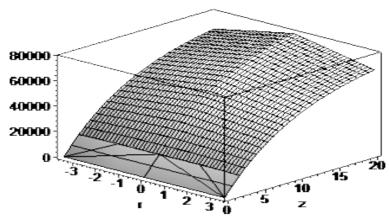


Рис. 6. Трехмерный график вертикального давления в силосе R=3,5 м, $\gamma=800$ кг/м , $\psi=16$, $\phi=20$, $\chi=30$ Fig. 6. Three-dimensional graph of the vertical pressure in the silo R=3,5m, $\gamma=800$ kg/m , $\psi=16$, $\phi=20$, $\chi=30$

На рисунках 7-8 представлены графики сравнения теоретических кривых (непрерывные линии) и экспериментальных значений. При этом экспериментальные данные взяты из [22].

На рис. 7 представлена зависимость горизонтального давления на стену круглого железобетонного силоса высотой $H = 21 \, \text{м}$ и радиусом $R = 3,25 \, \text{м}$.

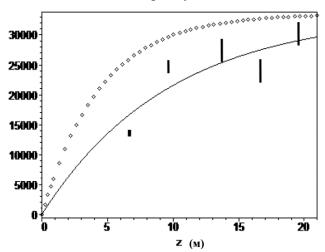


Рис. 7. Теоретическое горизонтальное стационарное (сплошная линия) и равновесное (линия из точек) давление в круглом железобетонном силосе (H = 21 м R = 3,25 м χ = 30 0 , ϕ = 20 0 , ψ = 20 0).

Вертикальные линии - разброс экспериментальных значений

Fig. 7. Theoretical horizontal stationary (solid line) and equilibrium (line of dots) pressure in a circular, reinforced concrete silos $(H=21 \text{ m}, R=3.25 \text{ m}, \chi=30^0, \phi=20^0, \psi=20^0)$.

Vertical lines the spread of experimental values

На рис. 8 представлена зависимость силы давления на дно стального круглого силоса, высотой $H=6\,\mathrm{m}$ и радиусом $R=0.5\,\mathrm{m}$.

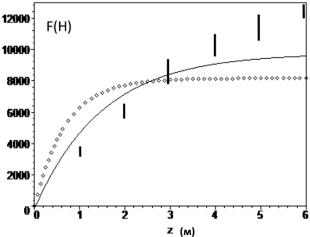


Рис. 8. Теоретическая сила давления на дно стального круглого силоса (H=6~m~R=0.5~m) от высоты засыпки. Сплошная линия - стационарное состояние, линия из точек – равновесное ($\chi=30^{0},~\phi=20^{0},~\psi=20^{0}$). Вертикальные линии - разброс экспериментальных значений

Fig. 8. The theoretical pressure force to the bottom steel round silo (H = 6 m R = 0.5 m) to the height of backfill. The solid line is the steady state, a dotted outline – the equilibrium ($\chi = 30^{0}$, $\phi = 20^{0}$, $\psi = 20^{0}$). Vertical lines - the spread of experimental values

На рис. 9 представлена зависимость силы трения, действующей на боковую стенку стального круглого силоса, высотой $H=6\,$ м, радиусом $R=0.5\,$ м. Как видно из рисунков, разброс экспериментальных данных достаточно велик. Кроме того, как отмечается в цитируемом источнике [22], само горизонтальное давление разное по разным направлениям на стороны света.

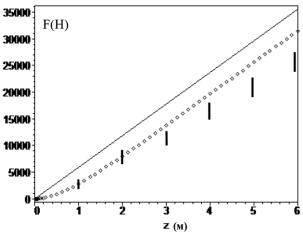
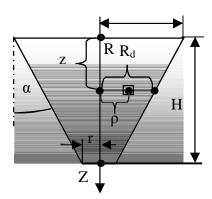



Рис. 9. Зависимость силы трения на боковую стенку круглого, стального силоса (H = 6 м, R = 0,5 м, $\chi = 30^{0}$, $\phi = 20^{0}$, $\psi = 16^{0}$) от высоты засыпки. Стационарное состояние - сплошная линия, равновесное - линия из точек. Вертикальные линии - разброс экспериментальных значений Fig. 9. The dependence of the friction force on the side wall round steel silo (H = 6 m, R = 0.5 m, $\chi = 30^{0}$, $\phi = 20^{0}$, $\psi = 16^{0}$) of the height of the backfill. Stationary state - a solid line, the equilibrium line of dots. Vertical lines the spread of experimental values

Очевидно, что этот разброс экспериментальных значений связан с процессами уплотнения сыпучего материала, со временем его выдержки в силосе, а также с тем, с какого направления идут микровибрации сейсмического или техногенного характера. Сыпучий материал в силосе все время находится в промежуточном положении между стационарными и равновесными состояниями. Кроме того, сами параметры сыпучего материала (насыпная плотность, углы внешнего и внутреннего трения) являются некоторыми обобщенными, мало соответствующими конкретному сыпучему материалу и, к тому же, меняющимися с течением времени. Поэтому более точного согласия с экспериментальными данными ожидать трудно. Но из сравнения с экспериментальными данными, все же можно сделать вывод, что состояние сыпучего материала ближе к стационарному состоянию, чем к равновесному.

2. Давление сыпучего материала в коническом бункере. Исследуем давление в сыпучем материале, находящемся в коническом бункере (рис. 10).

Puc. 10. Параметры конического осесимметричного бункера Fig. 10. Parameters of conical axisymmetric hopper

Уравнение (1) для силоса будет справедливо и в данном случае. Проинтегрируем это уравнение по координате ρ в пределах от 0 до R_d :

$$0 = \pi \cdot y \cdot g \cdot R_d^2 \cdot dz - \pi \cdot R_d^2 \cdot dz \cdot (1 + \mu_i^2) \cdot \frac{\partial Pz}{\partial z} + C$$
 (12)

Отметим еще раз, что уравнение (12) справедливо на поверхности $\rho = R_d$. Очевидно, что константа интегрирования -C (по аналогии со щелевым бункером) по физическому смыслу представляет собой силу трения, действующую на боковую поверхность элементарного слоя со стороны стенки силоса. То есть, выражение для константы будет иметь аналогичный вид:

$$C = -\mu_e \cdot P_z \cdot (1 - (1 - k) \cdot \cos \alpha) \cdot 2\pi \cdot R_d \cdot dz \tag{13}$$

В выражениях (12) и (13) R_d — точка на боковой поверхности бункера (рис. 10), связанная с координатой z соотношением:

$$R_d = R - b \cdot z \tag{14}$$

Здесь, как и раньше, для сокращения записи введен параметр $b=tg\alpha$.

Подставим теперь (14) и (13) в (12):

$$0 = \pi \cdot y \cdot g \cdot R^2_d \cdot dz - \pi \cdot R^2_d \cdot dz \cdot (1 + \mu_i^2) \cdot \frac{\partial Pz}{\partial z} - 2\pi \cdot Rd \cdot \mu e \cdot Rz \cdot (1 - (1 - k) \cdot \cos \alpha) \cdot dz$$

Преобразуем полученное выражение:
$$\frac{\partial P_z}{\partial z} + \frac{2 \cdot \mu_e \cdot (1 - (1 - k) \cdot \cos \alpha)}{R_d^2 \cdot (1 + \mu_i^2)} \cdot P_z - \frac{\gamma \cdot g}{1 + \mu_i^2}$$
(15)

Если стенки вертикальны $-\alpha = 0$, то уравнение (15) переходит в уравнение (4). Решение уравнения (15) имеет вид:

$$P_z = C \cdot (-R + b \cdot z)^{\frac{2 \cdot A}{b}} + \frac{\gamma \cdot g \cdot (-R + b \cdot z)}{(1 + \mu_i^2) \cdot (-2 \cdot A + b)}$$

где A, для сокращения записи, имеет вид:

$$b = tg\alpha \qquad A = \frac{\mu_e \cdot (1 - (1 - k) \cdot cos\alpha)}{1 + \mu_i^2}$$

Из условия, что на поверхности бункера давление равно нулю, найдем константу интегрирования C:

$$C = \frac{\gamma \cdot g \cdot R}{(2 \cdot A - b) \cdot (1 + \mu_i^2)} \cdot (-R)^{\frac{2 \cdot A}{b}}$$

C учетом значения константы C, выражение для вертикального давления в бункере будет иметь вид:

$$P_{z}(z) = -(-R + b \cdot z)^{-\frac{2 \cdot A}{b}} \cdot \frac{\gamma \cdot g \cdot R}{(2 \cdot A - b) \cdot (1 + \mu_{i}^{2})} \cdot (-R)^{-\frac{2 \cdot A}{b}} - \frac{\gamma \cdot g \cdot (-R + b \cdot z)}{(2 \cdot A - b) \cdot (1 + \mu_{i}^{2})}$$

Преобразовывая это выражение, получим

$$P_{z}(z) = \frac{B \cdot R}{2 \cdot A - b} \cdot \left(1 - \frac{b \cdot z}{R}\right) \cdot \left(1 - \left(1 - \frac{b \cdot z}{R}\right)^{\frac{2 \cdot A}{b} - 1}\right) \tag{16}$$

Выражение (16) описывает вертикальную компоненту давления в коническом бункере. Оно подобно аналогичному выражению, описывающему давление в щелевом бункере. Поэтому можно сказать, что оно описывает давление в стационарном состоянии.

В равновесном состоянии, при $\mu_i \rightarrow 0$, $\chi \rightarrow 0$, $k \rightarrow 1$, $A \rightarrow \mu_e$, давление в коническом бункере будет выражаться как:

$$P_{\mathbf{o}}(z) = \frac{\gamma \cdot g \cdot R}{2 \cdot \mu_{e} - b} \cdot \left(1 - \frac{b \cdot z}{R}\right) \cdot \left(1 - \left(1 - \frac{b \cdot z}{R}\right)^{\frac{2 \cdot \mu_{e}}{b} - 1}\right) \tag{17}$$

Из выражения (17) видно, что при $b \rightarrow 2\mu_e$, $\alpha \rightarrow arctg(2arctg\varphi)$ возникает неопределенность, типа 0/0. Раскрыв ее по правилу Лопиталя, получим:

$$P_{okp} = -\frac{\gamma gR}{h} \cdot (1 - \frac{bz}{R}) \cdot ln \cdot (1 - \frac{bz}{R})$$
 (18)

На рисунке 11 приведены кривые равновесного давления в коническом бункере (сплошные линии), рассчитанные по формуле (17), и кривая критического равновесного давления (линия из точек $b = 2\mu_e$), рассчитанная по формуле (18).

Мы видим, что никаких разрывов не наблюдается.

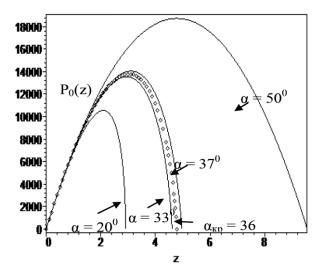


Рис. 11. Кривые равновесного давления в коническом бункере (сплошные линии) при разных углах наклона стенки и кривая критического равновесного давления (b = $2\mu_e$) в том же бункере (кривая из точек). $R=3.5 \text{ M}, \psi=16^0, \phi=20^0, \gamma=30^0, \gamma=800 \text{ Kr}/\text{M}^3$

Fig. 11. Curves of equilibrium pressure in a conical hopper (solid lines) at different angles of inclination of the wall and the curve of the critical equilibrium pressure (b = $2\mu e$) in the same bunker (curve of dots). $R = 3.5 \text{ m}, \psi = 16^0, \varphi = 20^0, \chi = 30^0, \gamma = 800 \text{ kg/m}^3$

На рис. 12 приведены кривые веритикального (сплошная линия) и горизонтального (пунктирная линия) давления в стационарном состоянии и давление в равновесном состоянии (линия из точек) для конического бункера.

Это указывает на то, что в стационарном состоянии давление на стены меньше, чем в равновесном состоянии. Отметим что здесь, также как и в силосе, вертикальное давление в стационарном состоянии больше давления в равновесном состоянии. В то же время горизонтальное давление в стационарном состоянии меньше давления в равновесном состоянии.

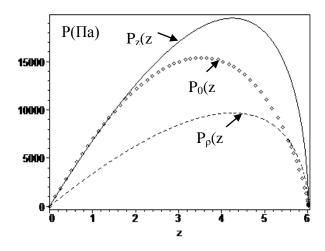


Рис. 12. Вертикальное (сплошная линия) и горизонтальное (пунктирная линия) давление в коническом бункере в стационарном случае и давление в равновесном состоянии (линия из точек) R=3.5 м, $\psi=16^0$, $\phi=20^0$, $\chi=30^0$, $\gamma=800$ кг / м³

Fig. 12. Vertical (solid line) and horizontal (dotted line) pressures in a conical hopper in the stationary case, and the pressure in the equilibrium state (line of dots)

$$R = 3.5 \text{ m}, \psi = 16^{\circ}, \phi = 20^{\circ}, \chi = 30^{\circ}, \gamma = 800 \text{ kg}/\text{m}^3$$

На рис. 13 представлены графики зависимости вертикального давления вдоль стенки от координаты z для щелевого (сплошная линия) и конического (линия из точек) бункеров. При этом параметры бункеров одинаковы: L=R=3.5 м, одинаков и угол наклона стенки $\alpha=30^{0}$, одинаков и сыпучий материал в бункерах.

Заметим, что графики подобны, хотя есть различия и количественные (давление в щелевом бункере больше давления в коническом) и качественные (максимум давления в щелевом бункере сдвинут ближе к выходному отверстию). Однако здесь различий меньше, чем в случае прямоугольной траншеи и круглого силоса.

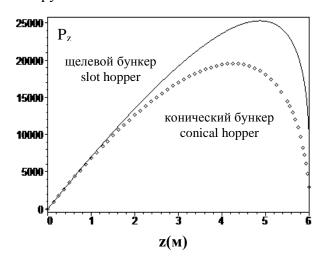


Рис. 13. Вертикальное давление в щелевом (сплошная линия) и в коническом (линия из точек) бункерах L=R=3.5 м, $\alpha=30^{0}\gamma=800$ кг / м³, $\psi=16^{0}$, $\phi=20^{0}$, $\chi=30^{0}$) Fig. 13. Vertical pressure in the slot (solid line) and conical (line of dots) in bins of L=R=3.5 m, $\alpha=30^{0}$, $\gamma=80^{0}$ kg / m³, $\psi=16^{0}$, $\phi=20^{0}$, $\chi=30^{0}$)

Из уравнения (16) следует, что также как и в случае щелевого бункера, при $\alpha \to 0$ решение (16) переходит в решение (5) для круглого силоса.

Если стенка бункера абсолютно гладкая, то выражение (16) преобразуется к виду: То есть, найдем значение выражения:

$$\Delta = F_T - F_B - F_{TP.B} \tag{19}$$

Рассчитаем составляющие уравнения (19).

Давление на стены конического бункера определяется выражениями (16):

$$P_n(z) = \frac{a \cdot B \cdot R}{2 \cdot A - b} \cdot \left[\left(1 - \frac{b \cdot z}{R} \right) \left(1 - \frac{b \cdot z}{R} \right)^{\frac{2 \cdot A}{b} - 1} \right] \tag{20}$$

где $a = 1 - (1 - k) \cdot \cos \alpha$.

$$\lim_{A \to \mathbf{0}} P_Z(z) = \frac{\gamma \cdot g \cdot R}{-b \cdot \left(1 + \mu_i^2\right)} \cdot \left(\frac{R - b \cdot z}{R}\right) = \frac{\gamma \cdot g \cdot R}{b \cdot \left(1 + \mu_i^2\right)} \cdot z \cdot \frac{b}{R} = \frac{\gamma \cdot g}{1 + \mu_i^2} \cdot z$$

При $\mu_i \to 0$ выражение (16) переходит в формулу гидростатического давления.

Посмотрим, выполняется ли условие равновесия сыпучего материала в коническом бункере.

Для этого, как обычно, найдем разность Δ между силой тяжести F_T сыпучего материала в бункере и суммой сил вертикальной компоненты силы трения о боковую стенку $F_{TP.B}$ и вертикальной компонентой силы реакции стенок бункера F_B .

Сила тяжести F_T сыпучего материала в коническом бункере будет определяться как:

$$F_T = \frac{1}{3}\gamma \cdot g \cdot \pi \cdot (R^2 \cdot H - (R - b \cdot h)^2 \cdot (H - h))$$

где h – мощность пласта (рис. 14).

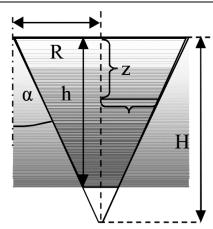


Рис. 14. Пласт сыпучего материала в коническом бункере Fig. 14. The layer of granular material in a conical hopper

Вертикальная компонента dF_B силы реакции стенки бункера будет равна:

$$dF_B = P_n \cdot \frac{dz}{\cos\alpha} \cdot 2\pi \cdot r \cdot \sin\alpha$$

Значение текущего радиуса определяется выражением:

$$r = R - z \cdot tg\alpha = R - b \cdot z$$

Силы реакции стенки конического бункера, действующая на весь пласт, будет равна:

$$F_B = 2\pi \cdot R \cdot b \cdot \int_0^h \left(1 - \frac{b \cdot z}{R}\right) \cdot P_n \cdot dz$$

Произведя интегрирование, получим:
$$F_B = \frac{2\pi \cdot a \cdot B \cdot R^2}{3 \cdot (2 \cdot A - b)} \cdot \left(1 - (1 - b \cdot x)^2 + \frac{3 \cdot b}{2 \cdot (A + b)} \cdot \left((1 - b \cdot x)^{\frac{2 \cdot A}{b} + 2} - 1 \right) \right)$$

где x - безразмерная переменная: x = h/R.

Соответственно, сила трения F_{TP} , также, как и для щелевого бункера, будет равна:

$$F_{TP} = F_B \cdot \frac{\mu_e}{h}$$

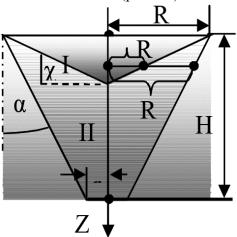
Следовательно, полная сила сопротивления, действующая на пласт, будет равна: $F_B \cdot \left(1 + \frac{\mu_e}{h}\right)$

В этом случае, условие (19) запишется в виде

$$\Delta = F_T - F_B - F_{TP.B} = \frac{1}{3}\gamma \cdot g \cdot \pi \cdot R^2 \left(\frac{1}{b} - (1 - b \cdot x)^2 \cdot \left(\frac{1}{b} - x\right)\right) - \frac{2\pi \cdot a \cdot B \cdot R^2}{3 \cdot (2 \cdot A - b)} \cdot \left(1 - (1 - b \cdot x)^2 + \frac{3 \cdot b}{2 \cdot (A + b)} \cdot \left((1 - b \cdot x)^{\frac{2 \cdot A}{b} + 2}\right)\right) \cdot \left(1 + \frac{\mu_e}{b}\right)$$

Максимальное значение безразмерной переменной $x_m = 1 / b$. При этом условие (19) примет вид:

$$\Delta = F_T - F_B - F_{TP.B} = \frac{1}{3}\gamma \cdot g \cdot \pi \cdot R^3 \cdot \frac{1}{b} - \frac{2\pi \cdot a \cdot B \cdot R^3}{3 \cdot (2 \cdot A - b)} \cdot \left(1 - \frac{3 \cdot b}{2 \cdot (A + b)}\right) \cdot \left(1 + \frac{\mu_e}{b}\right)$$


В равновесном состоянии $B \to \gamma g A \to \mu_e a \to 1$. В этом случае уравнение (19) примет вид:

$$\Delta = F_T - F_B - F_{TP,B} = \frac{1}{3}\gamma \cdot g \cdot \pi \cdot R^3 \cdot \frac{1}{b} \cdot \left(1 - \frac{2 \cdot (\mu_e + b)}{(2 \cdot \mu_e - b)} \cdot \frac{(2 \cdot \mu_e - b)}{2 \cdot (\mu_e + b)}\right) = \mathbf{0}$$

Обсуждение результатов. Таким образом, получили обычный результат: в равновесном состоянии сила тяжести в точности равна сумме сил трения о стенки бункера плюс сила реакции со стороны этих стенок. Во всех остальных случаях $\Delta > 0$.

Однако необходимо учитывать, что это чисто формальный вывод. Действительно, если начнется движение вниз пласта сыпучего материала, то возникнет смещение частиц сыпучего материала друг относительно друга (ведь бункер суживается к низу). Следовательно, возникнут силы внутреннего, сухого трения, против которых будет совершаться работа за счет силы тяжести, которая не учитывалась в данном выводе.

Для нахождения общего решения, разобьем весь объем конического бункера, также, как и для щелевого, на такие же две области I и II (рис. 15).

Puc. 15. Области бункера Fig. 15. Regions of the hopper

Это необходимо сделать для удовлетворения граничному условию на поверхности бункера и дальнейшего введения зависимости от горизонтальной координаты ρ .

При этом решение в области I будет иметь такой же вид, как и для силоса в той же области I - (9):

$$P_z^I(z) = B \cdot z$$

Решение в области *II* представим в виде:

Рис. 16. Вертикальное давление в коническом бункере вдоль осевой и образующей боковую поверхность линий при различных углах наклона стенки бункера

 α ($\gamma = 800 \text{ kg} / \text{m}^3$, $\psi = 16^0$, $\varphi = 20^0$, $\chi = 30^0$, R = 3.5 m) Fig. 16. Vertical pressures in a conical hopper along the axis and forming the side surface lines at various angles of inclination of the hopper walls

 $\alpha (\gamma = 80^{\circ} \text{ kg} / \text{m}^3, \psi = 16^{\circ}, \phi = 20^{\circ}, \chi = 30^{\circ}, R = 3.5 \text{ m})$

В таком виде решение (21) удовлетворяют граничному условию на поверхности бункера. Решение (21) на границе областей, при $\rho = R_b$ переходит в решение (9) и при $\rho = R_d$ переходит в решение (16). На рис. 16 приведены графики зависимости вертикального давления

от координаты z для конического бункера с углом наклона 30^0 и 15^0 . При этом сплошная кривая отображает ход давления по центру бункера, а кривая из точек - по его боковой поверхности. Выделенная темным цветом прямая соответствует решению в области I. Как видно из графиков (рис. 16), угол наклона влияет на величину давления и его характер зависимости от координаты. Кроме того, из рис. 16 следует, что вертикальное давление в центре конического бункера превышает давление на его поверхности.

Исследуем теперь характер расположения изолиний давления в коническом бункере. При этом, во-первых, можно рассмотреть давление $P_{\mathsf{LL}}(\rho,z)$, действующее на площадку, ориентированную перпендикулярно направлению на точку симметрии конического бункера (точка \mathcal{L} на рис. 17).

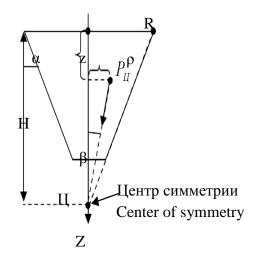


Рис. 17. Ориентация давления $P_{I\!I}$ и угол β Fig. 17. The orientation of the pressure $P_{I\!I}$ and the angle β

Это направление выбрано из следующих соображений. При истечении сыпучего материала из бункера, осредненные траектории частиц могут представлять собой непересекающиеся прямые направленные в точку симметрии конического бункера. Вследствие этого, можно рассмотреть именно это направление давления. В этом случае именно оно будет создавать форму поверхности движущегося пласта. При этом можно сказать, что изолиния этого давления будет в значительной степени совпадать с формой поверхности движущегося пласта. Если изолиния будет иметь форму свода, то и поверхность пласта будет иметь форму свода, и возможна остановка истечения сыпучего материала.

Соответственно давление, действующее на площадку, ориентированную вдоль направления на точку симметрии бункера, обозначим как.

Формулы для расчета давлений $P_{\Pi}(\rho.z)$ и запишем в виде:

$$P_{II}(\mathbf{p},\mathbf{z}) = P_{z}^{II}(\mathbf{p},\mathbf{z}) \left(1 - \left(1 - \frac{\mu i}{tgx}\right) \sin\beta; P_{nII}(\mathbf{p},\mathbf{z}) = P_{z}^{II}(\mathbf{p},\mathbf{z}) \left(1 - \left(1 - \frac{\mu i}{tgx}\right) \cos\beta\right) (22)$$

Здесь, согласно рис. 17, тригонометрические функции угла β определяются выражениями:

$$sin\beta = \frac{\rho}{\sqrt{\rho^2 + \left(\frac{R}{tg\alpha} - z\right)^2}}; \qquad cos\beta = \frac{\frac{R}{tg\alpha} - z}{\sqrt{\rho^2 + \left(\frac{R}{tg\alpha} - z\right)^2}}; \tag{23}$$

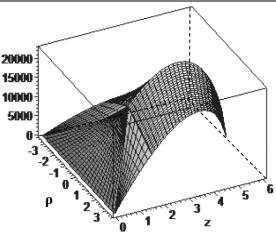
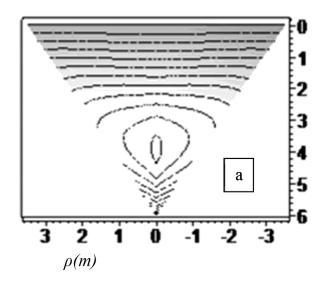



Рис. 18. Трехмерный график зависимости давления $P_{II}(\rho,z).(\gamma=800~{\rm kr}~/{\rm m}^3,\psi=16^0,\phi=20^0,~\chi=30^0,~\alpha=30^0,~R=3,5~{\rm m})$ Fig. 18. Three-dimensional graph of pressure $R_C(\rho,z).~(\gamma=800~{\rm kg}~/{\rm m}^3,\psi=16^0,\phi=20^0,\chi=30^0,\alpha=30^0,R=3.5~{\rm m})$

На рис. 18 представлен трехмерный график давления $P_{\mathcal{U}}(\rho, \mathbf{z})$ (давления, направленного к центру симметрии) для сыпучего материала в коническом бункере в областях I и II. Как видно, давление в центре превышает давление вдоль стен. Также достаточно видна хорошая «сшиваемость» решений. Но осредненные траектории движения частиц могут иметь форму прямых, параллельных боковой поверхности бункера — пересекающиеся траектории. В этом случае удобно рассматривать давления параллельное — $P_{II}(\rho, \mathbf{z})$ и перпендикулярное боковой стенке бункера — $P_{N}(\rho, \mathbf{z})$. Они будут рассчитываться по формулам:

$$P_{II}(\rho,z) = P_z^{II}(\rho,z) \cdot \left(1 - \left(1 - \frac{\mu_i}{tg\chi}\right) \cdot sin\alpha\right); \qquad P_N(\rho,z) = P_z^{II}(\rho,z) \cdot \left(1 - \left(1 - \frac{\mu_i}{tg\chi}\right) \cdot cos\alpha\right) \tag{24}$$

На рис. 19 представлены изолинии давлений $P_{II}(\rho.z)$ и $P_{N}(\rho.z)$, рассчитанные по формулам (24).

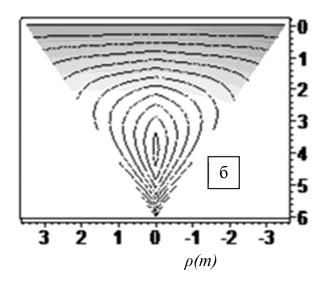
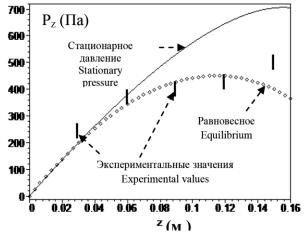
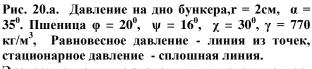




Рис. 19. Изолинии давления $P_{II}(\rho,z)$ (a) и $P_{nII}(\rho)$ (б) в коническом бункере R=3.5~m ; $\psi=16^0$; $\phi=20^0$; $\chi=30^0$; $\gamma=800~\kappa z/m^3$; $\alpha=30^0$.

Fig. 19. Contours of pressure $R_C(\rho,z)$ (a) and $Rnc(\rho)$ (b) in a conical hopper R=3.5~m; $\psi=16^0$; $\phi=20^0$; $\chi=30^0$; $\gamma=800~kg/m^3$; $\alpha=30^0$

Экспериментальные значения – выделенные, вертикальные линии.

Fig. 20. a. The pressure on the bottom of the hopper, r=2cm, $\alpha=35^{0}$. Wheat $\phi=20^{0}$, $\psi=16^{0}$, $\chi=30^{0}$, $\gamma=770~kg/m^{3}$, the Equilibrium pressure of a line of points, a stationary pressure - solid line. Experimental values - highlighted vertical line.

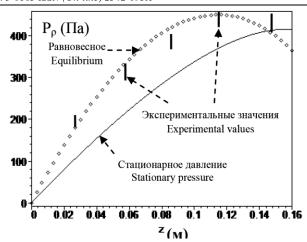


Рис. 20.6. Давление на боковую стенку бункера, r=2см, $\alpha=35^{\circ}$. Пшеница $\phi=20^{\circ}$, $\psi=16^{\circ}$, $\chi=30^{\circ}$, $\gamma=770$ кг/м 3 , Равновесное давление линия из точек, стационарное давление сплошная линия. Экспериментальные значения — выделенные, вертикальные линии.

Fig. 20.b. The pressure on the side wall of the hopper, $r=2cm,~\alpha=350.$ Wheat $\phi=200~,\psi=160~,~\chi=300~,~\gamma=770~kg/m³~,$ the Equilibrium pressure of a line of dots, stationary pressure solid line.

Experimental values - highlighted vertical line.

Мы видим, что в коническом бункере изолинии давления также представляют собой кривые, представляющие собой части окружности. Следовательно, и здесь происходит образование сводчатых структур, тормозящих истечение сыпучего материала из бункера. Результаты сравнения теоретических расчетов с экспериментальными данными, взятыми из [22] для модели бункера малых размеров, представлены на рис. 20.

Как видно из рис. 20, в пределах точности экспериментальных данных, а также усредненных параметрах сыпучего материала, согласие можно считать вполне удовлетворительным, гораздо лучшим, чем на рис. 7-9. Вероятно, это можно объяснить тем, что в модели бункера малых размеров процессы уплотнения сыпучего материала завершаются за гораздо меньший промежуток времени, чем в реальном бункере. Кроме того, из данных рис. 20 следует, что в этом случае, состояние сыпучего материала ближе к равновесному состоянию, чем к стационарному, что вполне естественно.

Вывод. Из всего изложенного вытекает, в сыпучем материале, находящемся в некоторой ёмкости, образуются статические своды, которые переходят в динамические своды при его истечении. Эти своды тормозят истечение, уменьшая его скорость, тем самым понижая экономическую эффективность различных технологических процессов, имеющих в своём составе бункерные устройства.

Библиографический список:

- 1. Coulomb. Application des regles de maximisetminimis a quelquesproblemes de statiqurelatifs a J'architecture. Mem des Savants Etrangers de J'dcad d / Coulomb // Sc. de Paris, 1773.
- 2. Малышев М.В. Об определении угла внутреннего трения и сцепления предельно напряженной сыпучей среды / М.В. Малышев // Изв. АН СССР. Сер. ОТН. 1954.- № 7. С. 18-21.
- 3. Клейн Г.К. Строительная механика сыпучих тел / Г.К. Клейн. М.: Госсторйиздат, 1956. 252 с.
- 4. Соколовский В.В. Статика сыпучей среды / В.В. Соколовский. М.: Физматгиз, 1960. 186 с.
- 5. Соловых С.Ф. О связи напряженного состояния сыпучего тела с формой движения его в силосе / С.Ф. Соловых

- // Изв. вузов. Строительство и архитектура. 1962. № 5. С. 22-25.
- 6. Ехансон. А.И. Поля напряжений и скоростей при гравитационном течении масс / А.И. Ехансон // Прикладная механика. 1964. № 3. С. 149.
- 7. Гениев Г.А. Об одном варианте течения сыпучей среды / Г.А. Гениев // Строительная механика. − 1965. № 6. − С. 23-26.
- 8. Дерсевич Г. И. Механика зернистой среды / Г.И. Дерсевич // Проблемы механики. М., 1961. Вып. III. 368 с. 9. Jenkin C.F. Pressure Exerted by Granular Material an Application of the Principles of Dilatancy / C.F. Jenkin // Proceedings pf Royal Society of London. Ser. A. 1931. Vol. 131. P. 53-89.

- 10. Гячев Л.В. О механической модели сыпучего тела / Л.В. Гячев // Механика сыпучих материалов: тез. докл. Всесоюз. конф. – Одесса, 1975. – С. 3-4.
- 11. Гячев Л.В. Движение сыпучих материалов в трубах и бункерах / Л.В. Гячев. - М.: Машиностроение, 1968. - 184
- 12. Keller H. Das Schuttgutmodell L.V.GjachevzurBeschreibung der Gesetzmabigkeiten der BunkerungkohasionsloserSchuttgutter und seine experimentelleUberprufung / H. Keller . - Weimer, 1982. – 76 s.
- 13. Keller H. KorrekturformelnzurTheorie des SchuttgutausflussesausBunkern von L.V.Gjachev / H. Keller // WissenschaftliceZeitschrift der Hochschule furArchitectur und Bauwessen. - Weimar, 1987. - RaieB.h. 5/6. - S. 292-295.
- 14. Keller H. BeitragezumSchuttgutausflubausBehaltern: Dissertationen / H. Keller. - Weimar, 1989. - 238 s.
- 15. Богомягких В.А., Ялтанцев В.Г. Зыков В.А. Процесс образования сводов в силосах и бункерах при истечении сыпучих материалов // Механика деформируемых систем в сельхозмашиностроении. - Ростов - н/Д, 1974. С. 115 -119.
- 16. Богомягких В.А., Пепчук А.П. Интенсификация разгрузки бункерных устройств в условиях сводообразования зернистых материалов. - Зерноград, 1997, - 161 с.
- 17. Богомягких В.А., Кунаков В.С. Расчёт параметров и режимов работы сводоразрушающих устройств. // Труды

References:

- 1. Coulomb C.-A. Essai sur une application des règles de maximis et de minimis à quelques problèmes de Statique relatifs à l'Architecture. Mémoires de l'Académie royale des sciences de Paris (Savants étrangers). Paris; 1773.
- 2. Malyshev M.V. Ob opredelenii ugla vnutrennego treniya i stsepleniya predel'no napryazhennoi sypuchei sredy. Izv. AN SSSR. Ser. OTN. 1954;7:18-21. [Malyshev M.V. On the determination of the angle of internal friction and the adhesion of an extremely stressed loose medium. Izv. AN SSSR. Ser. OTN. 1954;7:18-21. (In Russ.)]
- 3. Klein G.K. Stroitel'naya mekhanika sypuchikh tel. M.: Gosstoriizdat; 1956. 252 s. [Klein G.K. Construction mechanics of loose bodies. M.: Gosstoriizdat; 1956. 252 p. (In Russ.)]
- 4. Sokolovskii V.V. Statika sypuchei sredy. M.: Fizmatgiz; 1960. 186 s. [Sokolovskii V.V. Statistics of the loose medium. M.: Fizmatgiz; 1960. 186 p. (In Russ.)]
- 5. Solovykh S.F. O svyazi napryazhennogo sostoyaniya sypuchego tela s formoi dvizheniya ego v silose. Izv. vuzov. Stroitel'stvo i arkhitektura. 1962;5:22-25. [Solovykh S.F. On the relationship between the stressed state of a loose body and the form of its movement in a silage. News of higher educational institutions. Construction. 1962;5:22-25. (In Russ.)]
- 6. Ekhanson A.I. Polya napryazhenii i skorostei pri gravitatsionnom techenii mass. Prikladnaya mekhanika. 1964;3:149. [Ekhanson A.I. Fields of stresses and velocities in the gravitational flow of masses. International Applied Mechanics. 1964;3:149. (In Russ.)]
- 7. Geniev G.A. Ob odnom variante techeniya sypuchei sredy. Stroitel'naya mekhanika. 1965;6:23-26. [Geniev G.A. About a version of the loose medium flow. Structural Mechanics and Analysis of Constructions. 1965;6:23-26. (In Russ)]
- 8. Dersevich G. I. Mekhanika zernistoi sredy. Problemy mekhaniki. Vyp. III. M.: 1961. 368 s. [Dersevich G. I. Mechanics of a granular medium. Issues of Mechanics. Vol. III. M.: 1961. 368 p. (In Russ.)]
- 9. Jenkin C.F. Pressure Exerted by Granular Material an Application of the Principles of Dilatancy. Proceedings of Royal Society of London. Ser. A. 1931;131:53-89.
- 10. Gyachev L.V. O mekhanicheskoi modeli sypuchego tela. Tezisy dokladov Vsesoyuznoy konferentsii "Mekhanika

- VМеждународной конференции по динамике технологических систем. Ростов – н/Д, 1997, с. 85 – 87.
- 18. Федосеев В.Б., Зацаринная И.А. К определению законов моментов образования и разрушения динамических сводов при установившемся режиме истечения зернистых материалов. // Вестник аграрной науки Дона: теоретический и научно-практический журнал. - Зерноград: ФГОУ ВПО АЧГАА, 2010. – Вып. 3. – С. 64 – 68.
- 19. Федосеев В.Б., Зацаринная И.А., Титученко А.А. Марковский процесс неустановившегося режима истечения сыпучего материала. Труды Кубанского государственного аграрного университета. – Краснодар: ФГОУ ВПО Куб Γ АУ, 2011. – Вып. 2 (29). С. 1 $\hat{8}8$ – 192.
- 20. Федосеев В.Б., Зацаринная И.А. Стохастический характер образования динамических сводов при установившемся режиме истечения сыпучих материалов из бункеров. Вестник Мичуринского государственного аграрного университета. – Мичуринск: ФГОУ ВПО МичГАУ, 2011. - №1, ч. 1. С. 196 – 199.
- 21. Мурадова С.Ш., Федосеева Л.В. Воздействие сыпучих материалов на стенки щелевых бункеров. - Вестник Дагестанского государственного технического университета. Технические науки. – том 44, №3, 2017. – С. 24 – 38.
- 22. Ким В.С. Давление зерна и совершенствование конструкций силосов зерновых элеваторов / В.С. Ким. – М.: Хлебоиздат, 1959. - 55 C.
- sypuchikh materialov". Odessa; 1975. S. 3-4. [Gyachev L.V. On the mechanical model of a loose body. Materials of All-Union conference "Mechanics of loose materials". Odessa; 1975. P. 3-4. (In Russ.)]
- 11. Gyachev L.V. Dvizhenie sypuchikh materialov v trubakh i bunkerakh. M.: Mashinostroenie; 1968. 184 s. [Gyachev L.V. Motion of loose materials in pipes and hoppers. M.: Mashinostroenie; 1968. 184 p. (In Russ.).
- 12. Keller H. Das Schuttgutmodell von L.V.Gjachev zur Beschreibung der Gesetzmabigkeiten der Bunkerung kohasionsloser Schuttgutter und seine experimentelle Uberprufung. Weimer; 1982. 76 p.
- 13. Keller H. Korrekturformeln zur Theorie des Schuttgutausflusses aus Bunkern von L.V.Gjachev. Wissenschaftlice Zeitschrift der Hochschule fur Architectur und Bauwessen. Raie B.h. 5/6. Weimar; 1987. P. 292-295.
- 14. Keller H. Beitrage zum Schuttgutausflub aus Behaltern:
- Dissertationen. Weimar; 1989. 238 p.
 15. Bogomyagkikh V.A., Yaltantsev V.G. Zykov V.A. Protsess obrazovaniya svodov v silosakh i bunkerakh pri istechenii sypuchikh materialov. Mekhanika deformiruemykh sistem v sel'khozmashinostroenii. Rostov-na-Donu; 1974. S. 115 – 119. [Bogomyagkikh V.A., Yaltantsev V.G. Zykov V.A. The process of formation of arches in silos and hoppers at the expiration of bulk materials. Mechanics of deformable systems in agricultural machinery. Rostov-on-Don; 1974. P. 115 - 119.
- 16. Bogomyagkikh V.A., Pepchuk A.P. Intensifikatsiya razgruzki bunkernykh ustroistv v usloviyakh svodoobrazovaniya zernistykh materialov. Zernograd;1997. 161 s. [Bogomyagkikh V.A., Pepchuk A.P. Intensification of unloading of hopper devices under the conditions of arch formation in granular materials. Zernograd; 1997. 161 p. (In Russ.)]
- 17. Bogomyagkikh V.A., Kunakov V.S. Raschet parametrov i rezhimov raboty svodorazrushayushchikh ustroistv. Trudy V Mezhdunarodnoi konferentsii po dinamike tekhnologicheskikh sistem. Rostov-na-Donu; 1997. C. 85 - 87. [Bogomyagkikh V.A., Kunakov V.S. Calculation of parameters and modes of operation of the arch-breaking devices. Proceedings of the V International Conference on the dynamics of technological

systems. Rostov-on-Don; 1997. C. 85 - 87. [(in Russ.)] (In Russ.)]

18. Fedoseev V.B., Zatsarinnaya I.A. K opredeleniyu zakonov momentov obrazovaniya i razrusheniya dinamicheskikh svodov pri ustanovivshemsya rezhime istecheniya zernistykh materialov. Vestnik agrarnoi nauki Dona. 2010;3:64 – 68. [Fedoseev V.B., Zatsarinnaya I.A. On the determination of the laws of the formation moments and destruction of dynamic arches under the steady regime of the outflow of granular materials. Don agrarian science bulletin. 2010;3:64 – 68. (In Russ.)]

19. Fedoseev V.B., Zatsarinnaya I.A., Tituchenko A.A. Markovskii protsess neustanovivshegosya rezhima istecheniya sypuchego materiala. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2011;2(29):188 – 192. [Fedoseev V.B., Zatsarinnaya I.A., Tituchenko A.A. Markov process of the unsteady outflow mode of loose material. Work collection of the Kuban State Agrarian University. 2011;2(29):188 – 192. (In Russ.)]

20. Fedoseev V.B., Zatsarinnaya I.A. Stokhasticheskii kharakter obrazovaniya dinamicheskikh svodov pri ustanovivshemsya

rezhime istecheniya sypuchikh materialov iz bunkerov. Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta. 2011;1:196-199. [Fedoseev V.B., Zatsarinnaya I.A. Stochastic character of the formation of dynamic arches under steady-state conditions for the flow of loose materials from hoppers. Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta. 2011;1:196-199. (In Russ.)]

21. Muradova S.Sh., Fedoseeva L.V. Vozdeistvie sypuchikh materialov na stenki shchelevykh bunkerov. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2017;44(3):24 – 38. [Muradova S.Sh., Fedoseeva L.V. Impact of loose materials on track hopper walls. Herald of Daghestan State Technical University. Technical Sciences. 2017;44(3):24 – 38. (In Russ.)]

22. Kim V.S. Davlenie zerna i sovershenstvovanie konstruktsii silosov zernovykh elevatorov. M.: Khleboizdat; 1959. 55 s. [Kim V.S. The grain pressure and the improvement of silo grain silos. M.: Khleboizdat; 1959. 55 p. (In Russ.)]

Сведения об авторах.

Мурадова Сафура Шиховна - кандидат педагогических наук, доцент.

Федосеева Людмила Владимировна - старший преподаватель.

Information about the authors.

Safura S. Muradova - Cand. Sci. (Pedagogical), Assoc.Prof.

Lyudmila V. Fedoseeva - Senior Lecturer.

Конфликт интересов.

Conflict of interest.

Авторы заявляют об отсутствии конфликта интересов. The authors declare no conflict of interest.

Поступила в редакцию 11.01.2018. **Received** 11.01.2018.

Принята в печать 20.02.2018. **Accepted for publication** 20.02.2018.

Для цитирования: Авилов Е.С., Коржуев М.А., Кретова М.А. Экспресс - методики анализа характеристик термоэлектрических материалов и преобразователей. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 49-59. DOI:10.21822/2073-6185-2018-45-1-49-59

For citation: Avilov E.S., Korzhuev M.A., Kretova M.A. Express methods for analysing thermoelectric materials and converter characteristics. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 49-59. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-49-59

ТЕХНИЧЕСКИЕ НАУКИ ЭНЕРГЕТИЧЕСКОЕ, МЕТАЛЛУРГИЧЕСКОЕ И ХИМИЧЕСКОЕ МАШИНОСТРОЕНИЕ

УДК: 621.36

DOI: 10.21822/2073-6185-2018-45-1-49-59

ЭКСПРЕСС-МЕТОДИКИ АНАЛИЗА ХАРАКТЕРИСТИК ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ И ПРЕОБРАЗОВАТЕЛЕЙ

Авилов E.C.², Коржуев М.А.¹, Кретова М.А.³

¹⁻³ФГБУН Институт металлургии и материаловедения им. А. А. Байкова РАН, ¹⁻³119334, г. Москва, Ленинский пр., 49, Россия,

¹e-mail: korzhuev@imet.ac.ru, ²e-mail: avilov@imet.ac.ru, ³e-mail:kretova@imet.ac.ru

Резюме. Цель. В последнее время отмечено резкое повышения интереса исследователей к термоэлектричеству (ТЭ) и его приложениям. Предложены новые конструкции термоэлектрических преобразователей (ТЭП), получено большое число новых термоэлектрических материалов (TЭМ) с термоэлектрической добротностью $Z = \alpha 2 \sigma/k$, повышенной методом нанотехнологий (HT). (Здесь α , $\sigma u k$ - коэффициент термо-э.д.с., удельные электропроводность и теплопроводность). В результате возникла необходимость резкого повышения производительности труда исследователей, работающих в ТЭ отрасли, в особенности при определении характеристик термоэлектрических материалов и термоэлектрических преобразователей, а также при обработке возросшего объема литературных данных. Целью настоящей работы является разработка комплекса методик экспресс-анализа характеристик термоэлектрических материалов и термоэлектрических преобразователей, позволяющая повысить производительность труда исследователей, работающих в ТЭ отрасли. Метод. Проблема решалась путем подбора известных и создания новых методик исследования ТЭМ и ТЭП, в основе которых лежат нестационарные принципы измерений и компьютерные расчеты. Результат. Результатом работы было расширение возможностей известных методов термозонда и Хармана, используемых для измерений параметра Z и его составляющих (α , σ и k). Метод Хармана в работе распространен на многокаскадные модули и допускает пассивную компенсацию тепловых потерь при измерениях на воздухе (включение термопар (ТП) «голова к голове»). Разработаны методики оценки ширины запрещенной зоны $Eg\ T \ni M$ по кривым Z = f(Т), а также расчета ТЭП с использованием правила Ленца. Предложен метод диагностики фазы «фононное стекло - электронный кристалл» ($\Phi C \ni K$) ($1 \sim \lambda ph/a << \lambda e/a$) путем определения средних длин свободного пробега фононов λph и электронов λe . (Здесь a=3 нм – кратчайшее межатомное расстояние). Развит метод автоэлектрохимического легирования термоэлектрических материалов, а также диагностики наноструктур (НС) путем определения зависимостей «физическое свойство – период идентичности ξ HC». Приведены примеры использования разработанных методик для анализа характеристик термоэлектрических материалов и термоэлектрических преобразователей. Вывод. Показана возможность резкого повышения производительности труда исследователей, работающих в ТЭ отрасли.

Работа выполнялась по государственному заданию № 007-00129-18-00.

Ключевые слова: термоэлектрические материалы; экспресс-методики получения и анализа характеристик; метод Хармана; ширина запрещенной зоны; правила Ленца; диагностика наноструктур

TECHNICAL SCIENCE POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING

EXPRESS METHODS FOR ANALYSING THERMO-ELECTRIC MATERIALS AND CONVERTER CHARACTERISTICS

Evgeniy S. Avilov², Mikhail A. Korzhuev ¹, Marina A. Kretova ³

¹⁻³A.A.Baikov Institute of Metallurgy and Material Science of RAS,

¹⁻³49, Leninskiy Ave., Moscow 119991, Russia,

¹e-mail: korzhuev@imet.ac.ru, ²e-mail: avilov@imet.ac.ru, ³e-mail:kretova@imet.ac.ru

Abstract Objectives. Recently, there has been a sharp increase in research interest in thermoelectricity (TE) and its applications. New designs for thermoelectric converters (TEC) are being proposed and a large number of new thermoelectric materials (TEM) with a thermoelectric figure of merit $Z = \alpha 2\sigma/k$ enhanced by the nanotechnological (NT) method are obtained. (Here α , σ and k are the coefficient of thermal electromotive force (EMF), the specific electrical conductivity and the thermal conductivity, respectively). As a result, the need for a sharp increase in the labour productivity of researchers working in the thermoelectric (TE) industry has emerged, especially when determining the characteristics of thermoelectric materials and thermoelectric converters, as well as when processing an increased volume of literature data. The aim of the present work is to develop a set of methods for rapid analysis of the characteristics of thermoelectric materials and thermoelectric converters, allowing the labour productivity of researchers working in the TE industry to be increased. Methods. The problem was solved by selecting well-known methods for studying TEM and TEC, based on nonstationary measurement principles and computer calculations, as well as creating new methods. Results. The result of the work was an expansion of the capabilities of the established thermal probe and Harman methods used to measure the Z parameter and its components (α , σ and k). The Harman method is expanded to multistage modules, allowing for the passive compensation of thermal losses when measuring in air (the switching of thermocouples (TP) in "head to head" mode). Methods for estimating the Eg – the band gap width of the TEM – according to the curves Z = f(T), as well as the calculation of the TEC using the Lenz rule, are developed. A method is proposed for diagnosing the "phonon glass electron crystal" (PGEC) phase $(1 \sim \lambda ph / a << \lambda e / a)$ by determining the mean free paths of phonons λph and electrons λe . (Here, a=3 nm is the shortest interatomic distance). The method of autoelectrochemical alloying of thermoelectric materials, as well as diagnostics of nanostructures (NS), is developed by determining the "physical property-NS identity period ξ " dependencies. Examples of the developed technique using for analysing the characteristics of thermoelectric materials and thermoelectric converters are given. Conclusion The possibility of a sharp increase in the labour productivity of researchers working in the TE industry is indicated.

Acknowledgment. The work was carried out according to the state task No. 007-00129-18-00. Keywords: thermoelectric materials, express methods of obtaining and analysing characteristics, Harman method, band gap width, Lenz rule, diagnostics of nanostructures

Введение. В последнее время существенно возрос интерес исследователей к прямому преобразованию тепловой энергии в электрическую, осуществляемое с помощью термоэлектрических преобразователей (ТЭП) [1-4]. В настоящее время исследованиями в области термоэлектричества (ТЭ) занимаются около 900 научных и коммерческих организаций, и более 2000 специалистов из 62 стран мира [5-6]. Существенно увеличилось число вновь синтезированных термоэлектрических материалов (ТЭМ), в том числе наноструктур (НС) с термоэлектрической добротностью

$$ZT = \alpha^2 \cdot \sigma \cdot T/\kappa., \tag{1}$$

повышенной методами нанотехнологий (HT) [7 – 10]. (Здесь α – дифференциальная термо-э.д.с., σ = ρ ⁻¹ и κ = κ_{ph} + κ_{e} - удельные электропроводность и теплопроводность, ρ -

удельное сопротивление, κ_e и κ_{ph} — электронная и фононная (решеточная) составляющие теплопроводности, T — абсолютная температура)

Предложены новые конструкции ТЭП, используемые, в частности, для кондиционирования помещений, в телефонии, компьютерных технологиях, медицине и др. [4-5, 11]. В результате общее число научных публикаций по ТЭ в мире достигло значительной величины (по оценкам > 3000 в год), что затрудняет их углубленное изучение специалистами. Кроме того, в связи с возрастанием конкуренции в ТЭ отрасли, возникла также необходимость в более тщательной проверке достоверности литературных данных, особенно результатов работ, имеющих коммерческую направленность. 1

Отсюда следует необходимость резкого повышения производительности труда исследователей, работающих в ТЭ отрасли, как при определении характеристик ТЭМ и ТЭП, так и при обработке возросшего объема литературных данных. В настоящее время эта проблема решается специалистами путем создания новых экспресс - методик исследования ТЭМ и ТЭП, в основе которых лежат нестационарные принципы измерений и компьютерные расчеты [4-5].

Постановка задачи. Целью настоящей работы была краткое описание экспресс методик, разработанных в последнее время в Лаборатории полупроводниковых материалов ИМЕТ им. А.А.Байкова РАН для анализа характеристик ТЭМ и ТЭП. Описанные методики включают измерение характеристик ТЭМ и ТЭП (1 и 2), оценку ширины запрещенной зоны E_g ТЭМ (3), электрохимическую диагностику и автоэлектрохимическое легирование образцов (4), диагностику фазы фононное стекло — электронный кристалл (ФСЭК) (5), оптимизацию характеристик НС путем изменения параметра их наноидентичности ξ (размеров кристаллического зерна, периода сверхструктур и т.п.) (6) а также использование правила Ленца (ПЛ) для расчетов ТЭП (7). Приводятся примеры использования разработанных методик, даны оценки эффективности их применения. Для характеристики эффективности методик использованы индексы А1 и А2, отвечающие повышению производительности труда исследователей до 10 и более 10 раз соответственно.

Методы исследования. Комплекс экспресс - методик для исследования ТЭМ и ТЭП

1. Метод термозонда (A1). Метод термозонда традиционно используется в ТЭ при определении типа проводимости ТЭМ, а также для проверки образцов на однородность [1, 14]. В использованной модификации (рис.1) метод позволят определить абсолютную величину и знак термо-э.д.с. α ТЭМ путем последовательного сравнения исследуемого образца с эталоном. Для расчетов используется формула

$$\alpha_1 = \alpha_2 U_1 / U_2. \tag{2}$$

(Здесь α_1 и U_1 – дифференциальная и интегральная термо-э.д.с. исследуемого образца, α_2 и U_2 – соответствующие характеристики эталона).

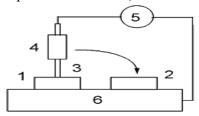
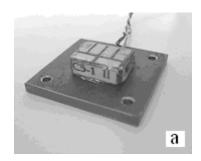


Рис. 1. Схема изменрения термо-э.д.с. α методом микрозонда. 1 — образец; 2 — эталон; 3 — термозонд (Cu); 4 — нагреватель; 5 — микровольтметр; 6 - массивный блок (Cu)

Fig. 1. Scheme of variation of thermo-emf. α by the microprobe method. 1 - sample; 2 - standard; 3 - thermosonde (Cu); 4 - heater; 5 - microvoltmeter; 6 - massive block (Cu)


¹ Так, например, значения $ZT \sim 2$, приведенные в работах [7-8] для сверхрешеток с квантовыми ямами и квантовыми точками, «не были затем воспроизведены ни в одной из лабораторий мира» [12]. Работы по автомобильным термоэлектрическим генераторам (АТЭГ), проводившиеся на протяжении последних 10 лет в ряде стран мира, не имели успеха вследствие неучета термодинамических ограничений АТЭГ [5, 13].

Тип проводимости исследуемого образца 1 (рис.1) определяется по известному типу проводимости эталона 2 путем сравнения знаков U_1 и U_2 . Время единичного измерения α составляет около 1 мин, точность измерений $\delta\alpha \sim 10\%$. (в случае, если определение α производится по 10- 20 экспериментальным точкам). По величине α определяется энергия Ферми E_F ТЭМ, а при известной концентрации носителей тока n(p) в образцах - также и эффективные массы плотности состояний - $m_d/m_0 = \hbar^2 (3\pi^2 n)^{2/3}/(2E_F m_0)$. (Здесь $\hbar=1,0542.10^{-27}$ эрг/с – постоянная Планка, $m_0=9,1.10^{-28}$ г – масса свободного электрона) [15, 16].

2. Модификации метода Хармана (A1). Для экспрессных оценок величины термоэлектрической добротности $Z=\alpha^2/(\rho k)$ ТЭМ и ее составляющих (α , ρ , k) широко применяется метод Хармана (табл.1) [14]. Метод основан на термодинамическом соотношении Херлингера - Бриджмена $\delta R=(R_a-R_i)/R_i=(R_{//}-R_*)/R_*=ZT_1$, которое справедливо для образцов ТЭМ (n- и p-типа проводимости), отдельных термопар, а также последовательно соединенных N одинаковых термопар (N= 1, 2, 3...) (рис.2) [14]. (Здесь $R_a=R_{//}-$ «адиабатическое» и $R_i=R_*-$ «изотермическое» сопротивления, измеренные на постоянном и переменном токе, α , $\rho=\sigma^{-1}$, k и σ - коэффициент термо-э.д.с., удельные электросопротивление, теплопроводность и электропроводность, I- рабочий ток, $S=a\cdot b$ - поперечное сечение, a, b и I-ширина, длина и высота образца; $\Delta T=T_1-T_0$; T_1 , T_0 и $\overline{T}=(T_1+T_0)/2$ - температура верхнего и нижнего концов образца, а также его средняя температура соответственно) [14].

Таблица 1. Основные расчетные формулы метода Хармана [14, 17] Table 1. The main calculation formulas of the Harman method [14, 17]

Параметр	ZT	α.	ρ	k	ΔΤ
Parameter			,		
Расчетная формула	$(R_{//}-R_{\sim})/R_{\sim}$	$I(R_{//}-R_{\sim})/\Delta T$	R _~ S/1	Iαl T/ΔT	$ZT_1^2/2$
The calculation formula		, ,			

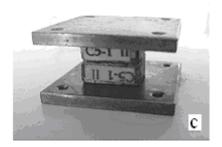


Рис.2. Схемы тепловой коммутации однокаскадных (а) и двухкаскадных модулей (b, c) при измерениях методом Хармана. Включение каскадов: $b - (\uparrow \uparrow)$, $c - (\downarrow \uparrow)$ [17].

Fig.2. Thermal switching circuits for single-stage (a) and two-stage modules (b, c) when measured by the Harman method. Inclusion of cascades: b - $(\uparrow\uparrow)$, c - $(\downarrow\uparrow)$ [17].

Соотношения (табл.1) используют для получения характеристик ТЭМ и ТЭП, при этом переход ТЭМ \leftrightarrow ТЭП осуществляется заменой: $\alpha \leftrightarrow \alpha_p$ - α_n ; $\rho \leftrightarrow \rho_p + \rho_n$; $k \leftrightarrow k_p + k_n$. (Здесь индексами n и p отмечены характеристики электронной и дырочной ветвей термопар) [14].

В [17] метод Хармана был распространен на многокаскадные модули и неоднородные ветви термопар. Подход [17] основан на применимости метода Хармана к однородным участкам неоднородных ветвей и к отдельным ступеням многокаскадных модулей с различным числом термопар (N) (рис.2b и 2c). В модифицированном методе [17] производится раздельное измерение отклика Хармана R=f(t) (здесь t- время) от однородных участков неоднородных ветвей и от отдельных ступеней многокаскадных модулей. Полученные характеристики суммируются по термоэлектрическому контуру, в результате получаются характеристики неоднородных ветвей и многокаскадных модулей в целом. Согласно [17], при встречном

52

² Во многих современных работах знак α и тип проводимости ТЭМ авторами не приводятся.

включении (↑↓) двух одинаковых модулей (рис.2c) происходит частичная компенсация тепловых потерь на рабочих стыках ступеней, что можно использовать для повышения точности измерений ZT на воздухе, например, при контроле качества ТЭП в процессе их массового производства (табл.2).

Таблица 2. Безразмерная добротность ZT батарей «Selen», измеренная различными методами [17] Table 2. The dimensionless quality factor of ZT batteries "Selen", measured by various methods [17]

				ZT (T= 300 K)				
	Тип батареи A type batteries Заводской номер батареи Factory number batteries	, ,	Число	Паспорт Passport	Метод Хармана Z _H .10 ³ , K ^{-1*} The Harman Method			
№		термопар, Number Thermocouples N	ZT=2ΔT / T ₁ **	Без комп.* without compensation for heat losses	Комп. тепловых потерь* heat loss compensation	Встречное включение батарей (↑↓)* Counter inclusion batteries		
1	Q ₅₋₁ II	117	6	0,63	0,49	0,61	0,58	
2	Q ₅₋₁ II	92	6	0,64	0,51	0,62	0,59	
3	Q ₃₋₄ II	342	21	0,63	0,47	0,61	0,55	
4	Q ₃₋₄ II	347	21	0,62	0,47	0,61	0,54	

^{* –} Измерения на воздухе с/ без компенсации тепловых потерь, ** – измерения в вакууме.

3. Оценка ширины запрещенной зоны E_g ТЭМ (A1). В настоящее время синтезированы новые группы ТЭМ с повышенными значениями термоэлектрической добротности $ZT\sim 1$ -2, величина E_g которых точно не определена [10, 18]. Между тем, с величиной E_g связано положение (ZT)_{max} на шкале температур и соответственно температурный интервал работы ТЭМ и ТЭМ [18]. В связи с этим, возникает необходимость оценок величины E_g новых ТЭМ различными методами.

Таблица 3. Оценки ширины запрещенной зоны E_g ТЭМ по известной температуре T_{max} [19, 20] Table 3. Estimates of the width of the band gap of the Eg TEM at a known temperature Tmax [19, 20]

Класс материала	Составы образцов и тип проводимости	(ZT) _{max}	T _{max} , K	E_g , $\ni B$
Скутерудиты	p, n - Co ₄ Sb ₁₂ p, n - Yb _{0.19} Co ₄ Sb ₁₂	0,,2 1, 2	480 > 680	0, 3 > 0, 4
Клатраты	n- Ba ₈ Ga ₁₆ Ge ₃₀	1, 4	> 800	> 0, 5
Фазы Геслера	$\begin{array}{c} \text{p-TiNiSn} \\ \text{n-} \ Zr_{0.25} Hf_{0.25} Ti_{0.5} NiSn_{1-y} Sb_y \end{array}$	0, 45 1, 4	650 700	0, 4 ₅ 0, 4
Фазы Цинтля	p-Yb ₁₄ MnSb ₁₁	1, 0	1200	1, 0
Слоистые сплавы Шелимовой - Карпинского и др.	$\begin{array}{c} \text{n- Ge}_2 \text{Bi}_{10} \text{Te}_{17} \\ \text{p- Ge}_4 \text{Bi}_2 \text{Te}_7 \\ \text{p- SnBi}_6 \text{Te}_{10} \end{array}$	0,16 0,14 > 0,13	340 300 370	0,13 0,11 0,13

В табл. 3 приведены примеры оценок E_g ряда новых ТЭМ по температуре T_{max} , определенной исходя из положения (ZT)_{max} на кривых ZT = f(T) [19]. Примеры использования разработанной методики применительно к более широкому кругу ТЭМ приведены в [20].

4. Электрохимическая диагностика и автоэлектрохимическое легирование ТЭМ (АЭХЛ) (А2). В [21] были изучены процессы интеркаляции меди в Ван-дер-Ваальсовы (VdW) щели слоистых тройных сплавов (TC) семейства [(Ge, Sn, Pb)(Te, Se)]_m [(Bi, Sb)₂(Te,Se)₃]_n (m, n= 0, 1, 2...), изменяющие электрические, механические и другие физические свойства образцов. Использовали электрохимические ячейки (ЭХЯ) < X / аq. CuSO₄/ Cu > (рис.3).

^{* –} Measurements in air with / without compensation for thermal losses, ** – measurements in vacuum.

(Здесь X – исследуемый образец ТЭМ, ад. CuSO₄ – насыщенный раствор медного купороса в воде, Си – медный электрод).

По знаку э.д.с. $E = -(\mu_{Cu}^{X} - \mu_{Cu}^{0})/(Ze)$, измеренной на электродах разомкнутой ЭХЯ, определяли возможность интеркаляции меди в сплавы [(+) на образце - да; (-) - нет]. (Здесь μ_{Cu}^{TX} и $\mu_{Cu}^{\ 0}$ – электрохимические потенциалы атомов меди в исследуемых образцах (X) и в металлической меди, Ze- заряд, переносимой ионом меди Cu^{2+} в электролите (Z=2), е элементарный заряд) [21].

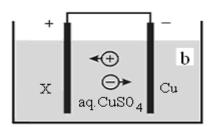
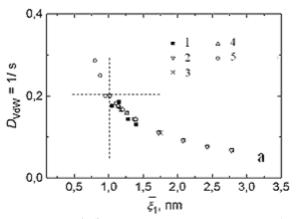



Рис.3. Общий вид электрохимической ячейки < X/J/Cu > (a) и ее электрическая схема при работе в режиме короткого замыания (b).

(Случай $\mu_{\rm Cu}^{\ \ X} < \mu_{\rm Cu}^{\ 0}$). Fig.3. General view of the electrochemical cell < X / \supset / Cu> (a) and its electrical circuit when operating in the short-circuiting mode (b). (The case $\mu_{Cu}^{X} < \mu_{Cu}^{0}$).

АЭХЛ медью проводили в течение t= 100 ч в короткозамкнутых ЭХЯ (рис. 3b). Количество меди ΔN_{Cu} , интеркалированной в образцы и обладающей донорными свойствами, определяли по изменению термо-э.д.с. α . образца Величина ΔN_{Cu} оказалась зависящей от относительной объемной плотности щелей $D_{VdW} \sim 1/\overline{s}$ в TC. (Здесь \overline{s} – средняя слойность пакетов).

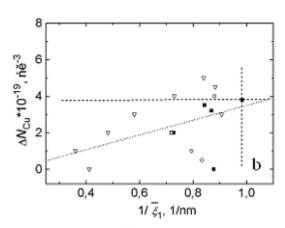
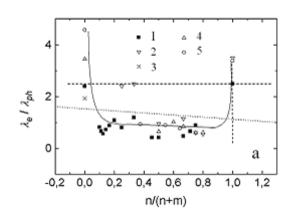


Рис.4. Зависимости относительной объемной плотности щелей VdW (a) и концентрации интеркалированной меди ΔN_{Cu} , (b) от средней толщины слоевых пакетов ξ_1 в TC. Сплавы: 1 -GeTe - Bi₂Te₃; 2 - GeTe - Sb₂Te₃; 3 - SnTe -Bi₂Te₃; 4 - PbTe -Bi₂Te₃ u 5 - PbSe - Bi₂Se₃ (T= 300 K). [21].


Fig.4. Dependences of the relative bulk density of the gaps VdW (a) and the concentration of intercalated copper $\Delta N_{\rm Cu}$, (b) on the average thickness of the layer packets ξ_1 in the TS. Alloys: 1 -GeTe - Bi₂Te₃; 2 - GeTe - Sb₂Te₃; 3 - SnTe -Bi₂Te₃; 4 - PbTe -Bi₂Te₃ μ 5 - PbSe - Bi₂Se₃ (T= 300 K). [21].

На рис. 4 показано изменения относительной объемной плотности щелей D_{VdW} в TC (a), а также концентрации интеркалированной меди ΔN_{Cu} , (b) в зависимости от средней толщины Обнаружено пропорциональное снижение концентрации интеркалированной меди ΔN_{Cu} при уменьшении относительной объемной плотности щелей

Ван-дер-Ваальса D_{VdW} , сопровождающим рост слойности пакетов s и их толщины ξ_1 (рис.4b). Методика позволяет путем сверхбыстрого АЭХЛ медью изменять параметры n (p) и E_F образцов, что, в свою очередь, дает возможность исследовать структуру краев зон проводимости и валентной зоны исследуемых ТЭМ [21].

5. Диагностика фазы фононное стекло - электронный кристалл (ФСЭК) ТЭМ (А2). Фаза «фононное стекло — электронный кристалл» (ФСЭК) характеризуется одновременно низкими значениями κ_{ph} , свойственными аморфным материалам, и высокими значениями σ , свойственными кристаллам, что может приводить к увеличению ZT ТЭМ до 1,5— 2,5 [1, 6]. Условие образования фазы ФСЭК в ТЭМ имеет вид $1 \sim \lambda_{ph}/a << \lambda_e/a$ (Здесь $\lambda_{ph} = 3 \kappa_{ph}/C$ V и $\lambda_e = v_F < \tau >= \hbar (3\pi^2 n/N^2)^{1/3} \mu/e$ — средние длины свободного пробега фононов и электронов в образцах, $C = C_{mol} d/M$ — теплоемкость единицы объема, C_{mol} — молярная теплоемкость, d - плотность, M - молекулярная масса, V — скорость звука; v_F и $< \tau >= \tau_0 E^{r-\frac{1}{2}}$ — скорость и среднее по энергии E время релаксации электронов, E0 — параметр рассеяния, E1 — множитель, не зависящий от энергии, E2 — концентрация носителей, E3 — число экстремумов в зоне, E4 — E5 — E6 — эффективные массы проводимости, плотности состояний и подвижность электронов, E6 — элементарный заряд, E7 — кратчайшее межатомное расстояние) [18, 22-23].

На рис. 5 приведены примеры использования метода диагностики фазы Φ СЭК применительно к тройным сплавам (TC) семейства [(Ge, Sn, Pb)(Te, Se)]_m [(Bi, Sb)₂(Te,Se)₃]_n (m, n= 0, 1, 2...)[23]. (Штрихами (кресты) на рис. 5 и далее отмечены характеристики сплавов Bi_2Te_3 , пунктиром – общие статистические линейные тренды исследуемых зависимостей).

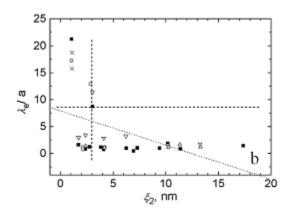
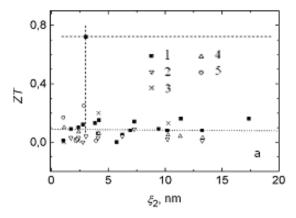



Рис. 5. Отношение средних длин свободного пробега фононов и электронов $\lambda_{\rm ph}$ / $\lambda_{\rm e}$ от состава (a) , а также $\lambda_{\rm e}$ / а от периода сверхструктуры ξ_2 (b). (T= 300 K). (Обозначения – см. подпись к рис.4).

Fig. 5. The ratio of the mean free paths of phonons and electrons $\lambda_{\rm ph}/\lambda_{\rm e}$ on the composition (a), and also $\lambda_{\rm e}/a$ on the period of the superstructure $\xi_{,2}$ (b). ($T=300~{\rm K}$). (Legend - see the caption to Fig. 4).

Слоистые кристаллы ТС представляют собой «естественные» наноструктуры с дискретным наноспектром $\xi = \xi_1$; ξ_2 ,. (Здесь $\xi_1 \sim 1$ - 3 нм — толщина слоевых пакетов; $\xi_2 \sim 3-18$ нм — период сверхструктуры вдоль тригональной оси $\overline{3}$ кристаллов) [24]. Исследование параметров λ_{ph} /а и λ_e /а показало, что фаза ФСЭК в ТС вырождается (1~ λ_{ph} /а ~ λ_e /а) (рис.5а) [25, 26]. Причиной вырождения является резкое снижение λ_e /а при переходе $Bi_2Te_3 \rightarrow TC$ (рис.5b). В результате при переходе $Bi_2Te_3 \rightarrow TC$ также наблюдается резкое уменьшение ZT = 0.7- $0.8 \rightarrow 0.1$ — 0.2 (рис. 6a).

Таким образом, было установлено, что увеличение параметра ZT ТЭМ возможно только в невырожденной фазе Φ СЭК [24]. В [18] были сделаны оценки предельных значений ZT= $f(E_g)$, которые можно достичь для невырожденной фазы Φ СЭК ТЭМ в различных интервалах температур.

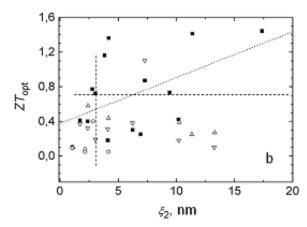


Рис. 6. Зависимости термоэлектрической добротности ZT от параметра $\xi_{,2}$ до (а) и после оптимизации концентрации носителей тока в TC (пересчет) (b) n(p): а - (2- 5)· 10^{20} см⁻³; b - ~1· 10^{19} см⁻³ (T= 300 K). (Обозначения – см. подпись к рис.4) [24].

Fig. 6. Dependences of the thermoelectric figure of merit ZT on the parameter $\xi_{,2}$ to (a) and after optimizing the carrier concentration in the TS (recalculation) (b). n(p): a - (2-5)· 10^{20} cm⁻³; b - ~1· 10^{19} cm⁻³ (T= 300 K). (Legend - see the caption to Fig. 4) [24].

6. Оптимизации характеристик НС ТЭМ (А2). В работах [18, 22-24] был предложен оптимизации характеристик HC ТЭМ путем варьирования наноидентичности ξ. Результаты применения метода [11, 22] к TC семейства [(Ge, Sn, Pb)(Te, Se)]_m [(Bi, Sb)₂(Te,Se)₃] $_n$ (m, n= 0, 1, 2...) показаны на рис. 6. Было обнаружено, что ZT TC в вырожденной фазе ФСЭК не зависит от периода идентичности сверхструктуры ξ_2 (рис.6a) [25-26]. Это позволило объяснить снижение ZT TC действием другого фактора - высокой концентрацией носителей тока в TC (n, p $\sim (2-5).10^{20}$ см $^{-3}$), существенно превышающей оптимальную концентрацию для кристаллов типа Bi_2Te_3 (n, p ~ $1\cdot10^{19}$ см⁻³) (T= 300 K) [26]. На рис.6b показаны результаты пересчета значений ZT TC к оптимальной концентрации n, p ~ $1\cdot 10^{19}$ см $^{-3}$. 3 Согласно рис.6b, пересчитанные величины ZT_{opt} TC возрастают с ростом $\xi_{,2}$, причем наибольшие значения $ZT_{opt} \sim 1,4$ наблюдаются при $\dot{\xi}_{,2} \sim 10$ - 20 нм (сплавы GeTe -Ві₂Те₃), что находится в согласии с теоретическими оценками [1, 6].

К сожалению, достижение на практике столь высоких значении $ZT_{opt} \sim 1,4$ в исследованных сплавах представляется проблематичным из-за трудностей получения TC с низкой концентрацией носителей тока $n(p) \sim 1 \cdot 10^{19}$ см⁻³ [24].

7. Использование правила Ленца (ПЛ) для расчетов ТЭП (А2). Правило достижения режима максимальной мощности (W_{max}) в изолированных электрических цепях - $M=R/r_i=1$, впервые получил академик СПб АН Э. Х. Ленц (1875) (см. рис.7, левая часть) [27]. Для изолированных тепловых цепей ПЛ имеет тот же вид - $\Psi=\zeta/\zeta_i=1$ (рис.7, правая часть) [28]. Однако при работе ТЭП его электрические и тепловые цепи вступают во взаимодействие (показано стрелками на рис.5), что требует их дополнительной оптимизации. (Здесь R-электрические сопротивления полезной нагрузки, r_i - сумма внутреннего электрического сопротивления источника тока и подводящих проводов, U - напряжение; I - электрический ток; Q - тепловой поток; ΔT - перепад температур; ζ и ζ_i - тепловые сопротивления полезной нагрузки, а также источника тепла и теплообменников, M_0 =(1+Z \overline{T}) $^{1/2}$) [28]. При работе ТЭП в режиме максимальной мощности (W_{max}) условия оптимизации имеют следующий вид: для электрических цепей - R/ R м, и для тепловых цепей - R0 (рис.7) [28].

56

³ Пересчет производился по формуле $Z\sim (m_{\rm d}/m_{\rm c})~(n,\,p)^{-2/3}~\kappa_{\rm ph}^{-1}~T$ (здесь $m_{\rm d}$ и $m_{\rm c}$ – эффективные массы плотности состояний и проводимости) в приближении $m_{\rm d}$, $m_{\rm c}~\kappa_{\rm ph}=$ const.

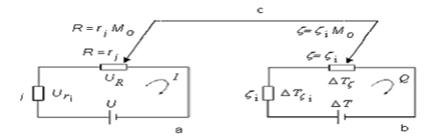


Рис.7. Изолированные электрическая (а) и тепловая (b) цепи ТЭП и их совместная работа в режиме $W_{\rm max}$ (показана стрелками) (c) .

Fig.7. Isolated electrical (a) and thermal (b) circuits of TICs and their joint operation in *Wmax* mode (shown by arrows) (c).

В [28-29] показано, что представленные соотношения можно использовать для экспресс - расчетов ТЭП. В [13, 29] низкая эффективность АТЭГ была объяснена трудностями теплообмена на границе «выхлопные газы — АТЭГ» и следующими из них термодинамическими ограничениями, определяемыми действием правила Ленца.

Обсуждение результатов. В настоящей работе описан комплекс методик экспрессанализа характеристик ТЭМ и ТЭП, позволяющая существенно повысить производительность труда исследователей как при измерении параметров ТЭМ и ТЭП, так и при обработке полученных результатов. Согласно оценкам авторов, при использовании разработанных экспресс-методик эффективность измерения характеристик ТЭМ и ТЭП может быть повышена до ~ 10 раз (А1), а эффективность соответствующей теоретической обработки полученных результатов и анализа литературных данных —более, чем в 10 раз (А2). Приведенные оценки эффективности разработанных методик носят оценочный характер и могут меняться в широких пределах в зависимости от конкретной задачи, решаемой исследователем.

Вывод. Разработаны экспресс - методики получения и анализа характеристик ТЭМ и ТЭП, позволяющие существенно повысить производительность труда исследователей, работающих в термоэлектрической отрасли.

Работа выполнялась по государственному заданию № 007-00129-18-00.

Библиографический список:

- 1. Nolas G.S., Sharp J., Goldsmid H.J. Thermoelectrics. Basic Principles and New Materials Developments. Berlin: Springer. 2001. 293 p.
- 2. Kaumoto C.K., Mori T. Thermoelectric Nanomaterials. Berlin: Springer. 2013. 387 p.
- 3. Goldsmid H. J.. Introduction to Thermoelectricity. Berlin Heidelberg: Springer-Verlag. 2016. 278 p.
- 4. Анатычук Л.И. Вступитальное слово на XIV Международном форуме по термоэлектричеству (17-20 мая 2011, Москва) // Термоэлектричество. 2011. №2. С.89- 93.
- 5. Филин C.O. XVII Международный термоэлектрический форум (17-20 мая 2017, Белфаст) // Холодильный бизнес. 2017. №6. С. 36- 39.
- 6. Slack G. New materials and performance limits for thermoelectric cooling // CRC Handbook of Thermoelectrics. Ed.: Rowe D.M. N.Y. Boca Raton. 1995. P. 407-440.
- 7. Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science. 2002. V. 297. P. 2229- 2232.
- 8. Ventkatasubramanian R., Siivola E., Colpitts T., O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit // Nature. 2001. V. 413 (6856). P. 597- 602.
- 9. Snyder G.J., Toberer E.S. Complex thermoelectric materials // Nature Materials. 2008.V.7. P.105-114.

- 10. Sootsman J. R., Xhung D. Y., Kanatzidis M.G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 2009. V.47. P.8616-8639.
- 11. Сгибнев И.В., Копылов А.П. Термоэлектричество // Энергия: экономика, техника, экология. 2017. № 12. С.31-36.
- 12. Булат Л.П., Пшенай-Северин Д.А., Драбкин И.А., Каратаев В.В., Освенский В.Б., Пархоменко Ю.Н., Бланк В.Д., Пивоваров Г.И., Бублик В.Т., Табачкова Н.Ю. Механизмы увеличения термоэлектрической эффективности в объемных наноструктурных поликристаллов // Термоэлектричество. 2011. № 1. С.14-19.
- 13. Коржуев М.А., Свечникова Т.Е. Термодинамические ограничения полезной мощности автомобильных термоэлектрических генераторов и перспективы их использования на транспорте // Термоэлектричество. 2013. №3. С.58-75.
- 14. Harman T.C., Honig J..M.. Thermoelectric and Thermomagnetic effects and applications. N.Y.: Mc-Grow Hill. 1967. 378 p.
- 15. Åвилов Е. С., Коржуев М. А., Кретова М. А., Михайлова А. Б. Термоэлектрическая добротность и магнитотворная способность "естественных" наноструктур $PbBi_2(Te_{1-x}Se_x)_{4+\delta}$ и $PbBi_4(Te_{1-x}Se_x)_{7+\delta}$ // Перспективные материалы. 2015. № 12. С.15-26.
- 16. Коржуев М.А., Катин И.В., Кретова М.А., Авилов Е.С. Особенности зонной структуры слоистых кристаллов семейства [(Ge, Sn, Pb)(Te, Se)] $_m$ [(Bi, Sb) $_2$ (Te,Se) $_3$] $_n$ (m, n= 0,

- 1, 2...). // Термоэлектрики и их применения. СПб.: Изд-во ВВМ. 2017. С.57-63.
- ^{17.} Korzhuev M. A., Avilov E. S., Nichezina I. Yu. Nonstandard Harman response at the separate measurement of stages of multicascade thermoelectric modules // JEMS. 2011. V.40. №5. P. 733- 737.
- 18. Коржуев М.А. Термоэлектрические наноструктуры. За и против // Термоэлектричество. 2013. №5. С.11- 24.
- 19. Киселева Н.Н., Дударев В.А., Коржуев М.А. База данных по ширине запрещенной зоны неорганических веществ и материалов // Материаловедение. 2015. №7. С.3-8.
- 20. Кретова М.А., Коржуев М.А. Оценка ширины запрещенной зоны ряда новых термоэлектрических материалов // Φ ТП. 2017. Т.51. №7. С. 940- 943.
- 21. Кретова М.А., Коржуев М.А., Авилов Е.С. Электрохимические исследования процессов легирования медью слоистых кристаллов семейства [(Ge, Sn, Pb)(Te, Se)] $_m$ [(Bi, Sb)₂(Te,Se)₃] $_n$ (m, n= 0, 1, 2...).// ФТП. 2017. Т.51. №7. С. 937 -939.
- 22. Korzhuev M. A., Katin I.V. Diagnostics of the phase "phonon glas electron crystals" (PGEC) in thermoelectric materials // Physics, chemistry and application of nanostructures. New Jersey London: Word Scientific. 2015. P. 107-110.
- 23. Коржуев М.А., Катин И.В. Вырождение фазы «фононное стекло-электронный кристалл (Φ CЭК) в слоистых кристаллах семейства [(Ge, Sn, Pb)(Te, Se)] $_m$ [(Bi,

References

- 1. Nolas G.S., Sharp J., Goldsmid H.J. Thermoelectrics. Basic Principles and New Materials Developments. Berlin: Springer; 2001. 293 p.
- 2. Kaumoto C.K., Mori T. Thermoelectric Nanomaterials. Berlin: Springer; 2013. 387 p.
- 3. Goldsmid H. J. Introduction to Thermoelectricity. Berlin Heidelberg: Springer-Verlag; 2016. 278 p.
- 4. Anatychuk L.I. Vstupital'noe slovo na XIV Mezhdunarodnom forume po termoelektrichestvu (17-20 maya 2011, Moskva). Termoelektrichestvo. 2011;2:89 93. [Anatychuk L.I. An introductory word at the XIV International Forum on Thermoelectricity (May 17-20, 2011, Moscow). Journal of Thermoelectricity. 2011;2:89 93. (in Russ.)]
- 5. Filin S.O. XVII Mezhdunarodnyi termoelektricheskii forum (17-20 maya 2017, Belfast). Kholodil'nyi biznes. 2017;6:36 39. [Filin S.O. XVII International Thermoelectric Forum (May 17-20, 2017, Belfast). Refrigeration business. 2017;6:36 39. (In Russ.)]
- 6. Slack G. New materials and performance limits for thermoelectric cooling. CRC Handbook of Thermoelectrics. (Ed. Rowe D.M.). N.Y., Boca Raton; 1995. P. 407 440.
- 7. Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science. 2002;297:2229 2232.
- 8. Ventkatasubramanian R., Siivola E., Colpitts T., O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413(6856):597 -602
- 9. Snyder G.J., Toberer E.S. Complex thermoelectric materials. Nature Materials. 2008;7:105 114.
- 10. Sootsman J.R., Xhung D.Y., Kanatzidis M.G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 2009:47:8616 8639.
- 11. Sgibnev I.V., Kopylov A.P. Termoelektrichestvo. Energiya: ekonomika, tekhnika, ekologiya. 2017;12:31 36. [Sgibnev I.V., Kopylov A.P. Thermoelectricity. Energy: economics, technology, ecology. 2017;12:31 36. (In Russ.)]
- 12. Bulat L.P., Pshenai-Severin D.A., Drabkin I.A., Karataev

- $Sb)_2(Te,Se)_3]_n$ (*m*, n=0,1,2...) // Термоэлектрики и их применения. СПб.: Изд-во ВВМ. 2017. С.134- 139.
- 24. Коржуев М.А., Катин И.В., Кретова М.А., Авилов Е.С. Об устойчивости «искусственных» и «естественных» наноструктур термоэлектрических материалов на основе $\mathrm{Bi}_2\mathrm{Te}_3$. // Термоэлектрики и их применения. СПб.: Изд-во ВВМ. 2017. С.51- 56.
- 25. Коржуев М.А., Михайлова А.Б., Кретова М.А., Авилов Е.С. Анализ кристаллической структуры сплавов семейства [(Ge, Sn, Pb)(Te, Se)] $_{\rm m}$ [(Bi, Sb) $_{\rm 2}$ (Te,Se) $_{\rm 3}$] $_{\rm n}$ (m, n= 0, 1, 2...) в рамках теории плотнейших шаровых упаковок // ФТП. 2017. Т.51. №8. С. 1011- 1013.
- 26. Коржуев М.А., Катин И.В., Кретова М.А., Авилов Е.С. Термоэлектрические свойства и магнитотворная способность термопар на основе «естественных» наноструктур слоистых кристаллов семейства [(Ge, Sn, Pb)(Te, Se)] $_m$ [(Bi, Sb) $_2$ (Te,Se) $_3$] $_n$ (m, n= 0, 1, 2...). // Термоэлектрики и их применения. СПб.: Изд-во ВВМ. 2017. С.146-151
- 27. Ленц Э.Х. Избранные труды. М.: Изд-во АН СССР. 1950. C.361-449.
- 28. Коржуев М.А. Правило Ленца для термоэлектрических преобразователей энергии, работающих в режиме максимальной мощности» // Термоэлектрики и их применения. СПб: ПИЯФ. 2015. С.447- 452.
- 29. Коржуев М.А. Использование правила Ленца для экспресс- расчетов тепловых и электрических цепей термоэлектрических модулей // Термоэлектрики и их применения.. СПб.: Изд-во ВВМ. 2017. С.226-231.
- V.V., Osvenskii V.B., Parkhomenko Yu.N., Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Mekhanizmy uvelicheniya termoelektricheskoi effektivnosti v ob"emnykh nanostrukturnykh polikristallov. Termoelektrichestvo. 2011;1:14 19. [Bulat L.P., Pshenai-Severin D.A., Drabkin I.A., Karataev V.V., Osvenskii V.B., Parkhomenko Yu.N., Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Mechanisms of increasing thermoelectric efficiency in tridimesional nanostructured polycrystals. Journal of Thermoelectricity. 2011;1:14 19. (In Russ.)]
- 13. Korzhuev M.A., Svechnikova T.E. Termodinamicheskie ogranicheniya poleznoi moshchnosti avtomobil'nykh termoelektricheskikh generatorov i perspektivy ikh ispol'zovaniya na transporte. Termoelektrichestvo. 2013;3:58 75. [Korzhuev M.A., Svechnikova T.E. Thermodynamic limitations of the useful power of automotive thermoelectric generators and the prospects for their use in transport. Journal of Thermoelectricity. 2013;3:58 75. (In Russ.)]
- 14. Harman T.C., Honig J.M. Thermoelectric and Thermomagnetic effects and applications. N.Y.: Mc-Grow Hill; 1967. 378 p.
- 15. Åvilov E.S., Korzhuev M.A., Kretova M.A., Mikhailova A.B. Termoelektricheskaya dobrotnost' i magnitotvornaya sposobnost' "estestvennykh" nanostruktur PbBi $_2$ (Te $_{1-x}$ Se $_x$) $_{7+\delta}$. Perspektivnye materialy. 2015;12:15 26. [Avilov E.S., Korzhuev M.A., Kretova M.A., Mikhailova A.B. The thermoelectric figure of merit and the magnetic capacity of the "natural" nanostructures of PbBi $_2$ (Te $_{1-x}$ Se $_x$) $_{4+\delta}$ and PbBi $_4$ (Te $_{1-x}$ Se $_x$) $_{7+\delta}$. Perspektivnye Materialy. 2015;12:15 26. (In Russ.)]
- 16. Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Osobennosti zonnoi struktury sloistykh kristallov semeistva [(Ge, Sn, Pb)(Te, Se)] $_m$ [(Bi, Sb) $_2$ (Te,Se) $_3$] $_n$ (m, n= 0, 1, 2...). Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.57-63. [Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Features of the band structure of layered crystals of the family [(Ge, Sn, Pb) (Te, Se)] $_m$ [(Bi, Sb) $_2$ (Te, Se) $_3$] $_n$ (m, n = 0, 1, 2 ...). Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.57-63. (In Russ.)]

1013. (In Russ.)]

- 17. Korzhuev M.A., Avilov E.S., Nichezina I.Yu. Non-standard Harman response at the separate measurement of stages of multicascade thermoelectric modules. JEMS. 2011;40(5):733-737.
- 18. Korzhuev M.A. Termoelektricheskie nanostruktury. Za i protiv. Termoelektrichestvo. 2013;5:11 24. [Korzhuev M.A. Thermoelectric nanostructures. Pros and cons. Journal of Thermoelectricity. 2013;5:11 24. (in Russ.)]
- 19. Kiseleva N.N., Dudarev V.A., Korzhuev M.A. Baza dannykh po shirine zapreshchennoi zony neorganicheskikh veshchestv i materialov. Materialovedenie. 2015;7:3 8. [Kiseleva N.N., Dudarev V.A., Korzhuev M.A. Database on the bandgap width of inorganic substances and materials. Materialovedenie. 2015;7:3 8. (In Russ.)]
- 20. Kretova M.A., Korzhuev M.A. Otsenka shiriny zapreshchennoi zony ryada novykh termoelektricheskikh materialov. FTP. 2017;51(7):940 943. [Kretova M.A., Korzhuev M.A. Estimation of the width of the forbidden band of a number of new thermoelectric materials. Fizika i technika poluprovodnikov. 2017;51(7):940 943. (In Russ.)]
- kov. 2017;51(7):940 943. (In Russ.)]
 21. Kretova M.A., Korzhuev M.A., Avilov E.S. Elektrokhimicheskie issledovaniya protsessov legirovaniya med'yu sloistykh kristallov semeistva [(Ge, Sn, Pb)(Te, Se)]_m[(Bi, Sb)₂(Te,Se)₃]_n (m, n= 0, 1, 2...). FTP. 2017;51(7):937 -939. [Kretova M.A., Korzhuev M.A., Avilov E.S. Electrochemical studies of the copper doping of layered crystals of [(Ge, Sn, Pb)(Te, Se)]_m[(Bi, Sb)₂(Te,Se)₃]_n (m, n= 0, 1, 2...) family. Fizika i technika poluprovodnikov. 2017;51(7):937 -939. (In Russ.)]
- 22. Korzhuev M.A., Katin I.V. Diagnostics of the phase "phonon glas electron crystals" (PGEC) in thermoelectric materials. Physics, chemistry and application of nanostructures. New Jersey London: Word Scientific; 2015. P. 107-110.
- 23. Korzhuev M.A., Katin I.V. Vyrozhdenie fazy "fononnoe steklo-elektronnyi kristall" (FSEK) v sloistykh kristallakh semeistva [(Ge, Sn, Pb)(Te, Se)]_m[(Bi, Sb)₂(Te,Se)3]_n (m, n= 0, 1, 2...). Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.134 139. [Korzhuev M.A., Katin I.V. The degeneracy of the phase "phonon glass-electronic crystal" (PGEC) in layered crystals of the [(Ge, Sn, Pb)(Te, Se)]_m[(Bi, Sb)₂(Te,Se)₃]_n (m, n= 0, 1, 2 ...) family. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.134 139. (In Russ.)]
- 24. Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Ob ustoichivosti "iskusstvennykh" i "estestvennykh" nanostruktur termoelektricheskikh materialov na osnove Bi₂Te₃. Termoel-

- ektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.51 56. [Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. On the stability of "artificial" and "natural" nanostructures of thermoelectric materials based on Bi₂Te₃. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. S.51 56. (In Russ.)] 25. Korzhuev M.A., Mikhailova A.B., Kretova M.A., Avilov E.S. Analiz kristallicheskoi struktury splavov semeistva [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2...) v ramkakh teorii plotneishikh sharovykh upakovok. FTP. 2017;51(8):1011 1013. [Korzhuev M.A., Mikhailova A.B., Kretova M.A., Avilov E.S. Analysis of the crystal structure of the alloys of the [(Ge, Sn, Pb)(Te, Se)]m[(Bi, Sb)2(Te,Se)3]n (m, n= 0, 1, 2...) family in the frames of theory of dense sphere packing. Fizika i technika poluprovodnikov. 2017;51(8):1011
- 26. Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Termoelektricheskie svoistva i magnitotvornaya sposobnost' termopar na osnove "estestvennykh" nanostruktur sloistykh kristallov semeistva $[(Ge, Sn, Pb)(Te, Se)]_m[(Bi, Sb)_2(Te,Se)_3]_n$ (m, n= 0, 1, 2...). Termoelektriki i ikh primeneniya. SPb.: Izdvo VVM; 2017. S.146 151. [Korzhuev M.A., Katin I.V., Kretova M.A., Avilov E.S. Thermoelectric properties and magnetic capacity of thermocouples based on "natural" nanostructures layered crystals of the $[(Ge, Sn, Pb)(Te, Se)]_m[(Bi, Sb)_2(Te,Se)_3]_n$ (m, n= 0, 1, 2...) family. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.146 151. (In Russ.)]
- 27. Lents E.Kh. Izbrannye trudy. M.: Izd-vo AN SSSR; 1950. S.361 449. [Lents E.Kh. Selected works. M.: Izd-vo AN SSSR; 1950. P.361 449. (In Russ.)]
- 28. Korzhuev M.A. Pravilo Lentsa dlya termoelektricheskikh preobrazovatelei energii, rabotayushchikh v rezhime maksimal'noi moshchnosti. Termoelektriki i ikh primeneniya. SPb: PIYaF; 2015. S.447- 452. [Korzhuev M.A. The Lenz rule for thermoelectric energy converters operating in maximum power mode. Thermoelectrics and their applications. SPb: PIYaF; 2015. P.447- 452. (In Russ.)]
- 29. Korzhuev M.A. Ispol'zovanie pravila Lentsa dlya ekspress raschetov teplovykh i elektricheskikh tsepei termoelektricheskikh modulei. Termoelektriki i ikh primeneniya. SPb.: Izd-vo VVM; 2017. S.226-231. [Korzhuev M.A. Using the Lenz rule for express calculations of thermal and electrical circuits of thermoelectric modules. Thermoelectrics and their applications. SPb.: Izd-vo VVM; 2017. P.226-231. (In Russ.)]

Сведения об авторах:

Коржуев Михаил Александрович – ведущий научный сотрудник, кандидат физико-математических наук. **Авилов Евгений Семенович** - ведущий научный сотрудник, кандидат технических наук.

Кретова Марина Анатольевна - научный сотрудник.

Information about the author:

Mikhail A. Korzhuev - Leading Researcher, Cand. Sci.(Physical-Mathematical).

Evgeniy S. Avilov - Leading Researcher, Cand. Sci.(Technical).

Marina A. Kretova – Researcher.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 02.02.2018.

Принята в печать 05.03.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 02.02.2018.

Accepted for publication 05.03.2018.

Для цитирования: Евдулов О.В., Кадирова Д.К., Магомедова С.Г., Рагимова Т.А., Хазамова М.А. Модель термоэлектрического устройства для теплового воздействия на область стопы. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 60-72. DOI:10.21822/2073-6185-2018-45-

For citation: Evdulov O.V., Kadirova D.K., Magomedova S. G., Ragimova T.A., Khazamova M.A. Model of thermoelectric device for heat impact on feet. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 60-72. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-60-72

ТЕХНИЧЕСКИЕ НАУКИ ЭНЕРГЕТИЧЕСКОЕ, МЕТАЛЛУРГИЧЕСКОЕ И ХИМИЧЕСКОЕ МАШИНОСТРОЕНИЕ

УДК: 621.362: 537.322

DOI: 10.21822/2073-6185-2018-45-1-60-72

МОДЕЛЬ ТЕРМОЭЛЕКТРИЧЕСКОГО УСТРОЙСТВА ДЛЯ ТЕПЛОВОГО ВОЗДЕЙСТВИЯ НА ОБЛАСТЬ СТОПЫ

Евдулов О.В.¹, Кадирова Д.К.⁴, Магомедова С.Г.⁵, Рагимова Т.А.², Хазамова М.А.³

. Дагестанский государственный технический университет,

¹⁻⁵367026,г. Махачкала, пр. Имама Шамиля, 70, Россия,

¹e-mail:ole-ole-ole@rambler.ru; ²e-mail: ragimovatamila@yandex.ru; ³e-mail:kaftoe2016@yandex.ru; ⁴e-mail: kadirova.djamilya@yandex.ru;

⁵e-mail: saratmag05@yandex.ru.

Резюме. Цель. Целью исследования является моделирование теплофизических процессов, происходящих при проведении тепловых лечебных процедур на стопу с использованием технического средства, в котором в качестве источника тепла и холода выступает термоэлектрическая батарея (ТЭБ). Метод. Разработана физическая модель теплового воздействия на стопу посредством устройства, исполнительным элементом в котором является термоэлектрическая батарея. Рассмотрены различные варианты проведения процедур, отличающиеся зоной теплового воздействия, а также наличием и отсутствием гранулята. Для наиболее общего случая создана математическая модель, построенная на основе численного решения нестационарной задачи теплопроводности слоистой системы. В качестве численного метода решения системы дифференциальных уравнений использован метод Галеркина, характеризующийся высокой точностью и эффективностью. Результат. Получены графики зависимости изменения температуры по толщине системы: устройство - стопа при различных величинах теплового потока; изменения температуры отдельных частей системы во времени; распределения температуры по толщине стопы при различных величинах слагаемого, определяющего неплотность ее контакта с гранулятом. Вывод. Разработанная модель термоэлектрического устройства для теплового воздействия на область стопы позволяет всесторонне исследовать процессы теплообмена при проведении физиотерапевтических процедур, осуществить подбор термоэлектрической батареи с требуемыми характеристиками, а также определить режимы работы прибора. Установлено, что продолжительность выхода в стационарный режим всех точек системы: прибор - биологический объект определяет приемлемые инерционные свойства устройства. При использовании при проведении процедур гранулята необходимо учитывать потери мощности при подборе режимов питания термоэлектрической батареи.

Ключевые слова: термоэлектрическое устройство, стопа, теплопередача, охлаждение, нагрев, модель, численный эксперимент

TECHNICAL SCIENCE POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING

MODEL OF THERMOELECTRIC DEVICE FOR HEAT IMPACT ON FEET

Oleg V. Evdulov¹, Dzhamilya K. Kadirova⁴, Sarat G. Magomedova⁵, Tamila A. Ragimova², Madina A. Khazamova³

⁵Daghestan State Technical University,

Abstract Objectives. The aim of the study is to simulate the thermophysical processes occurring during thermal treatment procedures applied to the human foot using a technical apparatus in which a thermoelectric battery (TEB) acts as a source of heat and cold. Methods. A physical model of thermal impact on the human foot is developed by means of a device whose actuating element consists of a thermoelectric battery. Different procedural versions, varying by the zone of thermal influence as well as by the presence and absence of granulates, are considered. For the most general case, a mathematical model is constructed, based on a numerical solution of the nonstationary heat conduction problem of a layered system. As a numerical method for solving a system of differential equations, the Galerkin method, characterised by high accuracy and efficiency, is used. Results. The graphs of the temperature variation dependency on the "device-foot" system thickness for various heat flow values are obtained, as well as the temperature changes of system individual parts over time and the temperature distribution along the thickness of the foot for various values of the summand determining the looseness of its contact with the granulate. Conclusion. The developed model of a thermoelectric device for thermal action on the foot area allows a comprehensive study of the heat exchange processes during physiotherapeutic procedures to be be carried out, a thermoelectric battery with the required characteristics to be selected as well as the modes of device's operation to be determined. It is established that the duration of the steady-state output of all points of the "device-biological object" system determines the acceptable inertial properties of the device. When a granulate is used during the procedures, it is necessary to take into account the power losses when selecting the thermoelectric battery power modes.

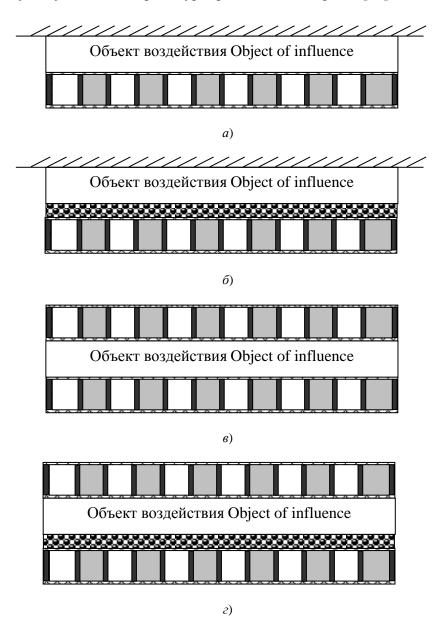
Keywords: thermoelectric device, feet, heat transfer, cooling, heating, model, numerical experiment

Введение. В человеческом организме имеется ряд областей, насыщенных биологически активными точками. Помимо сегментарных на теле человека имеются рефлексогенные зоны, соответствующие проекции различных органов и частей тела на кору мозга и топографически локализованные в определенных областях. В исследованиях, проведенных в этой области [1-6] показано, что в биологически активной точке и прилегающей к ней зоне имеются подкожные нервы, вены, артерии. Часто под зоной такой точки обнаруживают лимфатические сосуды, скопления клеток, играющих важную роль в обменных процессах организма. Воздействие на эти зоны (в том числе и тепловое) раздражает многочисленное количество рецепторов, что вызывает многообразные ответные биологические реакции [7-10]. К таким зонам относятся ладонная поверхность кисти, подошва стопы, зона области носа, ушная раковина и т.д. [11].

Лечебная эффективность теплового воздействия на стопу обусловлена тем, что на ее подошве сконцентрирована масса кожных рецепторов, куда выходят до 72 тысяч нервных окончаний, через которые организм связан с внешней средой [12-13]. Зоны на стопах взаимосвязаны с внутренними органами посредством их общей проекции на уровне высших нервных (вегетативных) центров и их стимуляция приводит к определенным реакциям со

¹⁻⁵70 I. Shamilya Aye.. Makhachkala 367026. Russia.

¹e-mail:ole-ole@rambler.ru; ²e-mail: ragimovatamila@yandex.ru; ³e-mail:kaftoe2016@yandex.ru; ⁴e-mail: kadirova.djamilya@yandex.ru;


⁵e-mail: saratmag05@yandex.ru.

стороны внутренних органов. Поэтому разработка методик с использованием специальных технических средств для проведения тепловых процедур именно на зону стопы человека на сегодняшний день является достаточно актуальной.

Постановка задачи. Авторами в работах [14-18] рассмотрены устройства подобного рода и назначения, отличающиеся конструктивным исполнением, общим в которых является использование в качестве исполнительного элемента ТЭБ, работающей в режиме охлаждения или нагрева в зависимости от характера оздоровительного воздействия.

Целью настоящей статьи является моделирование теплофизических процессов, происходящих при проведении тепловых лечебных процедур на стопу с использованием технического средства, в котором в качестве источника тепла и холода выступает ТЭБ.

Методы исследования. Анализ возможного теплового воздействий на зону стопы (в дальнейшем объект воздействия) приводит к необходимости рассмотрения режимов работы устройства, сочетающих охлаждающие и нагревающие воздействия, соответствующие определенному типу лечебных процедур, приведенных на рис.1 [19].

Puc.1. Схемы теплового воздействия на стопу Fig.1. Schemes of thermal impact on the foot

Каждая из приведенных на рис.1 схем воздействия соответствует определенному типу лечебных процедур.

Представленная на рис.1 *а* схема характерна для проведения наиболее простых для реализации процедур, связанных с тепловым воздействием только на подошву. Здесь предполагается непосредственный контакт объекта воздействия – подошвы через эластичную высокотеплопроводную прослойку с ТЭБ. При этом тыльная часть стопы находится в тепловой изоляции. Вторая схема, изображенная на рис.1 *б*, отличается от предыдущей наличием на верхней поверхности стопы второй ТЭБ. Если в первом варианте в процессе процедур охватывалась только подошва, то в этом случае тепловому воздействию подвергается и ее тыльная поверхность, также весьма насыщенная кожными рецепторами, что значительно усиливает эффективность процедур за счет улучшения трофики тканей. Схема, приведенная на рис.1 *в*, предусматривает также и механическое воздействие, связанное с перемещением объекта по грануляту.

При этом наличие гранулята требует введения при построении математической модели дополнительного условия, связанного с неплотностью теплового контакта между гранулятом и подошвой. Одновременное тепловое и механическое воздействие на подошвенную поверхность стопы усиливает лечебный эффект, связанный с тепловым и механическим массажем. Схема, представленная на рис.1 г является наиболее общим случаем физиотерапевтических процедур на стопу человека. В данном случае тепловое и механическое воздействие на стопу оказывается и с нижней поверхности (подошвы) и с ее тыльной стороны. Подобный тип процедур является наиболее приемлемым, учитывая повышение терапевтического эффекта за счет одновременного воздействия «холодом», «теплом» и механическим массажем.

Основываясь на рассмотренных схемах, составим математическую модель теплового воздействия посредством ТЭБ на стопу в следующем виде для наиболее общего случая, соответствующего рис. 1 ε (расчетная схема приведена на рис. 2).

$$\frac{\partial T_{T\ni BI}}{\partial \tau} = a_{T\ni BI} \frac{\partial^2 T_{T\ni BI}}{\partial x^2} + \frac{I_{T\ni BI}^2 r_{T\ni BI}}{c_{T\ni BI} \rho_{T\ni BI}}, \tag{1}$$

$$\frac{\partial T_{OB}}{\partial \tau} = a_{OB} \frac{\partial^2 T_{OB}}{\partial x^2} + \frac{q_{OB}}{c_{OB} \rho_{OB}}, \qquad (2)$$

$$\frac{\partial T_{rp}}{\partial \tau} = a_{rp} \frac{\partial^2 T_{rp}}{\partial x^2},\tag{3}$$

$$\frac{\partial T_{T9E2}}{\partial \tau} = a_{T9E2} \frac{\partial^2 T_{T9E2}}{\partial x^2} + \frac{I_{T9E2}^2 r_{T9E2}}{c_{T9E2} \rho_{T9E2}},\tag{4}$$

$$\beta_{\text{TC}}(T_{\text{T3BI}}\big|_{x=0} - T_{\text{x}}) = \lambda_{\text{T3BI}} \frac{\partial T_{\text{T3BI}}}{\partial x}\big|_{x=0},$$
 (5)

$$\lambda_{T \ni El} \frac{\partial \Gamma_{T \ni El}}{\partial \tau} \Big|_{x = L_1} - q_{T \ni El} = \lambda_{rp} \frac{\partial \Gamma_{rp}}{\partial \tau} \Big|_{x = L_1}, \tag{6}$$

$$\lambda_{\text{oB}} \frac{\partial \Gamma_{\text{oB}}}{\partial x} \Big|_{x=L_2} - f v P = \lambda_{\text{rp}} \frac{\partial \Gamma_{\text{rp}}}{\partial x} \Big|_{x=L_2}, \tag{7}$$

$$\lambda_{T \ni E2} \frac{\partial T_{T \ni E2}}{\partial x} \Big|_{x=L_3} - q_{T \ni E2} = \lambda_{OB} \frac{\partial T_{OB}}{\partial x} \Big|_{x=L_3}, \tag{8}$$

$$\beta_{mc}(T_{T\ni E2}\big|_{x=L_4} - T_{\mathcal{H}}) = \lambda_{T\ni E2} \frac{\partial T_{T\ni E2}}{\partial x}\big|_{x=L_4}, \tag{9}$$

где $^{T}_{\text{ТЭБ1}}, ^{T}_{\text{ТЭБ2}}, ^{T}_{\text{гр}}, ^{T}_{\text{ов}}$ - температуры ТЭБ 1, ТЭБ 2, гранулята, объекта воздействия; $\,\tau$ -

время; $a_{T9Б1}, a_{T9Б2}, a_{rp}, a_{ob}$ - коэффициенты температуропроводности ТЭБ 1, ТЭБ 2, гранулята, объекта воздействия; $I_{T9Б1}, I_{T9Б2}$ - силы электрического тока, протекающего через ТЭБ 1 и ТЭБ 2; $I_{T9Б1}, I_{T9Б2}$ - электрические сопротивления ТЭБ 1 и ТЭБ 2; I_{OB} - количество теплоты, выделяемой в единицу времени в стопе; $I_{CT9Б1}, I_{CT9Б2}, I_{OB}$ - теплоемкости ТЭБ 1, ТЭБ 2, объекта воздействия; $I_{CT9Б1}, I_{CT9Б2}, I_{OB}$ - эффективные значения плотности ТЭБ 1, ТЭБ 2, объекта воздействия; $I_{CT9Б1}, I_{CT9Б2}, I_{CT9}, I_{OB}$ - эффективные значения коэффициента теплопроводности ТЭБ 1, ТЭБ 2, гранулята, объекта воздействия; $I_{CT9F1}, I_{CT9F2}, I_{CT9F1}, I_{CT9F2}$ - холодопроизводительности ТЭБ 1 и ТЭБ 2; $I_{CT9F1}, I_{CT9F1}, I_{CT9F2}, I_{CT9F1}, I_{CT9F2}$ - холодопроизводительности ТЭБ 1 и ТЭБ 2; $I_{CT9F1}, I_{CT9F1}, I_{CT9F2}, I_{CT9F1}, I_{CT9F2}$ - холодопроизводительности ТЭБ 1 и ТЭБ 2; $I_{CT9F1}, I_{CT9F1}, I_{CT9F2}, I_{CT9F1}, I_{CT9F2}, I_{CT9F2}$ - холодопроизводительности ТЭБ 1 и ТЭБ 2; $I_{CT9F1}, I_{CT9F2}, I_{CT9F2$

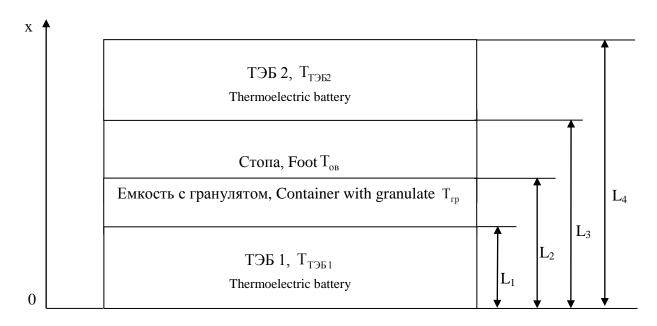


Рис. 2. Физическая модель теплового воздействия Fig. 2. Physical model of thermal impact

На рис. 2 слой 1, толщиной L_1 представляет собой ТЭБ 1, приведенную в тепловой контакт с подошвой, слой 2, толщиной $L_2 - L_1$ — емкость 4, заполненную гранулятом, слой 3, толщиной $L_3 - L_2$ — непосредственно стопу, и слой 4, толщиной $L_4 - L_3$ — ТЭБ 2, сопряженную с верхней поверхностью стопы. Предполагается, что данная система изолирована с боковых поверхностей; поглощаемая и выделяемая ТЭБ теплота равномерно распределена по всей поверхности соприкосновения с емкостью, заполненной гранулятом, и стопой; мощность тепловыделений в стопе фиксирована, не зависит от температуры и равномерно распределена по объему; коэффициент теплопроводности гранулята имеет определенную величину, также независящую от температуры; передача теплоты во всех слоях системы осуществляется только теплопроводностью.

При составлении уравнений, описывающих теплообмен в ТЭБ (соотношения (1) и (4)), последние представлены в виде целостной конструкции, имеющей определенное значение коэффициента теплопроводности и электрического сопротивления, в которой имеет место выделение тепла Джоуля, определяемого величиной протекающего электрического тока. При этом поглощение (выделение) теплоты Пельтье учитывается в условиях сопряжения слоев 1-2 и 3-4 введением величин $q_{TЭБ1}, q_{TЭБ2}$. Подобное допущение существенно упрощает модель, делает ее более наглядной, вместе с тем весьма незначительно снижая точность.

Общая схема численного решения задачи имеет следующий вид [20].

Для дискретизации каждого из уравнений (1)-(4) используется метод Галеркина. Соответствующее скалярное произведение, образованное с помощью кусочно-линейной базисной функции $N_i(x)$, после интегрирования по частям записывается в виде

$$\left(L\widetilde{T}, N_{k}\right) = \int_{0}^{L} \frac{\partial \widetilde{T}}{\partial t} N_{k} dx + a \int_{0}^{L} \frac{\partial \widetilde{T}}{\partial x} \frac{\partial N_{k}}{\partial x} dx = 0$$
(10)

С помощью соотношений, изложенных в [15] выражение (10) приводится к виду

$$\frac{dT_{k-1}}{dt} + 4\frac{dT_k}{dt} + \frac{dT_{k+1}}{dt} - \frac{6a}{h^2} \left(T_{k-1} - 2T_k + T_{k+1} \right) = 0, \ k = 1, 2, ..., K-1.$$
 (11)

При дальнейшей дискретизации соотношение (11) записывается следующим образом:

$$T_{k-l}^{n+l} + 4T_k^{n+l} + T_{k+l}^{n+l} = \left(\frac{6a\Delta t}{h^2} + 1\right)T_{k-l}^n + \left(4 - \frac{12a\Delta t}{h^2}\right)T_k^n + \left(\frac{6a\Delta t}{h^2} + 1\right)T_{k+l}^n$$

где $n = \frac{t}{\Delta t}$, Δt - шаг временной сетки.

Выражения (10)-(11) дают возможность численным образом решить систему дифференциальных уравнений (1)-(9) и получить данные об изменении температуры по толщине системы изображенной на рис.2 при различных значениях $q_{\text{ТЭБ1}}, q_{\text{ТЭБ2}}$, продолжительность переходных процессов при изменении знака теплового потока.

Обсуждение результатов. Результаты расчетов приведены на рис.3-4.

Вычисления производились при $T_{\text{ж}} = 20^{\circ}\text{C}$, $\lambda_{\text{ТЭБ1}} = \lambda_{\text{ТЭБ2}} = 1.5\,\text{BT/(M·K)}$, $\lambda_{\text{гр}} = 10\,\text{BT/(M·K)}$, $\lambda_{\text{ов}} = 0.2\,\text{BT/(M·K)}$, $q_{\text{ов}} = 30\,\text{BT}$, $r_{\text{ТЭБ1}} = r_{\text{ТЭБ2}} = 0.5\,\text{Om}$ f =0.5, v =0.01, P=1000 H/M², толщина ТЭБ 1 и ТЭБ 2 – 4 мм, толщина слоя гранулята – 20 мм, усредненная толщина стопы – 40 мм.

На рис.3-4 рассмотрено распределение температур по толщине каждого слоя при различных значениях и направленностях тепловых потоков по достижению системы стационарного режима.

Как следует из графиков (рис. 3–4), распределение температуры по ТЭБ носит линейный характер. Это связано с тем, что при данных величинах тока питания обе ТЭБ функционируют в оптимальных режимах.

При этом количество теплоты, поглощаемой (выделяемой) в единицу времени на их внутренних спаях, значительно превышает величину джоулевого тепла, выделяющегося в объеме.

Аналогичный характер имеют зависимости, представляющие собой распределение температуры по толщине емкости с гранулятом.

Приведенные графики (рис. 3–4) интересны возможностью оценки величины тепловых потерь в слое гранулята. Так, для случаев, соответствующих представленным графикам, величина тепловых потерь на слое гранулята толщиной 2 см. достигает 0,5-1 °C. Снизить это значение, очевидно возможно, увеличив коэффициент теплопроводности гранулята и оптимизировав толщину его слоя.

Первое можно осуществить, подобрав соответствующий материал (с как можно большим коэффициентом теплопроводности) и размер гранул, второе – подобрав оптимальные геометрические размеры емкости с гранулятом.

На графиках (рис. 3–4) также предоставлена информация об уровне теплового воздействия непосредственно на стопу человека.

Как следует из приведенных зависимостей, при осуществлении теплового воздействия одинаковой направленности и примерно одинаковой величины, перепад температуры по толщине стопы незначителен и определяется разностью в величинах тепловых потоков на ее противоположных поверхностях и потерями тепла в грануляте.

В идеальном случае, при нулевой потере тепла в слое гранулята и равенстве тепловых потоков на противоположных поверхностях, распределение температуры по толщине стопы имеет параболический вид.

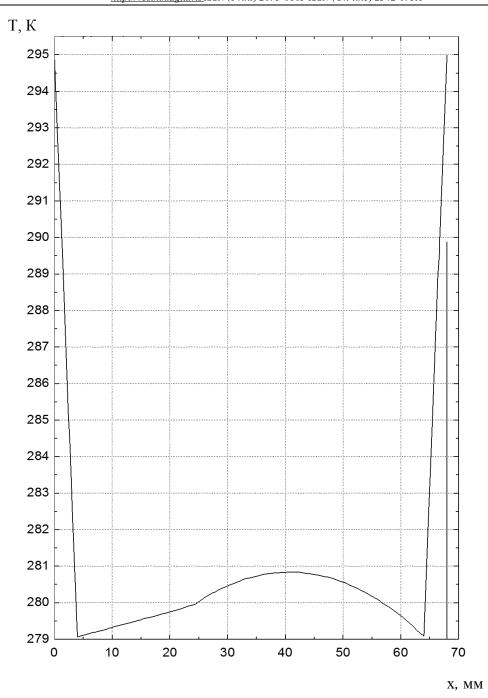
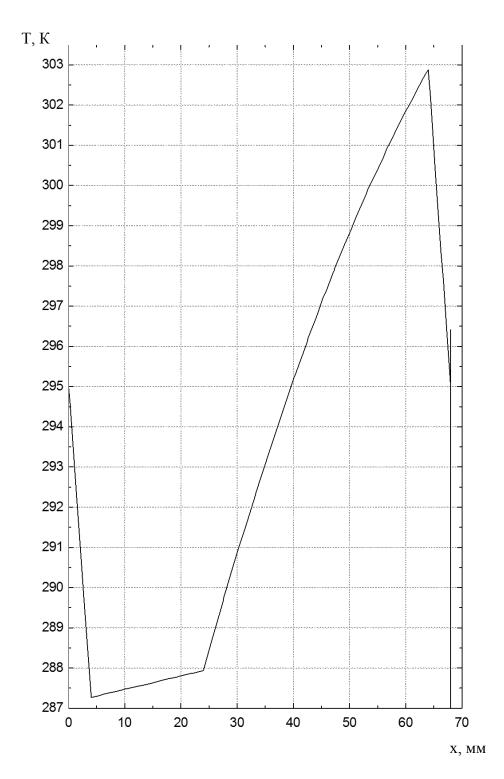



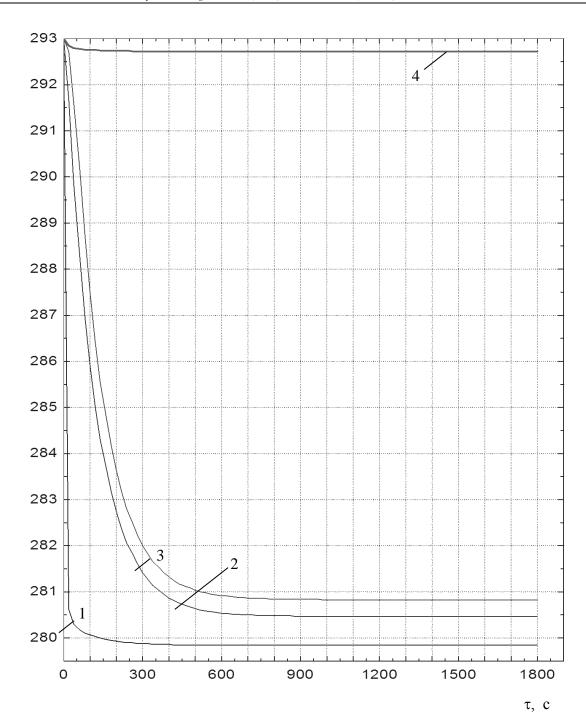
Рис. 3. Распределение температуры по толщине системы ТЭБ 1-гранулят-стопа-ТЭБ 2 при $q_{TЭБ1} = q_{TЭБ2} = -6000~Bt/m^2$ Fig. 3. Temperature distribution along the thickness of the TEB system of 1-granulate-stop-TEB 2 at qTEB1 = qTEB2 = -6000~W/m2

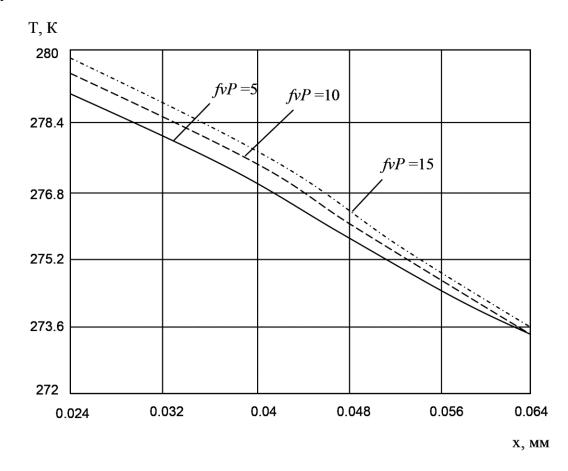
Причем вершина параболы находится в центре стопы (на расстоянии $L_2 + \frac{L_3 - L_2}{2}$), а разность между значениями температуры в центре и на краях одинакова и имеет незначительную величину, определяемую теплом, выделяемым в стопе.

При наличии на противоположных поверхностях различных по направлению и величине тепловых потоков перепад температуры по толщине стопы уже значителен.

При этом угол наклона прямых, определяющих распределение температуры по толщине стопы, тем больше, чем выше значение тепловых потоков на ее противоположных поверхностях.

Puc. 4. Распределение температуры по толщине системы ТЭБ 1-гранулят-стопа-ТЭБ 2 при $q_{TЭБ1}$ = - 6000 BT/m², $q_{TЭБ2}$ =3000 BT/m² Fig. 4. The temperature distribution over the thickness of the TEB system of 1-granulate-stop-TEB 2 at qTEB1 = -6000 W / m2, qTEB2 = 3000 W / m2




Рис. 5. Изменение температуры системы ТЭБ 1-гранулят-стопа-ТЭБ 2 во времени при $q_{TЭБ1}$ = $q_{TЭБ2}$ = - 6000 BT/м².

- 1 температура холодных спаев ТЭБ 1, 2 температура на поверхности гранулята, 3 температура стопы, 4 температура горячих спаев ТЭБ 1
 - Fig. 5. Change in the temperature of the TEB system of 1-granulate-stop-TEB 2 in time for q_{T9B1} = q_{T9B2} = 6000 BT/M².
- 1 temperature of cold junctions of TEB 1, 2 temperature at the surface of the granule, 3 temperature of the foot, 4 temperature of hot junctions of TEB 1

На рис. 5 представлено изменение различных точек системы во времени. Согласно представленным данным продолжительность выхода в стационарный режим всех точек системы составляет примерно 10 мин., что дает возможность сделать вывод об удобстве проведения медицинских процедур с использованием рассматриваемого термоэлектрического прибора.

Так как проведение процедур с использованием термоэлектрического прибора сопровождается перемещением стопы по поверхности гранулята (механический массаж), важным является учет неплотности их контакта.

В рассматриваемой модели устройства учет этого обстоятельства произведен введением в граничное условие (7) дополнительного члена $^{\rm fvP}$, величина которого определяет потери тепла, возникающие при не плотном (скользящем) контакте двух поверхностей. На рис.6 приведена зависимость температуры стопы от координаты $^{\rm X}$ при тепловом потоке с обеих поверхностей стопы, равном $-3000~{\rm BT/m^2}$, и различных значениях произведения $^{\rm fvP}$. Как следует из рисунка, с увеличением значения $^{\rm fvP}$ температура стопы повышается (при увеличении $^{\rm fvP}$ в 3 раза температура увеличивается примерно на 1°С). Таким образом, помимо потерь тепла в слое гранулята, обусловленных тепловым сопротивлением, имеет место потеря мощности из-за его неплотного контакта со стопой. Поэтому при осуществлении дозированного теплового воздействия на стопу необходимо учитывать данные потери при подборе ТЭБ.

Puc. 6. Распределение температур по толщине стопы при различных значениях fvP Fig. 6. The Temperature distribution over the thickness of the foot for different values of fvP

Вывод. В результате проведенных исследований можно сделать следующие выводы:

1. Одним из эффективных физиотерапевтических методов профилактики, лечения и реабилитации различных заболеваний является локальное тепловое воздействие на

- биологически активные точки человеческого организма. Реализация данных методов на область стопы может быть осуществлена за счет использования в качестве источника тепла и холода ТЭБ.
- 2. Рассмотрены возможные варианты теплового воздействия на стопу с использованием одной и двух ТЭБ, размещаемых под подошвой и на тыльной поверхности стопы, а также использование гранулята.
- 3. Предложена математическая модель термоэлектрической системы, которая рассматривает устройство как единую совокупность элементов теплообменных устройств, обеспечивающих температуру воздействия на биологически объект за требуемое время до необходимой величины.
- 4. Установлено, что при тепловом воздействии на биологический объект (стопу) не наблюдается существенного перепада температуры по его толщине. Данный аспект позволяет утверждать, что предлагаемое устройство безопасно в использовании, так как при тепловом воздействии на биологически активную точку отсутствует паразитарное температурное поле, затрагивающее близлежащие органы и ткани.
- 5. Установлено, что продолжительность выхода в стационарный режим всех точек системы: прибор биологический объект составляет 10 мин., что определяет приемлемые инерционные свойства устройства. При этом целесообразным будет предварительный вывод устройства на рабочий режим до проведения процедур, что позволит сократить продолжительность достижения стационарного режима работы.
- 6. При использовании гранулята на режим тепловых процедур будет влиять перемещение стопы по его поверхности. Данное обстоятельство обусловливает потери мощности из-за неплотного контакта ТЭБ со стопой, что необходимо учитывать при подборе режимов питания батареи.

Библиографический список:

- 1. Зубкова С.М. Роль тепловой компоненты в лечебном действии физических факторов // Физиотерапия, бальнеология и реабилитация. 2011. № 6. C.3-10.
- 2. Ежов В.В. Физиотерапия и физиопрафилактика как методы и средства сохранения и восстановления здоровья // Физиотерапия, бальнеология и реабилитация. 2011. № 4. С.33-36.
- 3. Miroslav Savic, Borut Fonda, NejcSarabon, Actual temperature during and thermal response after whole-body cryotherapy in cryo-cabin // Journal of thermal biology. 2013. №38. P. 186–191.
- 4. Боголюбов В.М., Улащик В.С. Комбинирование и сочетание лечебных физических факторов // Физиотерапия, бальнеология и реабилитация. 2004. № 5. С.39-45.
- 5. Tiffany Field. Miguel Diego, Gladys Gonzalez Funk Neck arthritis pain is reduced and range of motion is increased by massage therapy // Complementary therapies in clinical practice. 2014. №20. P.219-223.
- 6. Ssennoga Twaha, Jie Zhu, Yuying An, Bo Li. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement // Renewable and sustainable energy reviews. 2016. №65. P. 698-726.
- 7. Баранов А.Ю., Малышева Т.А., Савельева А.В., Сидорова А.Ю. Перенос теплоты в объекте общего криотерапевтического воздействия // Вестник МАХ. 2012. №2. С.35-40.

- 8. Анатычук Л.И., Денисенко О.И., Кобылянский Р.Р., Каденюк Т.Я. Об использовании термоэлектрического охлаждения в дерматологии и косметологии // Термоэлектричество. 2015. N 3. C.57-71.
- 9. Tiffany Field. Massage therapy research review // Complementary therapies in clinical practice. 2016. №24. P. 19-31.
- 10. Исмаилов Т.А., Евдулов О.В., Хазамова М.А., Магомадов Р.А.-М. Математическая модель термоэлектрической системы для локального теплового воздействия на руку человека // Термоэлектричество. 2014. № 1.-C.77-86.
- 11. Jolanta Krukowska, Adam Lukasiak, Jan Czernicki Impact of magneto stimulation on nerve and muscle electrical excitability in patients with increased muscle tone // Polish annals of medicine. 2012 №19. P. 15-20
- 12. Verhagen John. Massage therapy has short-term benefits for people with common musculoskeletal disorders compared to no treatment: a systematic review // Journal of Physiotherapy. 2015. №61. P. 106-116.
- 13. Hua Zhang, Hong Chen, Hao Wang, Duoduo Li, Baolin Jia, Zhongjian Tan, Bin Zheng, Zhiwen Weng. Effect of Chinese tuina massage therapy on resting state brain functional network of patients with chronic neck pain // Journal of traditional Chinese medical sciences. 2015. №2. P. 60-68.
- 14. Исмаилов Т.А., Евдулов О.В., Аминов Г.И., Юсуфов Ш.А. Приборы для локального температурного

- воздействия на человеческий организм // Известия вузов. Северо-Кавказский регион. Технические науки. 2003. №2. С. 3-6.
- 15. Yevdulov O.V., Ragimova T.A. Investigation of thermoelectric system for local freezing of tissues of the larynx // Journal of thermoelectricity. 2015. N 2. P. 77-86.
- 16. Yevdulov D. V., Yevdulov O. V., Abdulkhakimov U. I., Nabiyev N.A. Thermoelectric model for cameras for carrying out thermal treatments // Journal of thermoelectricity. 2016. №5. P. 73-79.
- 17. Исмаилов Т.А., Евдулов Д.В., Евдулов О.В., Абдулхакимов У.И. Термоэлектрическая система для проведения тепловых косметологических процедур

References:

- 1. Zubkova S.M. Rol' teplovoi komponenty v lechebnom deistvii fizicheskikh faktorov. Fizioterapiya, bal'neologiya i reabilitatsiya. 2011;6:3-10. [Zubkova S.M. The role of the thermal component in the therapeutic effect of physical factors. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2011;6:3-10. (In Russ.)]
- 2. Ezhov V.V. Fizioterapiya i fizioprafilaktika kak metody i sredstva sokhraneniya i vosstanovleniya zdorov'ya. Fizioterapiya, bal'neologiya i reabilitatsiya. 2011;4:33-36. [Ezhov V.V. Physiotherapy and physioprophylaxis as the methods and means of maintaining and restoring health. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2011;4:33-36. (In Russ.)] 3. Savic M., Fonda B., Sarabon N. Actual temperature during and thermal response after whole-body cryotherapy in cryo-cabin. Journal of thermal biology. 2013;38:186–191.
- 4. Bogolyubov V.M., Ulashchik V.S. Kombinirovanie i sochetanie lechebnykh fizicheskikh faktorov. Fizioterapiya, bal'neologiya i reabilitatsiya. 2004;5:39-45. [Bogolyubov V.M., Ulashchik V.S. The combination and matching of therapeutic physical factors. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2004;5:39-45. (in Russ.)]
- 5. Field T., Diego M., Gonzalez G.F. Neck arthritis pain is reduced and range of motion is increased by massage therapy. Complementary therapies in clinical practice. 2014;20:219-223.
- 6. Twaha S., Zhu J., An Y., Li B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and sustainable energy reviews. 2016; 65: 698-726.
- 7. Baranov A.Yu., Malysheva T.A., Savel'eva A.V., Sidorova A.Yu. Perenos teploty v ob"ekte obshchego krioterapevticheskogo vozdeistviya. Vestnik MAKh. 2012;2:35-40. [Baranov A.Yu., Malysheva T.A., Savel'eva A.V., Sidorova A.Yu. Heat transfer in the object of general cryotherapy. Vestnik of International Academy of Refrigeration. 2012;2:35-40. (In Russ.)]
- 8. Anatychuk L.I., Denisenko O.I., Kobylyanskii R.R., Kadenyuk T.Ya. Ob ispol'zovanii termoelektricheskogo okhlazhdeniya v dermatologii i kosmetologii. Termoelektrichestvo. 2015;3:57-71. [Anatychuk L.I., Denisenko O.I., Kobylyanskii R.R., Kadenyuk T.Ya. On the use of

- на лице // Медицинская техника. 2017. №4. С. 38-42.
- 18. Евдулов Д.В., Евдулов О.В., Набиев Н.А. Термо-электрическое полупроводниковое устройство для остановки кровотечения // Вестник Дагестанского технического университета. Технические науки. 2017. T.44.-N1-C.26-36.
- 19. Евдулов О.В., Хазамова М.А. Математическая модель полупроводникового термоэлектрического устройства для теплового воздействия на стопу человека // Известия вузов. Приборостроение. 2004. N27. C. 43-49.
- 20. Ши Д. Численные методы в задачах теплообмена. Пер. с англ. М.: Мир. 1988. 544 с.
- thermoelectric cooling in dermatology and cosmetology. Journal of Thermoelectricity. 2015;3:57-71. (In Russ.)]
- 9. Field T. Massage therapy research review. Complementary therapies in clinical practice. 2016;24:19-31.
- 10. Ismailov T.A., Evdulov O.V., Khazamova M.A., Magomadov R.A.-M. Matematicheskaya model' termoelektricheskoi sistemy dlya lokal'nogo teplovogo vozdeistviya na ruku cheloveka. Termoelektrichestvo. 2014;1:77-86. [Ismailov T.A., Evdulov O.V., Khazamova M.A., Magomadov R.A.-M. Mathematical model of the thermoelectric system for local thermal impact on the human hand. Journal of Thermoelectricity. 2014;1:77-86. (In Russ.)]
- 11. Krukowska J., Lukasiak A., Czernicki J. Impact of magneto stimulation on nerve and muscle electrical excitability in patients with increased muscle tone. Polish annals of medicine. 2012;19:15-20.
- 12. Verhagen J. Massage therapy has short-term benefits for people with common musculoskeletal disorders compared to no treatment: a systematic review. Journal of Physiotherapy. 2015;61:106-116.
- 13. Zhang H., Chen H., Wang H., Li D., Jia B., Tan Z., Zheng B., Weng Z. Effect of Chinese tuina massage therapy on resting state brain functional network of patients with chronic neck pain. Journal of traditional Chinese medical sciences. 2015; 2:60-68.
- 14. Ismailov T.A., Evdulov O.V., Aminov G.I., Yusufov Sh.A. Pribory dlya lokal'nogo temperaturnogo vozdeistviya na chelovecheskii organizm. Izvestiya vuzov. Severo-Kavkazskii region. Tekhnicheskie nauki. 2003;2:3-6. [Ismailov T.A., Evdulov O.V., Aminov G.I., Yusufov Sh.A. Instruments for local temperature impact on the human body. University news. North-Caucasian region. Technical sciences series. 2003;2:3-6. (In Russ.)] 15. Yevdulov O.V., Ragimova T.A. Investigation of thermoelectric system for local freezing of tissues of the larynx. Journal of Thermoelectricity. 2015; 2:86-94.
- 16. Yevdulov D. V., Yevdulov O. V., Abdulkhakimov U. I., Nabiyev N.A. Thermoelectric model for cameras for carrying out thermal treatments. Journal of Thermoelectricity. 2016;5:73-79.
- 17. Ismailov T.A., Evdulov D.V., Evdulov O.V., Abdulkhakimov U.I. Termoelektricheskaya sistema dlya provedeniya teplovykh kosmetologicheskikh protsedur na litse. Meditsinskaya tekhnika. 2017;4:38-42. [Ismailov T.A., Evdulov D.V., Evdulov O.V., Abdulkha-

kimov U.I. Thermoelectric system for carrying out thermal cosmetology procedures on the face. Biomedical Engineering. 2017;4:38-42. (In Russ.)]

18. Evdulov D.V., Evdulov O.V., Nabiyev N.A. Termoelektricheskoe poluprovodnikovoe ustroistvo dlya ostanovki krovotecheniya. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2017;44:26-36. [Evdulov D.V., Evdulov O.V., Nabiyev N.A. Thermoelectric semiconductor device for cautery of bleeding. Herald of Daghestan State Technical University. Technical Sciences. 2017;44:26-36. (In Russ.)]

19. Evdulov O.V., Khazamova M.A. Matematicheskaya model' poluprovodnikovogo termoelektricheskogo ustroistva dlya teplovogo vozdeistviya na stopu cheloveka. Izvestiya vuzov. Priborostroenie. 2004;7:43-49. [Evdulov O.V., Khazamova M.A. Mathematical model of a semiconductor thermoelectric device for thermal impact on human foot. Journal of Instrument Engineering. 2004;7:43-49. (In Russ.)]

20. Shi D. Chislennye metody v zadachakh teploobmena. M.: Mir; 1988. 544 s. [Shi D. Numerical methods in heat transfer problems. M.: Mir; 1988. 544 p. (In Russ.)]

Сведения об авторах:

Евдулов Олег Викторович – кандидат технических наук, доцент кафедры теоретической и общей электротехники.

Кадирова Джамиля Кадировна – старший лаборант кафедры теоретической и общей электротехники **Магомедова Сарат Гусеновна** – аспирант кафедры теоретической и общей электротехники.

Рагимова Тамила Арслановна – кандидат технических наук, доцент кафедры теоретической и общей электротехники.

Хазамова Мадина Абдулаевна – кандидат технических наук, доцент кафедры теоретической и общей электротехники.

Information about the author:

Oleg V. Evdulov - Cand.Sci. (Technical), Assoc.Professor, Department of Theoretical and General Electrical Engineering.

Dzhamilya K.Kadirova – Senior Assistant, Department of Theoretical and General Electrical Engineering. **Sarat G.Magomedova** – Postgraduate Student, Department of Theoretical and General Electrical Engineering.

Tamila A.Ragimova – Cand.Sci.(Technical), Assoc.Professor, Department Theoretical and General Electrical Engineering.

Madina A.Khazamova – Cand.Sci.(Technical), Assoc.Professor, Department of Theoretical and General Electrical Engineering

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 12.01.2018.

Принята в печать 22.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 12.01.2018.

Accepted for publication 22. 02.2018.

Для цитирования: Макеев А.Н. Оценка надежности и эффективности работы основных конструкций импульсных нагнетателей для использования энергии гидравлического удара. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 73-87. DOI:10.21822/2073-6185-2018-45-1-73-87

For citation: Makeev A.N. Evaluation of operational reliability and efficiency of primary designs of pulse superchargers using hydraulic shock energy. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 73-87. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-73-87

ТЕХНИЧЕСКИЕ НАУКИ ЭНЕРГЕТИЧЕСКОЕ, МЕТАЛЛУРГИЧЕСКОЕ И ХИМИЧЕСКОЕ МАШИНОСТРОЕНИЕ

УДК: 621.43.031.3:621.838.4

DOI: 10.21822/2073-6185-2018-45-1-73-87

ОЦЕНКА НАДЕЖНОСТИ И ЭФФЕКТИВНОСТИ РАБОТЫ ОСНОВНЫХ КОНСТРУКЦИЙ ИМПУЛЬСНЫХ НАГНЕТАТЕЛЕЙ ДЛЯ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ ГИДРАВЛИЧЕСКОГО УДАРА

Макеев А.Н.

Мордовский государственный университет им. Н.П. Огарёва, 430000, Республика Мордовия, г. Саранск, ул. Большевистская, 68, Россия, e-mail: tggi@rambler.ru

Резюме: Цель. Совершенствование технологии организации и использования импульсной циркуляции теплоносителя, а также изыскание принципиально новых технических решений импульсных нагнетателей для использования энергии локальных гидравлических ударов являются основными задачами в условиях перехода к импульсной циркуляции рабочей среды в эффективных системах тело- и водоснабжения. Целью исследования являлась оценка известных конструкций импульсных нагнетателей водоподъемных устройств на предмет надежности и эффективности работы в гидравлических системах тепло- и водоснабжения. Метод. Аналитически обобщены особенности конструкций импульсных нагнетателей для использования энергии гидравлического удара. Применены методы анализа надежности, эффективности и условий выбора импульсных нагнетателей, применяемых в системах водоснабжения; осуществлен обзор и анализ технических решений конструкций импульсных нагнетателей, применяемых в системах теплоснабжения. Результат. На основе результатов теоретического анализа конструкций, а также опыта практического применения отдельных технических решений импульсных нагнетателей, определены условия, влияющие на эффективность и надежность их работы в условиях эксплуатации с различными типами систем тепло- и водоснабжения. Результаты анализа конструкций импульсных нагнетателей на основе использования энергии гидравлического удара, применяемых в системах водоснабжения, определили два основных варианта их технического исполнения – с диафрагмой и поршнем. Значимыми техническими решениями импульсных нагнетателей для систем теплоснабжения является конструкция, в которой процесс нагнетания может быть реализован совместно с процессом теплообмена. Осуществлена патентная защита полученных результатов интеллектуальной деятельности. Вывод. Сформулированы рекомендации по использованию отдельных конструкций импульсных нагнетателей для решения конкретных задач в системах тепло- и водоснабжения. Предложены материалы для изготовления некоторых элементов конструкции импульсных нагнетателей, которые позволят повысить их надежность и энергетическую эффективность.

Статья подготовлена в рамках выполнения договора № 14.Z56.18.1408-МК от 17 января 2018 г. об условиях использования Гранта Президента Российской Федерации для государственной поддержки молодых российских ученых МК-1408.2018.8.

Ключевые слова: система теплоснабжения, тепловая сеть, система теплопотребления, тепловой пункт, независимая схема присоединения тепловой нагрузки, пульсирующая циркуляция теплоносителя

TECHNICAL SCIENCE POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING

EVALUATION OF OPERATIONAL RELIABILITY AND EFFICIENCY OF PRIMARY DESIGNS OF PULSE SUPERCHARGERS USING HYDRAULIC SHOCK ENERGY

Andrey N.Makeev

Ogarev Mordovia State University, 68 I. Bolshevistskaya Str., Saransk 430000, Russia, e-mail: tggi@rambler.ru

Abstract Objectives. The transition to pulse circulation of the working medium in effective systems of heat and water supply result in a need to improve the technology used to organise pulse coolant circulation, as well as to develop fundamentally new technical solutions for pulse superchargers that use the energy of local hydraulic shocks. The aim of the present study was to evaluate the known designs of pulse superchargers of water-lifting devices in terms of operational reliability and efficiency in hydraulic heat and water supply systems. **Methods.** The design features of pulse superchargers using hydraulic shock energy are analytically generalised. Methods for analysing the reliability, efficiency and conditions for selecting the pulse superchargers used in water supply systems are applied; a review and analysis of technical solutions for pulse supercharger designs used in heat supply systems is carried out. **Results.** Based on the results of the theoretical construction analysis, as well as on the experience in the practical application of individual technical solutions for pulse superchargers, provisions are determined that affect the efficiency and reliability of their operation under the working conditions with various types of heat and water supply systems. The analytical results of the pulse supercharger designs using the hydraulic shock energy applied in water supply systems reveal two main options for their technical execution, namely, a diaphragm or a piston. The significant technical solution for pulse superchargers in heat supply systems is a design in which the injection process can be implemented in conjunction with the heat exchange process. The obtained results of the conducted intellectual activity are provided with patent protection. Conclusion. Recommendations on the use of individual pulse supercharger designs for solving specific problems in heat and water supply systems are formulated. Materials are proposed for the manufacture of some elements of the design of pulse superchargers in order to increase their reliability and energy efficiency.

Acknowledgment. The article was prepared as part of the implementation of the contract No. 14.Z56.18.1408-MK dated January 17, 2018 on the conditions for the use of the Grant of the President of the Russian Federation for state support of young Russian scientists MK-1408.2018.8.

Keywords: heat supply system, heat network, heat consumption system, heat supply unit, independent scheme of heat load connection, pulse coolant circulation

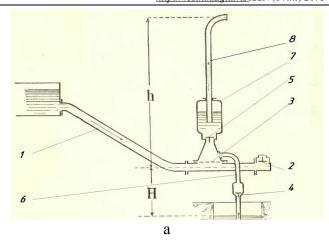
Введение. В теории гидротаранных водоподъемных устройств [1-2] понятие импульсного нагнетателя практически не фигурирует. Однако, исследуя техническую сущность работы двухжидкостных гидравлических таранов можно отметить, что без данного устройства процесс обеспечения ими водоснабжения был бы в принципе невозможен.

Дифференцируя импульсный нагнетатель из конструкции двухжидкостного водоподъемного устройства получаем, что данное техническое устройство представляет собой насос диафрагменного, поршневого или иного типа, который используется для обеспечения нагнетания жидкости одного вида за счет использования импульса количества движения жидкости второго вида. Данный узел нашел применение и в системах теплоснабжения с импульсной циркуляцией теплоносителя [3]. Являясь составной частью теплового пункта [4], импульсный нагнетатель успешно применяется для трансформации энергии локальных гидравлических ударов теплоносителя из тепловой сети в напор и циркуляцию теплоносителя в местной системе теплопотребления [5].

В условиях развития технологии по организации и использованию импульсной циркуляции теплоносителя оптимизация существующих конструкций, а также изыскание принципиально новых технических решений импульсных нагнетателей для использования энергии локальных гидравлических ударов [6], становятся ключевыми задачами в условиях перехода к импульсной циркуляции рабочей среды в системах тело- и водоснабжения для повышения их энергетической эффективности [7]. Качественное решение обозначенных задач практически невозможно без проведения обзора и анализа существующих конструкций импульсных нагнетателей. Именно это обстоятельство и легло в основу настоящей статьи.

Постановка задачи. Цель – провести оценку известных конструкций импульсных нагнетателей водоподъемных устройств на предмет надежности и устойчивости работы для различных условий применения в гидравлических системах тепло- и водоснабжения. При достижении поставленной цели были решены следующие задачи:

- анализ информационных источников по теме научного исследования;
- анализ надежности, эффективности и условий выбора импульсных нагнетателей для применения в системах водоснабжения;
- обзор и анализ технических решений конструкций импульсных нагнетателей для применения в системах теплоснабжения;
 - патентная защита полученных результатов интеллектуальной деятельности;
 - подведение итогов научного исследования.


Методы исследования. Настоящая статья подготовлена в рамках выполнения договора № 14.Z56.18.1408-МК от 17 января 2018 г. об условиях использования Гранта Президента Российской Федерации для государственной поддержки молодых российских ученых МК-1408.2018.8. Тема научного исследования: «Разработка и исследование теплоэнергетических устройств с колеблющейся поверхностью теплообмена для использования потенциала импульсной циркуляции теплоносителя применительно к интенсификации теплообменных процессов».

Научно-исследовательская работа выполнена на базе учебно-научной лаборатории «Импульсные системы тепло- и водоснабжения» ФГБОУ ВО «МГУ им. Н. П. Огарёва» и представляет собственное научное исследование, содержащееразъяснение теоретических и практических данных по теме эффективного использования технологий и средств организации импульсного движения теплоносителя в системах тепло- и водоснабжения применительно к повышению их энергетической эффективности.

Для конкретизации рассматриваемых вопросов приводятся принципиальные схемы устройств, дается описание их работы. Отдельные технические решения подкреплены патентами Российской Федерации на изобретения и полезные модели.

Обсуждение результатов. Сведения об использовании импульсного нагнетателя диафрагменного типа в составе двухжидкостного водоподъемного устройства приводятся в работе В. Н. Ростовцева [8, с. 26–28]. Там же дается схема данного устройства (рис. 1,а) и краткое описание ее работы. Эскиз подобного импульсного нагнетателя обнаруживается в работе В. М. Овсепяна [9, с. 64] (рис. 1,б). Синтезируя информацию из выше указанных информационных источников можно отметить, что диафрагменный импульсный нагнетатель в составе водоподъемного устройства на основедухжидкостного гидравлического тарана работает следующим образом (рис. 1).

По питательной трубе 1 поступает рабочая среда, которая истекает через открытый ударный клапан 2. Благодаря тому, что на этой же трубе 1 установлена эластичная диафрагма 3, то при закрытии и последующем открытии ударного клапана 2 она движется вверх и вниз соответственно. В результате этого обратные клапаны входа 4 и выхода 5 нагнетаемой среды обеспечивают ее подачу из всасывающего трубопровода 6 в воздушный колпак 7, а оттуда по нагнетательному трубопроводу 8 к потребителю (на рис. 1 не приведен).

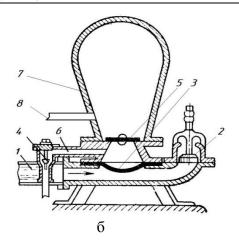


Рис.1. Импульсный нагнетатель с диафрагмойв составе двухжидкостного гидравлического тарана: а – схема; б – эскиз; 1 – питательная труба; 2 – ударный клапан; 3 – эластичная диафрагма; 4 – обратный клапан входа; 5 – обратный клапан выхода; 6 – всасывающий трубопровод; 7 – воздушный колпак; 8 – нагнетательный трубопровод

Fig.1. Pulse supercharger with a diaphragm in the two-fluid hydraulic ram: a - circuit; b - sketch; 1 - feeding tube; 2 - the shock valve; 3 - flexible diaphragm; 4 - check valve of the inlet; 5 - check valve outlet; 6 - suction pipe; 7 - an air cap; 8 - delivery pipeline

В. М. Овсепян отмечает, что диафрагменный нагнетатель при значительных напорах и расходах нагнетаемой среды малоэффективен. Им же дается рекомендация применения данного технического решения для нагнетательного напора до 20 м с расходом не более 0,3 л/сек. Что касается высоких нагнетательных напоров и высоких нагнетательных расходов, то целесообразно использовать конструкцию импульсного нагнетателя, в котором диафрагма заменена поршнем.

В. Н. Ростовцев также указывает на относительную сложность эксплуатации диафрагменного импульсного нагнетателя, отмечает его небольшую высоту всасывания 20–23 ϕyma (6,1–7 M) и предлагает к использованию импульсный нагнетатель с поршнем.

Эскиз дифференциального гидравлического тарана Дюрозуа в импульсном нагнетателе которого, вместо эластичной диафрагмы используется поршень [8, с. 28], приведен на рис. 2.

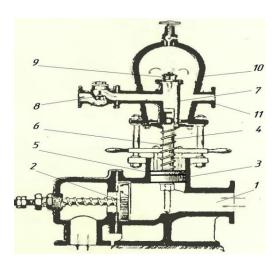


Рис. 2. Импульсный нагнетатель с поршнем в гидравлическом таране Дюрозуа: 1 — питательная труба; 2 — ударный клапан; 3 — поршень; 4 — шток-плунжер; 5 — направляющий цилиндр; 6 — пружина; 7 — стакан; 8 — обратный клапан входа; 9 — обратный клапан выхода; 10 — воздушный колпак; 11 — нагнетательный трубопровод

Fig. 2. Pulse supercharger with a piston in the hydraulic ram Durozua: 1 - feeding tube; 2 - the shock valve; 3 - the piston; 4 - rod-plunger; 5 - the directing cylinder; 6 - a spring; 7 - a glass; 8 - check valve of the inlet; 9 - non-return valve; 10 - an air cap; 11 - delivery pipeline

Поршневой импульсный нагнетатель в составе двухжидкостного гидравлического тарана работает следующим образом. По питательной трубе 1 поступает рабочая среда, которая истекает через открытый ударный клапан 2. При закрытии ударного клапана 2 возникает гидравлический удар, положительная волна распространения которого обеспечивает перемещение поршня 3 и связанного с ним штока-плунжера 4 вверх вдоль направляющего цилиндра 5. При этом пружина 6, установленная на плунжер 4 между поршнем 3 и стаканом 7 сжимается, а сам плунжер 4, перемещаясь внутрь стакана 7, обеспечивает подачу нагнетаемой среды из стакана 7 через обратный клапан выхода 9 в воздушный колпак 10. Далее нагнетаемая среда поступает по нагнетательному трубопроводу 11 к потребителю (на рис. 2 не указан).

При отрицательной волне гидравлического удара ударный клапан 2 открывается, пружина 6 растягивается, поршень 3 перемещается относительно направляющего цилиндра 5 вниз, шток-плунжер 4 обеспечивает всасывание новой порции нагнетаемой среды через обратный клапан входа 8 в стакан 7. Далее процесс повторяется в описанной выше последовательности при каждом закрытии ударного клапана 2.

Такой импульсный нагнетатель с поршнем в составе гидравлического тарана позволяет осуществлять подачу нагнетаемой среды на высоту до 250 раз больше, чем располагаемый напор рабочей среды, истекающей через ударный клапан тарана. Высота всасывания может достигать до 27 футов (8,2 м). Однако, низкая работоспособность рассматриваемого устройства обусловила отсутствие его массового распространения в системах водоснабжения.

Что касается систем теплоснабжения с импульсной циркуляцией теплоносителя, то предпочтительным вариантом конструкции импульсного нагнетателя оказалось его техническое исполнение с диафрагмой (рис. 3). Во многом это связано с относительной простотой изготовления и последующей эксплуатацией устройства [10].

На рис. За приведена конструкция такого импульсного нагнетателя с диафрагмой «Тип 30» от пневматической тормозной системы грузовых автомобилей, двумя обратными клапанами на Ду 25 мм, регулировочным штоком и возвратной пружиной. Производительность данного устройства составляет 0,5 л за один полный ход диафрагмы снизу-вверх. При этом, высота нагнетания может достигать 90 м, а высота всасывания за счет установки возвратной пружины — более 10м.

а

Рис.3. Опытные образцы импульсных нагнетателей: а– верхняя крышка прототипа устройства; б – заводское исполнение узла

Fig. 3. Experimental samples of impulse blowers: a- the upper cover of the prototype device; b - factory execution of the unit

На рисунке 3б представлена серийная партия импульсных нагнетателей H50-25, которая была изготовлена ОАО «Рузхиммаш» для практического применения в системах тепло- и водоснабжения с импульсной циркуляцией теплоносителя.

Данные устройства были использованы в тепловой схеме источника теплоты Ковылкинского филиала ФГБОУ ВО «МГУ им. Н.П. Огарёва» для организации импульсной циркуляции теплоносителя через водогрейные котлы и пульсирующей циркуляцией нагреваемого теплоносителя через пластинчатые теплообменники системы горячего водоснабжения (рис.4).

Puc.4. Водогрейные котлы с импульсной циркуляцией теплоносителя Fig. 4. Hot-water boilers with impulse coolant circulation

Практика использования данных устройств показала, что из-за инерционности самой диафрагмы, нагнетательных обратных клапанов входа выхода, также из-за присутствующего сопротивления возвратной пружины, возникающая момент гидравлического удара энергия рабочей среды используется не достаточно полно.

С учетом данного обстоятельства, техническое решение импульсного нагнетателя с диафрагмой, приведенное на рис. 3, претерпело некоторые изменения в части повышения надежности и эффективности работы.

На рис. **5** приведена схема импульсного нагнетателя с диафрагмой, в котором импульс количества движения рабочей среды, движущейся в питательной трубе, используется наиболее полно [11].

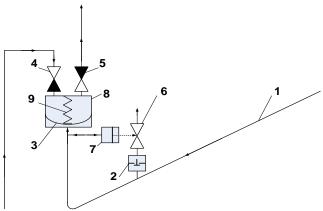


Рис. 5. Импульсный нагнетатель с диафрагмой и возвратной пружиной: 1 — питательная труба; 2 — ударный клапан; 3 — эластичная диафрагма; 4 — обратный клапан входа; 5 — обратный клапан выхода; 6 — вентиль; 7 — сильфон; 8 — нагнетатель; 9 — пружина

Fig. 5. Pulse supercharger with diaphragm and return spring: 1 - feeding tube; 2 - the shock valve; 3 - flexible diaphragm; 4 - check valve of the inlet; 5 - check valve outlet; 6 - the valve; 7 - bellows; 8 - supercharger; 9 - spring

Указанный импульсный нагнетатель в составе водоподъемного устройства на основе гидравлического тарана работает следующим образом. Изначально система заполняется жидкостью до полного удаления воздуха, затем подбирается вес ударного клапана 2 таким образом, чтобы динамическое давление в питательной трубе 1 при установившейся скорости истечения жидкости автоматически закрывало бы его, а под статическим давлением в питательной трубе ударный клапан 2 должен автоматически открываться. Пружина 9 нагнетателя 8 подбирается на статическое давление в питательной трубе из условия, чтобы эластичная диафрагма 3 находилась в своем крайнем нижнем положении.

Сильфон 7 при статическом давлении в питательной трубе 1 должен находиться в положении, при котором вентиль 6 полностью открыт, причем жесткость сильфона 7 должна быть не более жесткости пружины 9 нагнетателя 8 для обеспечения приоритета его срабатывания на положительную волну распространения гидравлического удара по отношению к нагнетателю 8.

После настройки водоподъемного устройства осуществляют его запуск путем принудительного (разового) открытия ударного клапана 2, который до начала запуска должен удерживаться закрытым. После этого жидкость в питательной трубе 1 начинает вытекать через ударный узел 1 с нарастающей скоростью в соединенный с ним вентиль 6 до тех пор, пока ударный клапан 2 автоматически, под действием динамического давления движущейся жидкости, полностью не закроется. При резкой остановке движущегося потока жидкости возникает гидравлический удар с положительной волной распространения ко входу питательной трубы 1.

Приобретенный в момент разгона импульс количества движения жидкости устремляется одновременно в сильфон 7, который, расширяясь, закрывает вентиль 6 и в нагнетатель 8, где, перемещая эластичную диафрагму 3, осуществляет вытеснение нагнетаемой жидкости из нагнетателя 8 через обратный клапан выхода 5 до тех пор, пока энергии импульса будет достаточно для преодоления жесткости пружины 9 и нагнетательного напора. После этого пружина 9, возвращаясь в свое исходное положение, перемещает эластичную диафрагму 3 назад, благодаря чему происходит всасывание нагнетаемой жидкости в нагнетатель 8 через обратный клапан входа 4 и высвобождение рабочего объема нагнетателя 8 для новой порции жидкости из питательной трубы 1. Затем сильфон 7, возвращаясь в исходное положение и вытесняя при этом свой рабочий объем назад в питательную трубу 1, открывает вентиль 6 и, тем самым, обеспечивает последующее истечение жидкости через ударный клапан 2. к тому времени, благодаря отрицательной волне гидравлического удара, Последний возникающей с того момента, как положительная волна отразится от входа питательной трубы 1, автоматически оказывается открытым. После этого процесс работы импульсного нагнетателя повторится в описанной выше последовательности.

В том случае, когда присутствует начальный напор нагнетаемой жидкости, больший статического напора жидкости в питательной трубе и требуется лишь усилить его до требуемой величины, то наличие пружины 9 в нагнетателе 8 не обязательно.

В результате использования данного технического решенияувеличивается подача нагнетаемой жидкости при сокращении расхода рабочей среды. А за счет того, что ударный клапан совершает меньшее число колебаний в единицу времени при той же подаче нагнетаемой среды, то эластичная диафрагма работает в более мягких условиях и менее склонна к разрыву, поскольку пружина в данном случае выступает в роли демпфера. Таким образом, повышается общая надежность работы всего водоподъемного устройства.

На рис. 6 представлено техническое решение импульсного нагнетателя, в котором реализована возможность автоматической подстройки положения диафрагмы под параметры рабочей среды [12]. Устройство работает следующим образом. Изначально обратный клапан входа 5 нагнетаемой среды и обратный клапан выхода 6 нагнетаемой среды связываются, соответственно с источником и приемником нагнетаемой среды (на рис. 6 не указаны), в качестве которой может выступать жидкость или газ.

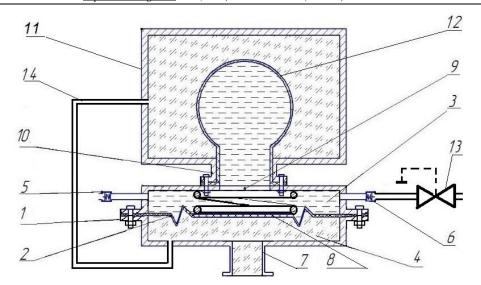


Рис.6. Импульсный нагнетатель с возможностью подстройки положения диафрагм под параметры рабочей среды

Fig. 6. Pulse supercharger with the possibility of adjusting the position of the diaphragms for the parameters of the working medium

Через отверстие для подключения к внешнему трубопроводу 7 вторая полость 4 корпуса 1 импульсного нагнетателя сообщается с трубопроводом импульсно-попеременного давления рабочей среды (на рис. 6 не указан). При этом, за счет капиллярной трубки 14 рабочая среда поступает в полый корпус 11 гидравлического аккумулятора 10, сжимая растянутую давлением нагнетаемой среды эластичную мембрану 12 и вытесняя попавший в систему воздух через автоматический воздухоотводчик, закрепленный в полом корпусе 11 гидравлического аккумулятора 10 (на рис. 6 не указан). При этом, нагнетаемая жидкость (газ), находящаяся внутри эластичной мембраны 12, через добавочное отверстие 9 будет истекать в первую полость 3 корпуса 1, обеспечивая, тем самым, совместно с возвратной пружиной 8, перемещение эластичной диафрагмы 2 в сторону второй полости 4 корпуса 1. Регулятор давления 13 настраивают на поддержание давления нагнетания в первой полости 3 корпуса 1 импульсного нагнетателя не менее статического давления рабочей среды, присутствующего во второй полости 4.

После того, как предварительная настройка устройства закончена, осуществляют подачу импульсно-попеременного давления через отверстие для подключения к внешнему трубопроводу 7. В результате этого эластичная диафрагма 2, гидравлически изолирующая первую 3 и вторую 4 полости корпуса 1 импульсного нагнетателя начинает совершать возвратно-поступательные движения, обеспечивая перекачку нагнетаемой среды через обратные клапаны входа 5 и выхода 6.

Это будет происходить благодаря тому, что под избыточным импульсным давлением рабочей среды во второй полости 4 корпуса 1 импульсного нагнетателя будет происходить ее смещение в первую полость 3 при одновременном вытеснении нагнетаемой жидкости (или газа) через обратный клапан выхода 5 нагнетаемой среды и регулятор давления 13 и, частично, через добавочное отверстие 9 в полость гидравлического аккумулятора 10.

В момент времени, когда избыточное давление во второй полости 4 корпуса 1 импульсного нагнетателя иссякнет, эластичная диафрагма 2, под действием возвратной пружины 8 и избыточного давления, поддерживаемого регулятором давления 13, вернется в исходное нижнее положение, обеспечивая, при этом, всасывание новой порции нагнетаемой жидкости через обратный клапан входа нагнетаемой среды 5. Регулятор давления 13, сохраняя постоянство давления жидкости в первой полости 3 корпуса 1 импульсного нагнетателя, обеспечивает полную цикличность процесса нагнетания путем создания благоприятных

условий для возврата эластичной диафрагмы 2 в исходное нижнее положение возвратной пружиной 8 при относительно большем давлении в первой полости 3, чем давление во второй полости 4. Эта разница давлений возникает при отрицательной волне гидравлического удара в трубопроводе импульсно-попеременного давления (на рис. 6 не указан).

Таким образом, регулируя величину поддерживаемого давления нагнетаемой жидкости в первой полости 3 корпуса 1 импульсного нагнетателя регулятором давления 13, обеспечивается автоматическая настройка работы устройства под различные параметры рабочей и нагнетаемой среды (величина расхода и давления). При этом, максимальная производительность устройства будет обеспечиваться каждый раз при возвращении эластичной диафрагмы 2 в крайнее нижнее положение корпуса 1.

В результате использования данной конструкции импульсного нагнетателя потенциал его назначения в различных областях применения реализуется наиболее полно:

- обеспечивается эргономичная возможность настройки работы устройства под различные параметры нагнетаемой и рабочей среды без его разбора;
 - исключается необходимость использования воздуха внутри полого корпуса;
- энергетическая эффективность устройства, определяемая производительностью по нагнетаемой среде, повышается за счет реализации возможности автоматического возврата эластичной диафрагмы в исходное положение, что позволяет наиболее полно каждый раз использовать энергию импульса количества движения рабочей среды.

В некоторых гидравлических системах разрыв диафрагмы не допустим во избежание смешивания жидкостей из контура рабочей среды и контура нагнетаемой среды. Для таких случаев рекомендуется использовать техническое решение импульсного нагнетателя с двумя диафрагмами (рис. 7).

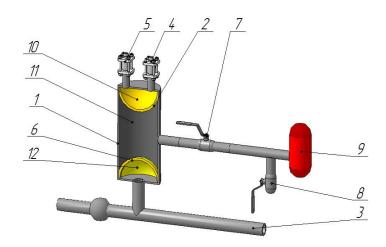


Рис. 7. Импульсный нагнетатель с двойной диафрагмой: 1 — полый корпус; 2 — первая диафрагма; 3 — трубопровод рабочей среды; 4 — обратный клапан входа; 5 — обратный клапан выхода; 6 — вторая диафрагма; 7 — регулировочный вентиль; 8 — кран; 9 — гидравлический аккумулятор; 10 — первая полость; 11 — вторая полость; 12 — третья полость

Fig. 7. Pulse supercharger with double diaphragm: 1 - hollow body; 2 - the first diaphragm; 3 - pipeline of the working medium; 4 - check valve of the inlet; 5 - check valve outlet; 6-second aperture; 7 - the adjusting valve; 8 - the crane; 9 - the hydraulic accumulator; 10 - the first cavity; 11 - the second cavity; 12 - third cavity

Данный импульсный нагнетатель работает следующим образом [13]. Сначала через кран 8 вторая полость 11 полого корпуса 1 импульсного нагнетателя заполняется некоторой промежуточной жидкостью (например, маслом). Затем в гидроаккумулятор 9 закачивается некоторое количество воздуха. Обратные клапаны входа 4 и выхода 5 связываются с источником и приемником нагнетаемой среды (на рисунке 6 источник и приемник нагнетаемой среды не указаны). Затем по трубопроводу 3 осуществляют подачу рабочей среды (в жидкой

или газообразной фазе), характеризующейся импульсным или пульсирующим изменением в ней давления.

В момент повышения давления в трубопроводе 3 рабочей среды она поступает в третью зону 12 полого корпуса 1 импульсного нагнетателя, растягивая, при этом, диафрагму 6. В результате этого во второй зоне 11 происходит сжатие промежуточной жидкости, которая, демпфировав часть давления в гидроаккумуляторе 9, сжимает диафрагму 2. При этом через обратный клапан выхода 5 происходит вытеснение нагнетаемой среды из первой зоны 10 полого корпуса 1 импульсного нагнетателя.

В момент понижения давления в трубопроводе рабочей среды 3 она покидает третью зону 12 полого корпуса 1 изначально под действием избыточного давления воздуха в гидроаккумуляторе 9, а затем под действием давления высоты всасывания в первой зоне 10 полого корпуса 1, которое обеспечивается возвратной пружиной (на рисунке 7 не указана), установленной в полом корпусе 1 или достаточным входным давлением нагнетаемой среды, поступающей через обратный клапан входа 4 в первую зону 10 полого корпуса 1. Таким образом, нагнетаемая среда через обратный клапан входа 4 поступает в первую зону 10 полого корпуса 1 импульсного нагнетателя.

При последующем повышении и понижении давления в трубопроводе 3 рабочей среды процесс работы импульсного нагнетателя повторится в описанной выше последовательности.

Регулирование производительности импульсного нагнетателя осуществляется за счёт изменения соотношения объема промежуточной жидкости во второй зоне 11 полого корпуса 1 и давления воздуха в гидроаккумуляторе 9, а также посредством регулировочного вентиля 7, при изменении проходного сечения которого изменяется демпфирующая способность гидроаккумулятора 9. Для слива промежуточной жидкости из второй зоны 11 полого корпуса 1 и гидроаккумулятора 9 используется кран 8.

Среди потребительских качеств и конкурентных преимуществ, характеризующих настоящую конструкцию импульсного нагнетателя, следует отметить следующее:

- применение двух диафрагм исключает возможность аварийного смешивания рабочей и нагнетаемой среды, что позволяет применять конструкцию в ответственных схемных решениях, в том числе и в системах с гальванической развязкой контуров;
- относительная простота конструкции определяет низкую себестоимость и незначительные эксплуатационные затраты на обслуживание устройства;
- техническое решение применимо при любых параметрах рабочей и нагнетаемой среды;
- эргономичное регулирование производительности устройства достигается путем изменения давления воздуха в гидроаккумуляторе и/или положением регулировочного вентиля;
- работа устройства возможна как в режиме обеспечения наибольшей производительности по параметру нагнетаемой среды, так и в режиме с наиболее возможным КПД.

Для систем теплоснабжения с импульсной циркуляцией теплоносителя особый интерес могут представлять технические решения импульсных нагнетателей, в которых при перекачке жидкости может быть реализован процесс интенсифицированного теплообменают пульсирующей циркуляции теплоносителя [14]. Одно из таких схемных решений представлено на рис. 8 [15].

Импульсный нагнетатель сильфонного типа работает следующим образом. Сначала осуществляют настройку жесткости пружины 4 на обеспечение необходимой высоты всасывания нагнетаемой среды, поступающей через обратный клапан 5 входа нагнетаемой среды. При этом сильфон 7 из высокотеплопроводного материала (например, 3-х слойный материал из нержавеющей стали) находится в сжатом состоянии и занимает минимум пространства внутри полого корпуса 3.

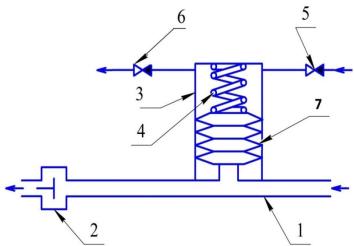


Рис. 8. Импульсный нагнетатель сильфонного типа: 1 – трубопровод рабочей среды; 2 – ударный клапан; 3 – пружина; 5 – обратный клапан входа; 6 – обратный клапан выхода; 7 – сильфон Fig. 8. Pulsed supercharger bellows type: 1 - pipeline working medium; 2 - the shock valve; 3 - a spring; 5- Inlet check valve; 6 - check valve outlet; 7 – bellows

Затем осуществляют подачу рабочей среды (например, технической воды) по трубопроводу рабочей среды 1, которая при определенной скорости истечения из ударного клапана 2 автоматически закрывает его [16-17]. В результате этого возникает гидравлический удар.

Положительная волна (избыточное давление) гидравлического удара преодолевает силу сжатия пружины 4, сжимает ее и растягивает сильфон 7, наполняя его рабочей средой. Нагнетаемая жидкость, находящаяся над сильфоном 7 в полом корпусе 3, в результате этого вытесняется через обратный клапан выхода 6.

Открытие ударного клапана 2 происходит автоматически при смене положительной волны гидравлического удара отрицательной и сопровождается исходным сжатием сильфона 7 пружиной 4 в полом корпусе 3. После чего процесс повторится в описанной выше последовательности.

С учетом того, что сильфон 7 выполнен из высокотеплопроводного материала, то между рабочей средой и нагнетаемой осуществляется процесс теплопередачи, дополнительно интенсифицируемый импульсным движением поверхности теплообмена.

В результате использования данной конструкции импульсного нагнетателя обеспечивается возможность подачи нагнетаемой среды за счет использования кинетической энергии рабочей среды при попутном осуществлении процесса их теплообмена в интенсифицированном режиме, что позволяет совместить в одной конструкции и нагнетатель и теплообменник. С учетом того, что процесс теплообмена между рабочей и нагнетаемой средами осуществляется в импульсном режиме их движения, то интенсификация теплообмена и самоочищение поверхности теплопередачи [18], достигаемые в этих условиях, определяют преимущества технического решения над конкурентами.

На рис. 9 представлена конструкция импульсного нагнетателя, в которой интенсификация теплообмена реализуется посредством закручивания потока рабочей (греющей) среды относительно поверхности теплообмена. Импульсный нагнетательтеплообменник работает следующим образом [19]. Рабочая (греющая) среда поступает в первую полость 3 полого корпуса 1 через входной патрубок 5 рабочей среды и покидает его через выходной патрубок 9 рабочей среды, на выходе которого устанавливается ударный узел [20], необходимый для осуществления импульсной подачи нагнетаемой среды (на рис. 9 не указан). Обратные клапаны входа 6 и выхода 7 нагнетаемой среды связываются с источником и приемником нагнетаемой (нагреваемой) среды (на рисунке9 источник и приемник нагнетаемой (нагреваемой) среды не указаны).

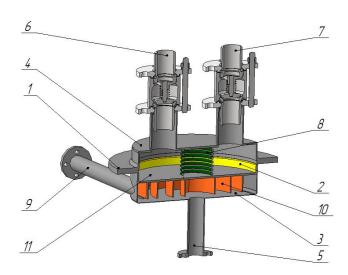


Рис.9. Импульсный нагнетатель с завихрителем потока рабочей среды: 1 — полый корпус; 2 — диафрагма; 3 — первая полость; 4— вторая полость; 5 — входной патрубок рабочей среды; 6 — обратный клапан входа; 7 — обратный клапан выхода; 8 — пружина; 9 — выходной патрубок рабочей среды; 10 — профилированный канал; 11 — пластина

Fig. 9. Pump supercharger with flow medium swirler: 1 – hollow body; 2 – diaphragm; 3 – the first cavity; 4 – the second cavity; 5 – inlet connection of the working medium; 6 – check valve of the inlet; 7 – check valve outlet; 8 – a spring; 9 – outlet nozzle of the working medium; 10 - profiled channel; 11 – plate

В момент положительной волны гидравлического удара, генерируемого ударным узлом [21], диафрагма 2, преодолевая сопротивление пружины 8, поднимается вверх и вытесняет из второй полости 4 полого корпуса 1 нагнетаемую (нагреваемую) среду через обратный клапан выхода 7. При этом профилированный канал 10 оказывается вскрытым, поскольку пластина 11 из высокотеплопроводного материала поднимается вверх вместе с диафрагмой 2 и рабочая (греющая) среда омывает ее закрученным по спирали потоком. Таким образом, реализуется цикл нагнетания нагреваемой среды при положительной волне гидравлического удара с попутным осуществлением процесса теплопередачи от рабочей (греющей) среды.

В момент отрицательной волны гидравлического удара диафрагма 2 под действием пружины 8 опускается вниз, нагнетаемая (нагреваемая) среда всасывается во вторую полость 3 полого корпуса 1 через обратный клапан входа 6, а дно диафрагмы, выполненное из пластины 11, вновь образует профилированный канал 10 и движение рабочей среды в полом корпусе 1 импульсного нагнетателя-теплообменника формируется по спирали. В этот момент рабочая среда по-прежнему омывает пластину 11 закрученным по спирали потоком.

Таким образом, реализуется цикл нагнетания нагреваемой среды при отрицательной волне гидравлического удара с попутным осуществлением процесса теплопередачи от рабочей (греющей) среды.

При последующем повышении и понижении давления рабочей среды процесс работы импульсного нагнетателя-теплообменника повторится в описанной выше последовательности.

В результате применения данного импульсного нагнетателя-теплообменника обеспечивается интенсифицированный процесс теплообмена между греющей и нагреваемой средами при осуществлении пульсирующей циркуляции нагнетаемой среды. Данное техническое решение включает в себя такие звенья импульсной системы тепло- и водоснабжения как питательная труба, импульсный нагнетатель и теплообменник, поэтому его использование позволит не только повысить энергетическую эффективность звеньев системы теплоснабжения, но и снизить их металлоемкость.

Вывод. Анализ конструкций импульсных нагнетателей на основе использования энергии гидравлического удара, применяемых в системах водоснабжения, позволил

определить два основных варианта их технического исполнения — с диафрагмой и поршнем. Конструкция нагнетательного устройства с диафрагмой получила преимущественное распространение, что во многом связано с относительно низкой надежностью поршневого нагнетателя и сложностью его конструкции.

Для систем теплоснабжения с возможностью организации импульсной и пульсирующей циркуляции теплоносителя на ее отдельных участках предпочтительным вариантом конструкции также оказался импульсный нагнетатель с диафрагмой. Это объясняется относительно простотой конструкции при унификации комплектующих его частей из различных областей техники.

Особо ценными техническими решениями импульсных нагнетателей для систем теплоснабжения является такая их конструкция, в которой процесс нагнетания может быть реализован совместно с процессом теплообмена. Данное обстоятельство позволяет сократить металлоемкость и габаритные размеры теплоэнергетического оборудования, работа которого предусмотрена в импульсном режиме циркуляции теплоносителя [22].

Что касается использования материалов для изготовления импульсных нагнетателей, то необходимо стремиться не только к унификации применяемых деталей, но и обеспечивать высокую энергетическую эффективность устройств. Например, для импульсных нагнетателейтеплообменников, целесообразно использовать в качестве диафрагмы материалы с высокой теплопроводностью и коррозионной стойкостью (металлы или полимеры). Для импульсных нагнетателей, используемых только в качестве перекачивающего устройства, достаточно резины, армированной тканью. При этом, в любом случае следует стремиться к максимальному облегчению веса используемого в качестве диафрагмы материала при повышении его прочности на разрыв.

Это позволит наиболее использовать импульс количества движения рабочей среды применительно к организации максимальной подачи нагнетаемой среды наиболее полно.

Библиографический список:

- 1. Нефедов Ю.И. О перспективах гидроударной энергетики / Ю.И. Нефедов // Энергосбережение. Энергетика. Энергоаудит. 2015, № 12(143). C. 20–25.
- 2. Саплин Л.А. Сравнительный обзор и оценка российских и зарубежных гидротаранных установок / Л.А. Саплин, О.С. Пташкина-Гирина, О.С. Волкова // Вестник Красноярского государственного аграрного университета. 2015, № 3. С. 40—44.
- 3. Макеев, А. Н. Импульсная система теплоснабжения общественного здания :автореф. дис. ... канд. техн. наук / А. Н. Макеев. Пенза, $2010.-20~\rm c.$
- 4. Пат.на изобретение 2543465 Российская Федерация, МПК F24D 3/00. Тепловой пункт / А. П. Левцев, А. Н. Макеев, С. Н. Макеев, С. И. Храмов, Я. А. Нарватов ; заявитель и патентообладатель А. П. Левцев, А. Н. Макеев, С. Н. Макеев. № 2013137717/12 ; заявл. 12.08.2013 ; опубл. 27.02.2015, Бюл. № 6.
- 5. Пат.на изобретение 2423650 Российская Федерация, МПК F24D 3/00. Способ теплоснабжения / А. Н. Макеев, А. П. Левцев ; заявители и патентообладатели А. Н. Макеев, А. П. Левцев. № 2010112729/03 ; заявл. 01.04.2010 ; опубл. 10.07.2011, Бюл. № 19.
- 6. Levtzev, A. P. Pulsating heat transfer enhancement in the liquid cooling system of power semiconductor converter / A. P. Levtzev, A. N. Makeev, S. F. Kudashev // Indian Journal of Science and Technology. March 2016. Vol. 9 (11) P. 1 5. DOI: 10.17485/ijst/2016/v9i11/89420; URL: http://www.indjst.org/index.php/indjst/article/view/89420/68096 (дата обращения: 17.01.2018).
- 7. Левцев А.П. Импульсные системы тепло- и водоснабжения: монография / А.П. Левцев, А. Н. Макеев; под

- общ.ред. д-ра техн. наук проф. А. П. Левцева. Саранск : Изд-во Мордов. ун-та, 2015.-172 с.
- 8. Утилизаціямалыхъпаденій воды для целей осушенія и орошенія земель / инженеръ-технологъ В. Н. Ростовцев. Π г., 1916. 48 с. :съ 23 чертежами в тексте.
- 9. Овсепян В. М. Гидравлический таран и таранные установки / В. М. Овсепян. М. : Машиностроение, 1968. 124 с.
- 10. Макеев А. Н. Импульсная система теплоснабжения общественного здания :дис. ... канд. техн. наук / А. Н. Макеев. Саранск, 2010. 153 с.
- 11. Пат.на полезную модель 99553 Российская Федерация, МПК F04F 7/00. Водоподъемное устройство / А. П. Левцев, А. Н. Макеев ; заявитель и патентообладатель гос. образоват. учреждение высш. проф. образования «Мордовский государственный университет им. Н. П. Огарёва». № 2010125580/06 ; заявл. 22.06.2010 ; опубл. 20.11.2010, Бюл. № 32.
- 12. Пат.на полезную модель 159837 Российская Федерация, МПК F04F 7/00, F04B 43/02. Импульсный нагнетатель / А. П. Левцев, А. Н. Макеев, Я. А. Нарватов, Г. Б. Кенчадзе; заявитель и патентообладатель федер. гос. бюджет.образоват. учреждение высш. проф. образования «Мордовский государственный университет им. Н. П. Огарёва». № 2015137314/06; заявл. 01.09.2015; опубл. 20.02.2016, Бюл. № 5.
- 13. Пат.на полезную модель 168152 Российская Федерация, МПК F24D 3/00, F04B 43/00, F04F 1/00, F04F 7/00. Импульсный нагнетатель / А. П. Левцев, А. Н. Макеев, А. А. Голянин; заявитель и патентообладатель федер. гос. бюджет.образоват. учреждение высш. проф. образования «Мордовский государственный университет им.

- Н. П. Огарёва». № 2016115435 ; заявл. 20.04.2016 ; опубл. 19.01.2017, Бюл. № 2.
- 14. Valueva, E.P. Hydrodynamics and heat transfer in pulsating turbulent pipe flow of a liquid of variable properties / E. P. Valueva // High Temperature. -2005. T. 43. No 6. C. 890–899.
- 15. Пат.на полезную модель 171325 Российская Федерация, МПК F24D 3/00. Импульсный нагнетатель / А. П. Левцев, А. Н. Макеев, М. С. Широв ; заявитель и патентообладатель федер. гос. бюджет.образоват. учреждение высш. образования «Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва». № 2016109486 ; заявл. 16.03.2016 ; опубл. 29.05.2017, Бюл. № 16.
- 16. Пат.на полезную модель 128263 Российская Федерация, МПК F15B 21/12. Ударный узел / А. П. Левцев, А. Н. Макеев, С. Н. Макеев, С. Ф. Кудашев ; заявитель и патентообладатель федер. гос. бюджет.образоват. учреждение высш. проф. образования «Мордовский государственный университет им. Н. П. Огарёва». № 2012153602/06 ; заявл. 11.12.2012 ; опубл. 20.05.2013, Бюл. № 14.
- 17. Пат.на полезную модель 113546 Российская Федерация, МПК F15B 21/12. Ударный узел для газогидравлического устройства (варианты) / А. П. Левцев, А. Н. Макеев, А. М. Зюзин ; заявитель и патентообладатель НОУ «Саранский Дом науки и техники РСНИИОО». № 2011141604/06 ; заявл. 13.10.2011 ; опубл. 20.02.2012, Бюл. № 5.
- 18. Погребняк, А.П. О внедрении систем импульсной очистки поверхностей нагрева / А. П. Погребняк, В. Л.

References:

- 1. Nefedov Yu.I. O perspektivakh gidroudarnoi energetiki. Energosberezhenie. Energetika. Energoaudit. 2015;12(143):20–25. [Nefedov Yu.I. On the prospects of hydroelectric power. Energy saving. Power engineering. Energy audit. 2015;12(143):20–25. (In Russ.)]
- 2. Saplin L.A., Ptashkina-Girina O.S., Volkova O.S. Sravnitel'nyi obzor i otsenka rossiiskikh i zarubezhnykh gidrotarannykh ustanovok. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta. 2015;3:40–44. [Saplin L.A., Ptashkina-Girina O.S., Volkova O.S. Comparative survey and evaluation of Russian and foreign Hydraulic ram units. Bulletin of Krasnoyarsk State Agrarian University. 2015;3:40–44. (In Russ.)]
- 3. Makeev A.N. Impul'snaya sistema teplosnabzheniya obshchestvennogo zdaniya. Avtoreferat dissertatsii na soiskanie uchenoy stepeni cand. tekhn. nauk. Saransk; 2010. 20 s.[Makeev A.N. Impulse heating system of a public building. Published summary of PhD of Technical Sciences thesis. Saransk; 2010. 20 p.(In Russ.)]
- 4. Levtsev A.P., Makeev A.N., Makeev S.N., Khramov S.I., Narvatov Ya.A. Patent RU № 2543465. MPK F24D 3/00. Teplovoy punkt. Opubl. 27.02.2015. Byul. № 6. [Levtsev A.P., Makeev A.N., Makeev S.N., Khramov S.I., Narvatov Ya.A. Patent RU № 2543465. MPK F24D 3/00. Heat point. Publ. 27.02.2015. Bull. № 6. (In Russ.)]
- 5. Makeev A.N., Levtsev A.P. Patent RU № 2423650. MPK F24D 3/00. Sposob teplosnabzheniya. Opubl. 10.07.2011. Byul. № 19. [Makeev A.N., Levtsev A.P. Patent RU № 2423650. MPK F24D 3/00. The way of heat supply. Publ. 10.07.2011. Bull. № 19. (In Russ.)]
- 6. Levtsev A.P., Makeev A.N., Kudashev S.F. Pulsating heat transfer enhancement in the liquid cooling system of power semiconductor converter. Indian Journal of Science and Technology. 2016;9(11):1-5. DOI: 10.17485/ijst/2016/v9i11/89420; URL: http://

- Кокорев, А. Л. Кокорев, И. О. Моисеинко, А. В. Гультяев, Н. Н. Ефимова // Новости теплоснабжения. 2014. N $\!$ 1 (январь). С. 22—24.
- 19. Пат.на полезную модель 167942 Российская Федерация, МПК F24D 3/00, F28D 9/04, F04F 7/00. Импульсный нагнетатель теплообменник / А. П. Левцев, А. Н. Макеев, А. А. Голянин; заявитель и патентообладатель федер. гос. бюджет.образоват. учреждение высш. образования «Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва». № 2016130474; заявл. 25.07.2016; опубл. 12.01.2017, Бюл. № 2.
- 20. Пат.на полезную модель 106329 Российская Федерация, МПК F16K 1/00. Ударный узел для газогидравлического устройства / А. П. Левцев, А. Н. Макеев, А. М. Зюзин; заявитель и патентообладатель НОУ «Саранский Дом науки и техники РСНИИОО». № 2011107008/28; заявл. 24.02.2011; опубл. 10.07.2011, Бюл. № 19.
- 21. Пат.на изобретение 2558740 Российская Федерация, МПК F15B 21/12. Ударный узел / А. П. Левцев, А. Н. Макеев, С. Н. Макеев, С. И. Храмов, С. Ф. Кудашев, А. М. Зюзин, Я. А. Нарватов ; заявитель и патентообладатель НОУ «Саранский Дом науки и техники РСНИИОО». № 2014107201/06 ; заявл. 25.02.2014 ; опубл. 10.08.2015, Бюл. № 22.
- 22. Макеев, А. Н. Тепловые пункты систем теплоснабжения с импульсной циркуляцией теплоносителя / А. Н. Макеев // Вестник Дагестанского государственного технического университета. Технические науки. 2017.— № 1 (44). С. 26–47. DOI : 10.21822 / 2073 6185 2017 44 1 37 47.
- www.indjst.org/index.php/indjst/article/view/89420/68096 (access date: 17.01.2018)
- 7. Levtsev A.P., Makeev A.N. Impul'snye sistemy teplo- i vodosnabzheniya. Pod red. Levtseva A.P. Saransk: Mordovia State University; 2015. 172 s. [Levtsev A.P., Makeev A.N. Pulse systems of heat and water supply. Levtsev A.P. (Ed). Saransk: Mordovia State University; 2015. 172 p. (In Russ.)]
- 8. Utilizatsiya malykh padenii vody dlya tselei osusheniya i orosheniya zemel'. Inzhener-tekhnolog V. N. Rostovtsev. Pg.: 1916. 48 s. s 23 chertezhami v tekste. [Disposal of small fall water for drainage and irrigation purposes. Engineer-technologist V.N. Rostovtsev. Pg.: 1916. 48 p. with 23 illustrations (In Russ.)]
- 9. Ovsepyan V. M. Gidravlicheskii taran i tarannye ustanovki. M.: Mashinostroenie; 1968. 124 s. [Ovsepyan V. M. Hydraulic ram and ramming units. M.: Mashinostroenie; 1968. 124 p. (In Russ.)]
- \10.Makeev A.N. Impul'snaya sistema teplosnabzheniya obshchestvennogo zdaniya. Dissertatsiya na soiskanie uchenoy stepeni cand. tekhn. nauk. Saransk; 2010. 153 s. [Makeev A.N. Impulse heating system of a public building. PhD of Technical Sciences thesis. Saransk; 2010. 153 p. (In Russ.)]
- 11. Levtsev A.P., Makeev A.N. Patent RU № 99553, MPK F04F 7/00. Vodopod"emnoe ustroistvo. Opubl. 20.11.2010. Byul. № 32 [Levtsev A.P., Makeev A.N. Patent RU № 99553, MPK F04F 7/00. Water lifting device. Publ. 20.11.2010. Bull. № 32 (In Russ.)]
- 12. Levtsev A.P., Makeev A.N., Narvatov Ya.A., Kenchadze G.B. Patent RU № 159837, MPK F04F 7/00, F04B 43/02. Impul'sny nagnetatel'. Opubl. 20.02.2016. Byul. № 5. [Levtsev A.P., Makeev A.N., Narvatov Ya.A., Kenchadze G.B. Patent RU № 159837, MPK F04F 7/00, F04B 43/02. Pulse supercharger. Publ. 20.02.2016. Bull. № 5. (In Russ.)]
- 13. Levtsev A.P., Makeev A.N., Golyanin A.A. Patent RU № 168152, MPK F24D 3/00, F04B 43/00, F04F 7/00. Impul'sny nagnetatel' . Opubl. 19.01.2017. Byul. № 2. [Levtsev A.P.,

- Makeev A.N., Golyanin A.A. Patent RU № 168152, MPK F24D 3/00, F04B 43/00, F04F 7/00. Pulse supercharger. Publ. 19.01.2017. Bull. № 2. (In Russ.)]
- 14. Valueva E.P. Hydrodynamics and heat transfer in pulsating turbulent pipe flow of a liquid of variable properties. High Temperature. 2005;43(6):890–899.
- 15. Levtsev A.P., Makeev A.N., Shirov M.S. Patent RU № 171325, MPK F24D 3/00. Impul'sny nagnetatel' . Opubl. 29.05.2017. Byul. № 16. [Levtsev A.P., Makeev A.N., Shirov M.S. Patent RU № 171325, MPK F24D 3/00. Pulse supercharger. Opubl. 29.05.2017. Byul. № 16. (In Russ.)]
- 16. Levtsev A.P., Makeev A.N., Makeev S.N., Kudashev S.F. Patent RU № 128263, MPK F15B 21/12. Udarnyi uzel. Opubl. 20.05.2013. Byul. № 14. [Levtsev A.P., Makeev A.N., Makeev S.N., Kudashev S.F. Patent RU № 128263, MPK F15B 21/12. Impact knot. Publ. 20.05.2013. Bull. № 14. (In Russ.)]
- 17. Levtsev A.P., Makeev A.N., Zyuzin A.M. Patent RU № 113546. MPK F15B 21/12. Udarny uzel dlya gazogidravlicheskogo ustroystva (varianty). Opubl. 20.02.2012. Byul. № 5. [Levtsev A.P., Makeev A.N., Zyuzin A.M. Patent RU № 113546. MPK F15B 21/12. Impact knot for gas-hydraulic device (variants). Publ. 20.02.2012. Bull. № 5. (In Russ.)]
- 18. Pogrebnyak A.P., Kokorev V.L., Kokorev A.L., Moiseenko I.O., Gul'tyaev A.V., Efimova N.N. O vnedrenii sistem impul'snoi ochistki poverkhnostei nagreva. Novosti teplosnabzheniya. 2014; 1:22–24. [Pogrebnyak A.P., Kokorev V.L., Kokorev A.L., Moiseenko I.O., Gul'tyaev A.V., Efimova N.N. On the introduction of impulse heating systems for heating surfaces. Novosti teplosnabzheniya. 2014; 1:22–24. (In Russ.)]

- 19. Levtsev A.P., Makeev A.N., Golyanin A.A. Patent RU № 167942, MPK F24D 3/00, F28D 9/04, F04F 7/00. Impul'sny nagnetatel' teploobmennik . Opubl. 12.01.2017. Byul. № 2. [Levtsev A.P., Makeev A.N., Golyanin A.A. Patent RU № 167942, MPK F24D 3/00, F28D 9/04, F04F 7/00. Pulse supercharger heat exchanger. Publ. 12.01.2017. Bull. № 2. (In Russ.)]
- 20. Levtsev A.P., Makeev A.N., Zyuzin A.M. Patent RU № 106329, MPK F16K 1/00. Udarnyi uzel dlya gazogidravlicheskogo ustroistva. Opubl. 10.07.2011. Byul. № 19. [Levtsev A.P., Makeev A.N., Zyuzin A.M. Patent RU № 106329, MPK F16K 1/00. Shock unit for a gas-hydraulic device. Publ. 10.07.2011. Bull. № 19. (In Russ.)]
- 21. Levtsev A.P., Makeev A.N., Makeev S.N., Khramov S.I., Kudashev S.F., Zyuzin A.M., Narvatov Ya.A. Patent RU № 2558740, MPK F15B 21/12. Udarnyi uzel. Opubl. 10.08.2015. Byul. № 22. [Levtsev A.P., Makeev A.N., Makeev S.N., Khramov S.I., Kudashev S.F., Zyuzin A.M., Narvatov Ya.A. Patent RU № 2558740, MPK F15B 21/12. Impact knot. Publ. 10.08.2015. Bull. № 22. (In Russ.)]
- 22. Makeev A.N. Teplovye punkty sistem teplosnabzheniya s impul'snoi tsirkulyatsiei teplonositelya. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2017;1(44):26-47. DOI: 10.21822/2073-6185-2017-44-1-37-47. [Makeev A.N. Substations of district heating systems with pulse coolant circulation. Herald of Daghestan State Technical University. Technical Sciences. 2017;1(44):26-47. DOI: 10.21822/2073-6185-2017-44-1-37-47. (In Russ.)]

Сведения об авторе.

Макеев Андрей Николаевич — кандидат технических наук, доцент, докторант кафедры теплоэнергетических систем, руководитель учебно-научной лаборатории «Импульсные системы тепло- и водоснабжения»

Information about the author.

Andrey N. Makeev – Cand. Sc. (Technical), Assoc. Prof., Doctoral candidate, Department of heat and power systems, Director of Teaching and Research laboratory «Pulsed the system heating and water supply.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов. **Поступила в редакцию** 21.01.2018.

Принята в печать 01.03.2018.

Conflict of interest.

The author declare no conflict of interest.

Received 21.01.2018.

Accepted for publication 01.03.2018.

Для цитирования: Агаджанян Р.Б., Байжанова Д.О., Маркосян М.В. Исследование и автоматизация контроля стохастических отклонений в системах организационного управления производственным процессом. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 88-97. DOI:10.21822/2073-6185-2018-45-1-88-97

For citation: Aghajanyan R.B., Baizhanova D.O., Markosyan M.V. Control research and automation of stochastic deviations in organisational management production process systems. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 88-97. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-88-97

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК: 004.942

DOI: 10.21822/2073-6185-2018-45-1-88-97

ИССЛЕДОВАНИЕ И АВТОМАТИЗАЦИЯ КОНТРОЛЯ СТОХАСТИЧЕСКИХ ОТКЛОНЕНИЙ В СИСТЕМАХ ОРГАНИЗАЦИОННОГО УПРАВЛЕНИЯ ПРОИЗВОДСТВЕННЫМ ПРОЦЕССОМ

Агаджанян Р.Б.¹, Байжанова Д.О.², Маркосян М.В.³

 1 Ереванский государственный университет,

0025, г. Ереван, ул. Алек Манукяна, 1, Армения,

 2 Алматинский университет энергетики и связи,

050013, г. Алматы, ул. Байтурсынова, 126, Казахстан,

 3 НИИ Средств Связи,

0015, г. Ереван, ул. Дзорапи, 26, Армения

¹e-mail: ruboo1993@gmail.com, ²dina.bayzhanova@mail.ru, ³mark@yetri.am

Резюме. Цель. Идентификация отклонений и инцидентов в деятельности различных предприятий является неотъемлемой частью всего процесса соответствия нормативным отраслевым стандартам. К таким стандартам, в частности, относятся надлежащая производственная практика (Good Manufacture Practic, GMP) и система корректирующих и превентивных действий (CAPA, Corrective and Preventive Actions). Целью исследования является автоматизация процессов идентификации отклонений и определения вероятных причин их возникновения в сложных стохастических системах. Методы. Исследованы вопросы моделирования процессов соблюдения отраслевым стандартам на примере организационного управления фармацевтическим производством. Предложен способ машинной реализации процессов идентификации отклонений на основе обработки неструктурированных сообщений, автоматической генерации характеристических параметров контроля и сопоставления регистрируемых значений с нормативными. Рассмотрена задача обнаружения основной причины отклонений на основе алгоритма обработки причинно-следственных связей и вероятностных значений взаимосвязи между различными заданными группами отклонений. Результат. На основе предложенного метода машинного обнаружения и идентификации отклонений разработана информационная система управления процедурами САРА, успешно внедренная на нескольких предприятиях фармацевтической отрасли. Особенностью предложенного метода является основанный на обработке "исторических" данных принцип саморазвития системы, позволяющий динамически вычислять вероятностные значения взаимосвязи между различными группами отклонений, что позволило оперативно принимать решения по проведению изменений согласно экспертной отчетности, генерируемой информационной системой. Генерация электронного досье производства позволила значительно сократить время на подготовку производственных протоколов и исключить появление ошибок "человеческого фактора". Вывод. Автоматизация полного цикла управления процедурами САРА позволило предприятиям решить основную задачу – непрерывное соответствие отраслевым стандартам, за счет своевременного выявления отклонений или тендениий к отклонениям, и оперативного проведения корректирующих и превентивных действий по устранению несоответствий.

Ключевые слова: отклонения, нарушение стабильности, вероятные причины, корректирующие и превентивные действия, характеристические параметры, причинноследственные связи, электронное досье производства

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

CONTROL RESEARCH AND AUTOMATION OF STOCHASTIC DEVIATIONS IN ORGANISATIONAL MANAGEMENT PRODUCTION PROCESS SYSTEMS

Ruben B. Aghajanyan¹, Dina O. Baizhanova², Mher V. Markosyan³

¹Erevan State University,

1 Alek Manukyan Str., Yerevan 0025, Armenia,

²Almatinsky University of Energy and Communication,

126 Baytursynov Str., Almaty 050013, Kazakhstan,

³NII means of communication,

26 Dzorapi Str., Yerevan 0015, Armenia,

¹e-mail: ruboo1993@gmail.com , ²dina.bayzhanova@mail.ru, ³mark@yetri.am

Abstract Objectives. The identification of deviations and incidents in the activities of enterprises is an integral part of the entire process of compliance with regulatory industry standards. In particular, these standards include good manufacturing practices (GMP) and the system of corrective and preventive actions (CAPA). The aim of the research is to automate the processes of identifying deviations and determining the probable causes of their occurrence in complex stochastic systems. Methods. Questions concerning the modeling of compliance processes with industry standards are studied on the example of the organisational management of pharmaceutical production. A method is proposed for the automated realisation of deviation from identification processes based on the processing of unstructured messages, the automatic generation of characteristic control parameters and a comparison of registered values with normative ones. The problem of detecting the primary cause of deviations is considered on the basis of the algorithm for processing the cause-effect relationships and probabilistic values of the relationship between the different defined groups of deviations. Results. Based on the proposed method of machine detection and identification of deviations, the information management system of CAPA procedures has been developed and successfully implemented at several enterprises within the pharmaceutical industry. The feature of the proposed method is the principle of system self-development based on the processing of "historical" data, which allows the probabilistic values of the relationship between the different groups of deviations to be dynamically calculated. This in turn allowed decisions on the implementation of changes according to the expert reports generated by the information system to be quickly and accurately taken by quality specialists. The generation of the electronic production dossier has significantly reduced the time of production protocol preparation and eliminated human factor errors. Conclusion. The full-cycle automation of CAPA procedure management allowed the enterprises to solve the primary task of continuous compliance with industry standards due to timely detection of deviations or deviation trends and promptly carrying out corrective and preventive actions to eliminate inconsistencies.

Keywords: deviations, stability violation, probable causes, corrective and preventive actions, characteristic parameters, cause-effect relations, electronic dossier of production

Введение. Основными задачами системы корректирующих и превентивных действий САРА(Corrective and Preventive Actions) являются обнаружение отклонений от допустимых значений характеристических показателей производственных процессов, устранение причин отклонений и предотвращение их влияния на качество выпускаемой предприятиями продукции. Эффективное управление процедурами САРА и соблюдение основных отраслевых требований для предприятий различных отраслей является необходимым условием их деятельности [1-7]. Поэтому актуальной задачей является способность оперативного устранения обнаруженных несоответствий и внедрения средств контроля для предотвращения потенциальных проблем в будущем. Идентификация отклонений и исследования причин их возникновения – первый и важный шаг в выполнении требований САРА.

В дальнейшем, под нарушением стабильности будем понимать любую проблему, такую как отклонение, несоответствие или инцидент в производственных и административно-управленческих процессах. На практике внедрение методов обнаружения отклонений и определения причинно-следственных связей между различными операциями производственных процессов сопряжено с множеством сложностей, среди которых:

- трудоемкость документирования и протоколирования наблюдаемых отклонений;
- длительность процессов согласования на проведение исследования и анализа причин отклонений;
- отсутствие развитых технологических инструментов планирования и проведения изменений для устранения обнаруженных отклонений;
- отсутствие автоматизированных средств оценки степени влияния отклонений на валидированные компоненты системы производства;
- длительность и сложность подготовки досье производства.

Обнаружение отклонений в производственном процессе относится к задачам управления сложными динамическими системами (СДС) с случайным поведением.

В основе данной задачи – моделирование стохастического процесса и проведение количественного поведенческого анализа. В настоящее время ведутся активные исследования по вопросам моделирования процессов и явлений в рассматриваемом классе СДС с целью анализа причинно-следственных связей между компонентами и звеньями систем [8-12]. Однако, несмотря на активные работы и исследования, моделирование СДС и их практическое использование по-прежнему остается недостаточным из-за сложности структуры и стохастической природы отдельных элементов в этих системах [13-14].

Постановка задачи. Решение указанной проблемы возможно путем формализованного описания причинно-следственных связей в СДС, определения характеристических параметрови автоматизации процесса измерения этих параметров для сопоставления с заданными нормативными показателями.

Машинное определение отклонений и контроль основных показателей — важный шаг в последующем планировании и проведении корректирующих действий по устранению проблем. Анализ обнаруженных отклонений представляет собой многошаговую процедуру, направленную на изучение взаимосвязанных случайных явлений и процессов в рассматриваемом классе СДС. Идентификация отклонений всегда зависит от обстоятельств их обнаружения, методов наблюдения, оценки степени влияния на валидированные компоненты и, прежде всего, на качество конечной продукции.

Таким образом, решение приведенных задач возможно путем:

- классификации возможных отклонений по различным параметрам (по источникам сообщений, типам несоответствия, по степени влияния на другие компоненты системы и др.);
- диинамического определение метода контроля и характеристических параметров;
- автоматизации процесса сопоставления регистрируемых и нормативных данных;
- динамического расчета вероятностных значений взаимосвязи различных групп отклонений;
- автоматического определения основной причины обнаруженных отклонений.

Источниками информации об имеющихся отклонениях и нарушениях стабильности в производственном процессе могут быть: наблюдения персонала, показания приборов, заключения аудиторских проверок, результаты лабораторных тестов, регистрация нарушений норм жизнеобеспечения (бесперебойное питание, кондиционирование и прочее). Система менеджмента в организациях требует тщательного протоколирования производственных этапов, детального описания обнаруженных проблем.

Для контроля ключевых параметров идентификации отклонений существует множество методов расчета, оценки и визуализации данных [15-17].

Проблема состоит в динамическом определении требуемого метода контроля в зависимости от текущего производственного этапа, источника сообщений и типа анализируемой информации, который может быть количественным, текстовым или бинарным. Следующей задачей САРА является исследование основной причины нарушения стабильности, которое в зависимости от типа отклонений и источника сообщений в отдельных случаях может представлять собой длительный и сложный процесс. Например, причиной такого отклонения как недопустимая температура воздуха в производственном помещении может быть вызвана неисправностью кондиционера, что легко определяется самим персоналом.

В то же время, для определения причины обнаруженного побочного влияния на здоровье пациента во время приема лекарственного препарата требует тщательного расследования и привлечения больших ресурсов.

Основной задачей поиска вероятной причины является:

- накопление и консолидация "исторических" данных об имеющихся в прошлом подобных отклонениях, значениях основных показателей и выявленных причинах;
- структуризация и очистка данных для дальнейшей классификации отклонений;
- построение стохастической матрицы вероятностей взаимозависимости различных групп отклонений;
- выборка наиболее вероятной причины нарушения стабильности на основе формализации данных и экспертных оценках.

Исследования, проведенные на этапах идентификации нарушения стабильности и определения вероятных причин, дополненные анализом взаимосвязей между отдельными процессами системы, позволят установить причину наблюдаемых отклонений.

Для проведения соответствующих исследований на основе визуального представления могут быть использованы причинно-следственные диаграммы, составленные на основе измеряемых значений характеристических параметров. Решение приведенных выше проблем идентификации отклонений и обнаружения вероятных причин возможно путем машинной реализации самоорганизующихся систем, которая позволила бы на основе классификации отклонений и накопленных «исторических» данных определить выборку требуемого метода анализа и соответствующих характеристических параметров контроля и визуализации данных. Кроме того, машинный метод на основе указанных исторических данных позволит рассчитать динамически меняющиеся вероятностные значения взаимозависимости между отклонениями различных групп. Это позволит определить с высокой достоверностью основную причину обнаруженных отклонений.

Методы исследования. Представим теоретико-множественное описание процесса идентификации отклонений и причин нарушения стабильности в производственных этапах.

Пусть $A = \{a_1, a_2, \dots a_n\}$ – заданное конечное множество производственных этапов,

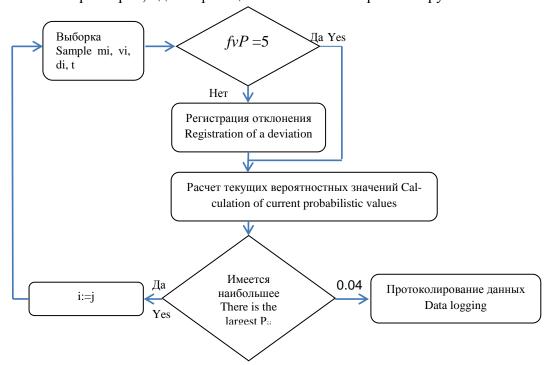
 R_i (i = 1, ... m)-группы возможных нарушений стабильности, где $R_i \in N$

Определим для каждой пары(a_k , R_i) соответствующее множество характеристических параметров $M_i = \{m_{i1}, m_{i2}, ... m_{in(R_i)}$ и множество нормативных/допустимых зачений $D_i = \{d_{i1}, d_{i2}, ... d_{in(a_{k_i}, R_i)}\}$. Регистрируемые значения характеристических параметров в заданный период t обозначим как $V_i(t) = \{v_{i1}(t), v_{i2}(t), ... v_{in(a_{k_i}, R_i)}(t)\}$.

Тогда, задачу идентификации для каждой группы R_i представим как функцию сопоставления нормативных и регистрируемых значений

$$F_{i}\left(m_{i1},d_{i1},v_{i1}(t),m_{i2},d_{i2},v_{i2}(t),...m_{in(R_{i})},d_{in(a_{k},R_{i})},v_{in(a_{k},R_{i})}(t)\right),$$

если значения \tilde{F}_i ‡ 0, то имеет место нарушение стабильности, обусловленное отклонением в заданной группе из R_i .


Далее, предположим, для наблюдаемого отклонения заданы вероятности возможных причин P(i,j), где j=(1,k), входящих в группу R_i нарушения стабильности, где $\sum_{j=0}^m P(i,j)=1$. В таком случае при идентификации отклонений $r \in R_i$ задача определения причины отклоне-

ний состоит в необходимости контроля соответствия регистрируемых значений V нормативным значениям D параметров M, выбираемых последовательно из групп

 $R_{j'1}$, $R_{j'2}$, $R_{j'3}$, ... для которых выполняется условие

 $P_{i,\,j'1},\,P_{i,\,j'2},\,P_{i,\,j'3},\dots$, где $j'1,\,j'2\dots\in\{1,m\}$ — номера групп из множества R

Другими словами, после обнаружения отклонений в некоторой группе R_i , необходимо провести анализ возможных отклонений в связанной группе R_j , для которой вероятностное значение P_{ij} наибольшее. На рис. 1. представлен пошаговый обобщенный процесс выборки характеристических параметров, идентификации отклонений и причин нарушения стабильности.

Puc. 1. Схема обнаружения отклонений и причин нарушения стабильности Fig. 1. Diagram of detection of deviations and causes of stability disturbance

Машинная реализация представленных выше задач возможна путем разработки и внедрения инструментов интеллектуального анализа данных [18-19]. Потоки данных, описывающих процессы в рассматриваемом классе СДС наряду с формализованной информацией (показатели приборов, лабораторные тесты) могут содержать неструктурированные фрагменты (наблюдения персонала, жалоба потребителей, аудиторские проверки, и др.).

Актуальным является оценка ключевых параметров путем анализа данных, описываемых гетерогенной и фрагментарной информацией и исследования возможных погрешностей в переменных, характеризующих внутренние явления рассматриваемых систем [20]. Процесс идентификации отклонений и их причин предполагает последовательную реализацию следующих процедур:

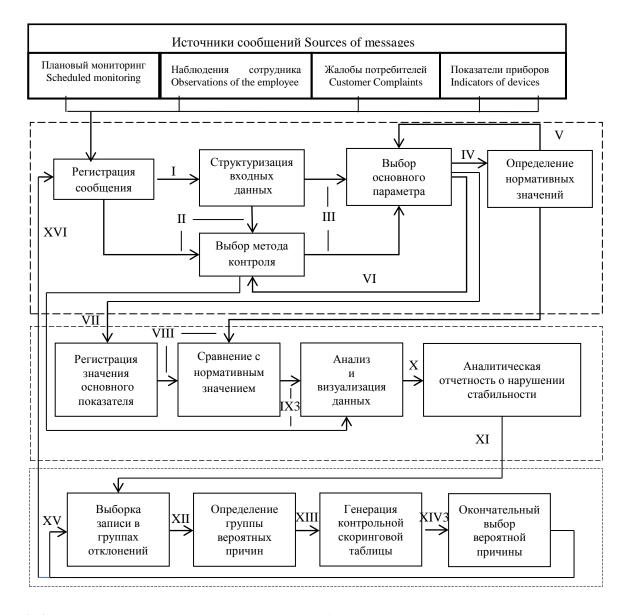
Формирование структуры исходных данных:

- классификация групп отклонений и источников сообщений на различных этапах производственного процесса;
- определение характеристических параметров и диапазона допустимых значений для каждой группы отклонений;
- формирование вероятностных значений взаимосвязи между различными группами отклонений.

Сбор данных, регистрация информация о нарушении стабильности:

- идентификация источников сообщений;
- регистрация этапов производства, на которых были обнаружены отклонения;

- анализ данных и классификация отклонений.


Анализ и идентификация отклонений:

- регистрация значений характеристических параметров отклонений;
- сопоставление регистрируемых и нормативных значений для каждого характеристического параметра отклонений;
- идентификация отклонений и нарушения стабильности.

Машинная реализация представленных шагов предполагает решение следующих задач:

- семантический анализ неструктурированных сообщений;
- обработка данных обратной связи и динамическое определение вероятностных значений взаимосвязи между различными группами отклонений.

На рис. 2. представлена схема процесса обнаружения отклонений и причин нарушения стабильности.

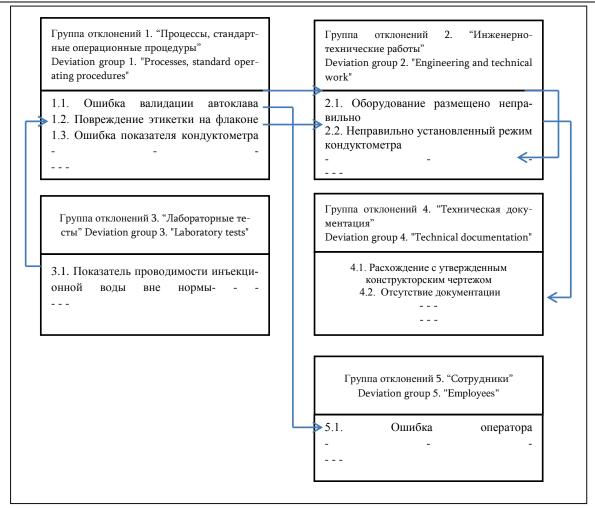
Puc. 2. Структурно-функциональная схема процесса обнаружения отклонений и их вероятных причин Fig. 2. Structural-functional scheme of the process of detection of deviations and their probable causes

Описание метода. Поступающие сообщения (I) об отклонениях в производственных этапах приводятся к структурированной форме для классификации и определения группы отклонений. Далее определяются методы, которые должны быть применимы для данной группы отклонений, характеристические параметры для исследования и визуализации данных (II, III) и эталонные (допустимые) значения (IV).

Процесс продолжается для определения всей последовательности методов и параметров для данной группы несоответствий (V,VI). Затем производится регистрация значений основных показателей и их сопоставление с нормативными значениями (VII,VIII). Также производится визуализация полученных результатов с помощью установленных методов контроля (IX) и зарегистрированных значений основных показателей, создается аналитическая отчетность о состоянии (возможном нарушении) стабильности системы (X). Если обнаружены несоответствия (факт нарушения стабильности), то на следующем этапе производится анализ вероятной причины путем выборки из базы данных записи с наибольшим вероятностным значением, рассчитываемым системой.

Это значение позволит выбрать группу отклонений, соответствующую вероятной причине (XI). При этом, возможны несколько причин с различными значениями вероятностей, рассчитанных на основе статистических данных по результатам прошлых исследований несоответствий (XII). Для этого предусмотрена дополнительно скоринговая таблица (XIII) с характеристическими параметрами для каждой отдельной вероятной причины, которую могут заполнять специалисты по качеству и технологии производства.

В целях определения окончательно выбранной вероятной причины (XIV) производится контроль соответствующих параметров, регистрация их значений и сопоставление с нормативными данными (XVI). Таким образом, будет производиться анализ связанных отклонений путем выполнения всех представленных выше шагов для определения причины отклонений (XV).


Используя многоуровневую причинно-следственную диаграмму, в которой для каждой вероятной причины (отклонения) верхнего уровня могут быть несколько связанных причин (отклонений) нижнего уровня, можно установить цепочку причин обнаруженных отклонений.

Обсуждение результатов. Представленный алгоритм за конечное множество вычислительных циклов позволит определить основную причину наблюдаемых отклонений. В данном алгоритме реализованы принципы машинной самоорганизации системы путем интеллектуального анализа данных, обработки неструктурированных сообщений и динамического расчета вероятностных значений взаимосвязи различных групп отклонений. Таким образом, успешно решается задача автоматического определения необходимого способа метода контроля и соответствующих характеристических параметров для обнаруженного типа отклонений.

Однако для совершенствования данной методологии требуется дальнейшее исследование в вопросах классификации отклонений и первоначальному назначению каждой группе отклонений соответствующих методов и характеристических параметров отклонений. На практике в качестве таких методов широкоиспользуются в частности контрольные карты Шугарта, диаграммы Паретто, радарные матрицы и многие другие [15-17].

Представленным методом также успешно решается задача машинного динамического расчета вероятностных значений взаимосвязи различных групп отклонений, необходимого для определения причин обнаруженных отклонений.

На рис. 3 приведен пример (отрасль: фармацевтическое производство) для группы возможных отклонений, представленных в виде многоуровневых связанных таблиц взаимозависимостей с наибольшими вероятностными значениями (стрелками указаны соответствующие переходы), полученными на основе статистических данных.

Puc. 3. Таблицы взаимосвязанных групп отклонений Fig. 3. Tables of related groups of deviations

Как видно из рис.3, например, при обнаружении отклонения в показателях проводимости инъекционной воды (группа "Лабораторные тесты") компьютерная система следующим шагом выбирает и анализирует возможное отклонение в показателях кондуктометра (группа "Стандартные операционные процедуры), так как наибольшая вероятность взаимосвязи из всего имеющего множества назначено именно для этой пары возможных отклонений.

Далее, в случае доказательства отклонения в показателе кондуктометра, определяется следующее, связанное с наибольшей вероятностью возможное отклонение.

На рис. 3 таким связанным отклонением является "Неправильно установленный режим кондуктометра" в группе "Инженерно-технические работы". Таким образом, путем анализа взаимосвязанных таблиц и выбора соответствующих строк с наибольшим вероятностным значением система автоматичски определит основную причину, вызвавшую наблюдаемое отклонение.

Для большей эффективности машинного метода реализации данная фукнция может быть дополнена заранее составленными скоринговыми таблицами, которые могут быть заполнены компетентными специалистами по управлению качеством. Тогда окончательное определение основной причины будет основано с одной стороны на точных машинных расчетах, с другой стороны на экспертных оценках специалистов, что, по нашему мнению позволит эффективно решить рассматриваемую задачу.

Определенную сложность представляет также проблема обработки и идентификации неструктурированных сообщений о наблюдаемых отклонениях [21-22].

Поэтому, для дальнейшего развития предложенного компьютерного метода идентификации отклонений необходимы также дополнительные исследования в вопросах разработки и

оптимизации алгоритмов формального описания правил сканирования сообщений и их интерпретаций.

Вывод. Указанные исследования могут быть направлены также на дальнейшее усовершенствование методов консолидации и интелектуального анализа "исторических" данных для последующей трансформации неструктурированных сообщений в определенное формальное представление. Внедрение представленного машинного метода идентификации отклонений на ряде предприятий позволил решить основную проблему – непрерывное соответствие отраслевым нормативным стандартам. Кроме того, автоматизация основных процессов САРА значительно сократила время на принятие решений, планирование процедур и проведение изменений.

Достигнута высокая эффективность оценки влияния обнаруженных отклонений на другие валидированные компоненты системы. Это стало возможным за счет автоматизированных расчетов вероятностных значений взаимосвязи различных групп отклонений на основе анализа и обработки "исторических" данных и динамической машинной генерации ключевых параметров контроля нарушения стабильности рассматриваемых систем.

Отметим также, что автоматическая генерация необходимой аналитической отчетности, протоколов САРА и электронного досье производства позволило предприятиям значительно сократить время, затрачиваемое на внутренние и внешние аудиторские проверки.

Библиографический список:

- 1. RajA. Areviewoncorrective action and preventive action (CAPA)// African Journal of Pharmacy and Pharmacology. 2016. V. 10(1), P. 1-6.
- 2. VanTrieste M. CAPA within the Pharmaceutical Quality System.// ICH Q10 Conference. P9: Pharmaceutical Quality System Elements: Continual Improvement of the Process (CAPA). Brussels, Belgium. 2011.
- 3. Rodriguez J. CAPA in the Pharmaceutical and Biotech Industries. // Woodhead Publishing. 1st Edition. 2015. PP.248
- 4. Правила надлежащей производственной практики (GMP) евразийского экономического союза. Версия 4.0 от 20.02.2015
- 5. Grazal J.G., Earl D.S. EU and FDA GMP Regulations: Overview and Comparison // Quality Assurance Journal. 1997. V.2, P. 55-60.
- 6. Hiob M., Peither T., Reuter U. GMP Focus. Principles of Equipment Qualification. A Guide for Drug and Device Manufacturers. // Maas&Peither AG GMP Publishing. First edition 2017
- 7. Abou-El-Enein M., Römhild A., Kaiser D. and others. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs // Cytotheraphy. March 2013. V. 15. No. 3. P. 362–383.
- 8. Колесов Ю.Б. Объектно-ориентированное моделирование сложных систем. СПб.: Изд-во СПбГПУ. 2004
- 9. Власов М.П. Моделирование экономических систем и процессов: / М.П. Власов, П.Д. Шимко. М.: НИЦ ИНФРА-М. 2013. 336 с.
- 10. Емельянов С.В. Информационные технологии и вычислительные системы: Математическое моделирование. Прикладные аспекты информатики. М.: Ленанд. 2015. 96 с.
- 11. Шаповалов В.И. Моделирование синергетических систем. Метод пропорций и другие математические методы: Монография / В.И. Шаповалов. М.: Проспект.

References:

1. Raj A. A review on corrective action and preventive action (CAPA). African Journal of Pharmacy and Pharmacology. 2016;10(1):1-6.

2016

- 12. Сирота, А.А. Анализ и компьютерное моделирование информационных процессов и систем. М.: ДИАЛОГ-МИФИ, 2009. 416 с.
- 13. Ермаков С.М. Стохастические и квазистохастические вычисления. Вестник СпбГУ. Сер. 1. Вып. 3, 2011.
- 14. Ермаков С. М. Современное развитие стохастических вычислительных методов // Тезисы докладов Международного конгресса «Нелинейный динамический анализ 2007». Санкт-Петербург. Россия. 2007. 274 с
- 15. Максимова О. В., Шпер В. Л., Адлер Ю. П. Контрольные карты Шухарта в России и за рубежом. Часть 1. Стандарты и качество. 2011. № 7. С. 82-87.
- 16. Фадеев А.Н., Журавлев А.И. Лепестковая диаграмма как средство отображения результатов математического моделирования/А.Н. Фадеев, А.И. Журавлев. Образование и наука в современных условиях. Чебоксары. Центр научного сотрудничества». 2016. № 2 С. 72 75.
- 17. Махонченко Ю. Построение диаграммы Парето. Системы менеджмента консультации и обучение онлайн. 2015.
- 18. Agarwal R, Dhar V (2014) Editorial—Big data, data science, and analytics: The opportunity and challenge for IS research. Inform. Systems Res. 25(3):443–448
- 19. Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: From big data to big impact. MIS Quart. 36(4):1165–1188.
- 20. Mochen Y., Gediminas A., Gordon B., Yuqing R. Mind the Gap: Accounting for Measurement Error and Misclassification in Variables Generated via Data Mining // Information Systems Research, January. 2018
- 21. Оганесян А. Неструктурированные данные 2.0. Открытые системы. № 04. 2012. https://www.osp.ru/os/2012/04/13015772/
- **22.** Иванов А. Комплексный анализ неструктурированных данных. Открытые системы. № 04. 2013. https://www.osp.ru/os/2013/06/13036848/
- 2. Van Trieste M. CAPA within the Pharmaceutical Quality System. ICH Q10 Conference. P9: Pharmaceutical Quality System Elements: Continual Improvement of the Process (CAPA). Brussels, Belgium. 2011.

- 3. Rodriguez J. CAPA in the Pharmaceutical and Biotech Industries. 1st Edition. Woodhead Publishing; 2015. 248 p.
- 4. Pravila nadlezhashchei proizvodstvennoi praktiki (GMP) evraziiskogo ekonomicheskogo soyuza. Versiya 4.0 ot 20.02.2015. [Rules of Good Manufacturing Practice (GMP) of the Eurasian Economic Union. Version 4.0 of 02/20/2015. (in Russ.)]
- 5. Grazal J.G., Earl D.S. EU and FDA GMP Regulations: Overview and Comparison. Quality Assurance Journal. 1997;2:55-60.
- 6. Hiob M., Peither T., Reuter U. GMP Focus. Principles of Equipment Qualification. A Guide for Drug and Device Manufacturers. First edition. Maas&Peither AG - GMP Publishing;
- 7. Abou-El-Enein M., Römhild A., Kaiser D. and others. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs. Cytotheraphy. 2013;15(3):362-383.
- 8. Kolesov Yu.B. Ob"ektno-orientirovannoe modelirovanie slozhnykh sistem. SPb.: Izd-vo SPbGPU; 2004. [Kolesov Yu.B. Object-oriented modeling of complex systems. SPb.: Izd-vo SPbGPU; 2004. (In Russ.)]
- 9. Vlasov M.P., Shimko P.D. Modelirovanie ekonomicheskikh sistem i protsessov. M.: NITs INFRA-M; 2013. 336 s. [Vlasov M.P., Shimko P.D. Modeling of economic systems and processes. M.: NITs INFRA-M; 2013. 336 p. (In Russ.)]
- 10. Emel'yanov S.V. Informatsionnye tekhnologii i vychislitel'nye sistemy: Matematicheskoe modelirovanie. Prikladnye aspekty informatiki. M.: Lenand; 2015. 96 s. [Emel'yanov S.V. Information technologies and computer systems: Mathematical modeling. Applied aspects of computer science. M.: Lenand; 2015. 96 p. (In Russ.)]
- 11. Shapovalov V.I. Modelirovanie sinergeticheskikh sistem. Metod proportsii i drugie matematicheskie metody. M.: Prospekt; 2016. [Shapovalov V.I. Modeling of synergetic systems. Method of proportions and other mathematical methods. M.: Prospekt; 2016. (In Russ.)]
- 12. Sirota A.A. Analiz i komp'yuternoe modelirovanie informatsionnykh protsessov i sistem. M.: DIALOG-MIFI; 2009. 416 s. [Sirota A.A. Analysis and computer modeling of information processes and systems. M.: DIALOG-MIFI; 2009. 416 p. (In Russ.)]
- 13. Ermakov S.M. Stokhasticheskie i kvazistokhasticheskie vychisleniya. Vestnik SpbGU. Ser. 1. Vyp. 3. 2011. [Ermakov

- S.M. Stochastic and quasi-stochastic calculations. Vestnik SpbGU. Ser. 1. Vyp. 3. 2011. (In Russ.)]
- 14. Ermakov S. M. Sovremennoe razvitie stokhasticheskikh vychislitel'nykh metodov. Tezisy dokladov Mezhdunarodnogo kongressa "Nelineinyi dinamicheskii analiz - 2007". Sankt-Peterburg. 2007. 274 s. [Ermakov S. M. Contemporary development of stochastic computational methods. Abstracts of the International Congress "Nonlinear Dynamic Analysis - 2007". Sankt-Peterburg. 2007. 274 p. (In Russ.)]
- 15. Maksimova O.V., Shper V.L., Adler Yu.P. Kontrol'nye karty Shukharta v Rossii i za rubezhom. Chast' 1. Standarty i kachestvo. 2011;7:82-87. [Maksimova O.V., Shper V.L., Adler Yu.P. Shewhart's control cards in Russia and abroad. Part 1. Standards and quality. 2011;7:82-87. (In Russ.)]
- 16. Fadeev A.N., Zhuravlev A.I. Lepestkovaya diagramma kak sredstvo otobrazheniya rezul'tatov matematicheskogo modelirovaniya. Obrazovanie i nauka v sovremennykh usloviyakh. Cheboksary. Tsentr nauchnogo sotrudnichestva. 2016;2:72 -75. [Fadeev A.N., Zhuravlev A.I. The petal diagram as a means of displaying the results of mathematical modeling. Education and science in modern conditions. Cheboksary. Center for Scientific Cooperation. 2016;2:72 – 75. (In Russ.)]
- 17. Makhonchenko Yu. Postroenie diagrammy Pareto. Sistemy menedzhmenta - konsul'tatsii i obuchenie onlain. 2015. [Makhonchenko Yu. Construction of the Pareto diagram. Management systems - consulting and training online. 2015. (In Russ.)] 18. Agarwal R., Dhar V. Editorial - Big data, data science, and analytics: The opportunity and challenge for IS research. Inform. Systems Res. 2014;25(3):443-448.
- 19. Chen H., Chiang R.H., Storey V.C. Business intelligence and analytics: From big data to big impact. MIS Quart. 2012;36(4):1165-1188.
- 20. Mochen Y., Gediminas A., Gordon B., Yuqing R. Mind the Gap: Accounting for Measurement Error and Misclassification in Variables Generated via Data Mining. Information Systems Research. January 2018.
- 21. Oganesyan A. Nestrukturirovannye dannye 2.0. Otkrytye sistemy. 2012;04 https://www.osp.ru/os/2012/04/13015772/ [Oganesyan A. Unstructured data 2.0. Open Systems Journal. 2012;04 https://www.osp.ru/os/2012/04/13015772/ (In Russ.)] 22. Ivanov A. Kompleksnyi analiz nestrukturirovannykh dannykh. Otkrytye sistemy. https://www.osp.ru/os/2013/06/13036848/ [Ivanov A. Complex analysis of unstructured data. Open Systems Journal. 2013;04. https://www.osp.ru/os/2013/06/13036848/

Сведения об авторах:

Агаджанян Рубен Борисович – аспирант кафедры информатики и прикладной математики.

Байжанова Дина Ондасыновна - аспирант кафедры математического моделирования и программного обеспечения.

Маркосян Мгер Вардкесович – доктор технических наук, профессор, директор НИИ Средств Связи. Information about the authors.

Ruben B. Aghajanyan - Post-graduate student, Department of informatics and applied mathematics.

Dina O. Baizhanova-Post-graduate student, Department of mathematical modeling and software.

Mher V.Markosyan - Dr. Sci., (Technical), Prof., Director of Yerevan Telecommunication Research Institute.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов. The authors declare no conflict of interest.

Поступила в редакцию 12.01.2018.

Принята в печать 26.02.2018.

Conflict of interest.

Received 12.01.2018.

Accepted for publication 26.02.2018.

Для цитирования: Антонов В.О., Гурчинский М.М., Петренко В.И., Тебуева Ф.Б. Метод планирования оптимальной траектории движения трехзвенного манипулятора в объемном пространстве с препятствием. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 98-112. DOI:10.21822/2073-6185-2018-45-1-98-112

For citation: Antonov V.O., Gurchinsky M.M., Petrenko V.I., Tebueva F.B. Method for planning the optimal trajectory of a three-link manipulator in tridimensional space with an obstacle. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1):98-112. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-98-112

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК: 62-503.55/30в6

DOI: 10.21822/2073-6185-2018-45-1-98-112

МЕТОД ПЛАНИРОВАНИЯ ОПТИМАЛЬНОЙ ТРАЕКТОРИИ ДВИЖЕНИЯ ТРЕХЗВЕННОГО МАНИПУЛЯТОРА В ОБЪЕМНОМ ПРОСТРАНСТВЕ С ПРЕПЯТСТВИЕМ

Антонов В.О. 1 , Гурчинский М.М. 2 , Петренко В.И. 3 , Тебуева Ф.Б. 4

¹⁻⁴Северо-Кавказский федеральный университет,

¹⁻⁴355009, г. Ставрополь, ул. Пушкина, 1, Россия,

¹e-mail: ant.vl.02@gmail.com, ²e-mail:GurkMikhail@yandex.ru,

³ e-mail: vip.petrenko@gmail.com, ⁴ e-mail: fariza.teb@gmail.com

Резюме. Цель. Целью исследования является разработка методов планирования оптимальной траектории движения трехзвенного манипулятора в объемном пространстве с препятствием. Метод. Применен метод итеративной кусочно-линейной аппроксимации траектории движения антропоморфного манипулятора и выбора оптимальной траектории перемещения по критерию энергоэффективности. Результат. Предложен метод планирования оптимальной траектории движения трехзвенного манипулятора с 7-ю степенями подвижности в объемном пространстве, содержащем препятствие, заданное массивом точек трехмерного пространства и представляемое в виде сферы. Задача сводится к поиску углов Эйлера двигателей манипулятора для перехода в конечное положение либо напрямую, либо используя разработанный метод поиска промежуточных положений для достижения результата. Выбор оптимальной траектории движения для обхода препятствия производится по критерию минимизации энергопотребления манипулятора для продолжительной работы в автономном режиме мобильного манипуляционного либо антропоморфного робота. Вывод. Метод планирования оптимальной траектории движения трехзвенного манипулятора с 7-ю степенями подвижности в объемном пространстве, содержащем препятствие, заданное массивом точек трехмерного пространства и представляемое в виде сферы, обладает гибкостью, которая достигается за счет варьирования введенного параметра. Его увеличение делает перемещение манипулятора более угловатым за счет уменьшения количества промежуточных состояний, что уменьшает вычислительные затраты, но также увеличивает энергозатраты, уменьшая при этом скорость перемещения. Уменьшение параметра наоборот, снитжает энергозатраты и увеличивает скорость, но также увеличивает вычислительные затраты, так как увеличивается количество промежуточных состояний и перемещение становится более гладким. Однако при этом, для уменьшения расчетного времени предполагается использование параллельных вычислений при расчете углов Эйлера для двигателей во время перемещения между промежуточными точками, что значительно ускорит процесс вычисления. При значении h = 0 траектория вырождается в кривую и применение предложенного метода не является оправданным.

Ключевые слова: антропоморфный манипулятор, углы Эйлера, планирование траектории движения манипулятора, кусочно-линейная аппроксимация, обход препятствий манипулятором, минимизация энергопотребления, трехзвенный манипулятор

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

METHOD FOR PLANNING THE OPTIMAL TRAJECTORY OF A THREE-LINK MANIPULATOR IN TRIDIMENSIONAL SPACE WITH AN OBSTACLE

Vladimir O.Antonov¹, Mikhail M. Gurchinsky², Vyacheslav I. Petrenko³, Fariza B. Tebueva⁴

¹⁻⁴North-Caucasus Federal University,

Abstract Objectives. The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article. A literature review on the research problem indicates that universal methods for planning the trajectory of the manipulator's movement are faced with problems of operational low accuracy or the algorithm's large computational complexity. The aim of the study is to develop methods for planning the optimal trajectory of a three-link manipulator in a tridimensional space with an obstacle. Methods. The study was carried out using the method of iterative piecewise linear approximation of the trajectory of an anthropomorphic manipulator and the choice of the optimal displacement trajectory according to the criterion of energy efficiency. **Results.** The method for planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a tridimensional space containing an obstacle specified by an array of points of three-dimensional space and represented in the form of a sphere is considered in the article. The task is reduced to finding the Euler angles of the manipulator engines in order to pass to the final position either directly or using the developed method of searching for intermediate positions to achieve the result. The choice of the optimal trajectory for the obstacle bypass is made using the criterion of minimisation of the manipulator power consumption for the continuous operation of the mobile manipulative or anthropomorphic robot in offline mode. Conclusion. The method of planning the optimal trajectory of a three-link manipulator with 7 degrees of mobility in a three-dimensional space containing an obstacle specified by an array of points and represented in the form of a sphere possesses flexibility, which is achieved by varying the input parameter. Its increase makes the manipulator's movement more angular by reducing the number of intermediate states, which reduces computational costs while increasing energy costs and reducing the movement speed. Conversely, decreasing the parameter reduces energy consumption and increases the speed, but also increases computational costs, as the number of intermediate states increases and the movement becomes smoother. However, in order to reduce the estimated time, it is assumed that parallel calculations are used in calculating the Euler angles for the engines during the movement between the intermediate points, which greatly speeds up the calculation process. With the value of h = 0, the trajectory degenerates into a curve and the application of the proposed method is not justified.

Keywords: anthropomorphic manipulator, Euler angles, trajectory planning of manipulator movement, piecewise linear approximation, obstacle bypass by manipulator, minimisation of energy consumption, three-link manipulator

Введение. Использование антропоморфных манипуляторов в современных робототехнических системах является перспективным направлением развития данной области. Это обусловлено анатомической эффективностью руки человека для выполнения различных видов задач и заданий как в статической, так и в динамической среде. При выполнении сложных операций в объемном пространстве возникает необходимость работы в среде, содержащей некоторые препятствия. Для этого необходима разработка методов планирования оптимальной траектории движения трехзвенного манипулятора в объемном пространстве с препятствием.

¹⁻⁴1Pushkina Str., Stavropol 355009, Russia,

¹e-mail: ant.vl.02@gmail.com, ²e-mail:GurkMikhail@yandex.ru,

³ e-mail: vip.petrenko@gmail.com, ⁴ e-mail: fariza.teb@gmail.com

Постановка задачи. Планирование траекторий движения манипулятора — это задача выбора закона управления, обеспечивающего движение манипулятора вдоль некоторой заданной траектории [1]. Согласно источнику [1], при планировании траектории движения манипулятора в среде с препятствиями обычно используют один из двух подходов:

- 1. Задается точный набор ограничений (например, непрерывность и гладкость) на положение, скорость и ускорение обобщенных координат манипулятора в некоторых (называемых узловыми) точках траектории. Планировщик траекторий после этого выбирает из некоторого класса функций (как правило, среди многочленов, степень которых не превышает некоторое заданное n) функцию, проходящую через узловые точки и удовлетворяющую в них заданным ограничениям. Определение ограничений и планирование траектории производится в присоединенных координатах.
- 2. Задается желаемая траектория манипулятора в виде некоторой аналитически описываемой функции, как, например, прямолинейная траектория в декартовых координатах. Планировщик производит аппроксимацию заданной траектории в присоединенных или декартовых координатах.

Недостатками данных подходов являются громоздкие вычисления, замедляющие работу манипулятора при первом подходе, и низкая точность движения при втором подходе.

По данным источника [2] задача планирования траектории в робототехнике заключается в нахождении оптимального пути из начального положения в конечное для сложных тел (манипуляторов, мобильных роботов) в некотором пространстве.

При решении задачи планирования траектории обычно пользуются конфигурационными пространствами. В них координатами являются обобщенные координаты робота. Точка в таком пространстве соответствует конкретному положению робота, а линии, связывающие эти точки, - путям из одного положения в другое.

Для упрощения задачи искать траекторию целесообразно именно в конфигурационном пространстве. Существует несколько принципиальных подходов к решению задачи планирования траектории. Комбинаторный подход использует аналитические алгоритмы, производит моделирование конфигурационного пространства и находит полное решение.

Эффективное применение комбинаторных алгоритмов возможно лишь в случае малой размерности конфигурационного пространства в силу их высокой алгоритмической и вычислительной сложности.

Противоположность комбинаторному подходу – sample-based подход. Идея sample-based алгоритмов заключается в том, чтобы, вместо затратного полного моделирования конфигурационного пространства, исследовать его вероятностным путём: рассматривать набор случайных конфигураций, отбрасывая ненужные и составляя карту местности. Сегодня sample-based подход является наиболее развиваемым и используемым в ряде практических задач и показывает наилучшие результаты. Однако, недостаток таких методов заключается в невозможности однозначно определить отсутствие решения.

Помимо вышеперечисленных подходов следует отметить метод потенциальных полей. В таких методах в качестве карты местности используются потенциальные векторные поля, в которых целевое положение притягивает робота, а препятствия — отталкивают. Подход хорошо работает в определённом классе задач, однако не способен эффективно искать траекторию в пространствах с высокими размерностями.

В исследовании [3] рассмотрено планирование траекторий движения многозвенного манипулятора в сложном трехмерном рабочем пространстве на основе эволюционных методов: генетического подхода, комбинирования генетического подхода и метода имитации отжига, комбинирования генетического подхода и метода репульсивного роя частиц.

Использование данных методов показывает, что средний процент достижимости точек составляет 77, 81, 85% соответственно, при среднем времени поиска решения от 3 до 9 секунд, что не позволяет использовать данные методы в реальном времени.

В статье [4] рассмотрены две экспериментальные платформы для тестирования систем

управления и алгоритмов планирования движения в реальном времени. Для управления движением созданы контроллеры обратной связи, которые способны отслеживать опорные траектории на основе измерений датчиков. Опираясь на эффективность отслеживания этих контроллеров, разработаны эффективные по времени опорные траектории движений, которые соответствуют задачам каротажа.

Быстрый и унифицированный метод поиска траектории движения робота с минимальным рывком с использованием оптимизации роя частиц рассмотрен в работе [5]. Траектория с минимальным рывком делает алгоритм управления роботом простым и надежным. Для поиска траектории движения с минимальным рывком, была сформулирована проблема оптимизации, ограниченная совместными параметрами узлов, включая начальное смещение и скорость смещения, промежуточное смещение сустава, конечное смещение и скорость соединения. Для решения использовалась оптимизация роем частиц (PSO), в результате чего были найдены почти оптимальные решения для траектории с минимальным рывком.

Схема планирования траектории обхода препятствий для космических манипуляторов на основе генетического алгоритма представлена в работе [6]. Предполагается, что в совместном пространстве существует идеальная траектория, которая может быть описана двумя разделами сплайновой кривой высокого порядка и удовлетворяет всем кинетическим характеристикам космического манипулятора.

Параметры точки соединения между двумя сплайн-траекториями могут влиять на искаженную форму двух траекторий в пространстве. Следовательно, манипулятор движется в соответствии с траекториями сплайнов и в то же время избегает всех препятствий. Во-первых, устанавливаются секционированные функции идеальной траектории. Неизвестные параметры в функциях описываются с использованием параметров о точке подключения, из которых извлекаются неизвестные параметры.

Таким образом, задача планирования траектории трансформируется в задачу многоцелевой оптимизации.

Во-вторых, для решения проблемы применяется генетический алгоритм (GA). Основываясь на анализе требований к управлению космическим манипулятором и описаниях препятствий в декартовом пространстве, функция пригодности, основанная на GA, определяется методом весовых коэффициентов по длине траектории конечного эффектора в декартовом пространстве, углы в совместном пространстве и максимальный крутящий момент во время движения, общее время движения и случаи помех и столкновений.

Наконец, идеальная бесконтактная траектория с короткой длиной и идеальным временем движения в совместном пространстве планируется с помощью GA, а ее динамические характеристики удовлетворяют требованиям точности. Кроме того, предложенный метод имеет широкую расширяемость. После многократного разложения траекторий и вычисления точек соединения манипулятор может избежать препятствий в очень сложных условиях. Моделирование выполняется на платформе имитатора космического манипулятора. Результаты показывают, что метод является стабильным и эффективным, а генерируемая траектория удовлетворяет особым требованиям к производительности космического манипулятора.

В статье [7] представлено несколько практических алгоритмов планирования движения манипуляторов мобильных роботов, разработанных с общей базой генерации траектории. Методы сосредоточены на идее генерации графа траектории движения, который учитывает вычислительные и временные ограничения вычислительной системы робота. Алгоритм генерации траектории использует стратегии выборки для локальных поисковых графов с учетом информации об окружающей среде для обхода препятствий в объемном пространстве на основе эвристического поиска.

Методы исследования. В изложенных работах [4-7] планирование траектории движения манипулятора способно находить допустимые решения, однако ни один метод не находит оптимальную траекторию в реальном времени.

Для устранения данных проблем предлагается аналитический метод планирования тра-

ектории движения, основанный на вычислении промежуточных положений манипулятора и выбора оптимальной траектории перемещения по критерию энергоэффективности.

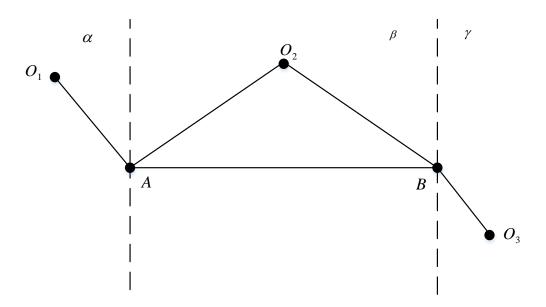
Начальные условия. Для планирования траектории движения необходимо иметь информацию о препятствиях в рабочем поле манипулятора. Современные устройства, сканирующие трехмерное пространство (лазерный 3D-сканер, камера глубины), позволяют получить информацию об окружающей среде в виде массива точек трехмерного пространства, соответствующих некоторым точкам реальных объектов.

Существующие алгоритмы кластеризации позволяют из полученного массива точек выделить отдельные объекты и представить их в виде сфер (координат их центров и радиусов, например, алгоритм *FOREL*). Таким образом задача обхода препятствий поставлена следующим образом: необходимо найти такие положения звеньев манипулятора, при которых расстояние от любой точки манипулятора до центров сфер, представляющих объекты реального мира, больше либо равно их радиусу.

Поскольку ограничения накладываются на каждую точку манипулятора, можно решить данную задачу для отдельного звена, а затем применить аналогичную методику к остальным звеньям, независимо от их числа. Таким образом, предлагаемый метод не зависит от конкретного аппаратного исполнения манипулятора.

Исходными данными являются:

- начальное положение манипулятора, представленное координатами его узловых точек (плечевой, принятый за начало отсчета, локтевой и запястный суставы, а также рабочее окончание);
- конечное положение рабочего окончания (в виде координат соответствующей точки);
- информация о препятствии (представленного в виде сферы, известны координаты её центра и радиус).


Целью данного метода является получение траектории движения манипулятора, с условием обхода единственного препятствия, представленного в виде сферы. Случай с несколькими препятствиями в данной статье не рассматривается, однако создаются предпосылки для распространения метода на более сложные ситуации.

Обсуждение результатов. Под обходом препятствия предполагается, что при планировании траектории движения манипулятора отсутствуют общие точки междуповерхностью положений точек манипулятора и сферой препятствия. Т.е. расстояние между ближайшей точкой траектории движения манипулятора и точкой центра сферы препятствия больше радиуса. Для учета неточностей расчета и погрешности работы оборудования к радиусу препятствия может быть прибавлена некоторая величина допуска, однако формулировку условия данное дополнение не меняет.

Для достижения поставленной цели необходимо решить следующие задачи:

- определить метод расчета минимального расстояния от произвольного звена до центра препятствия;
- найти конечное положение манипулятора из условия минимума энергопотребления;
- задать аналитически траектории окончаний звеньев манипулятора;
- определить метод нахождения того, задевает ли манипулятор в процессе движения препятствие;
- задать алгоритм изменения траектории манипулятора для обхода препятствия;
- определить метод отклонения звеньев от препятствия;
- провести анализ предложенного метода.
 - Метод расчета минимального расстояния от произвольного звена до центра препятствия.

Пусть имеется произвольные звено в виде отрезка AB и сфера с центром в точке O и радиусом r. Рассмотрим плоскость, проходящую через точки A, B, O. В данной плоскости проведем перпендикуляры через точки A и B, перпендикулярно звену AB, которые делят плоскость на области α , β , γ , как показано на рисунке 1.

Puc. 1. Варианты расположения центра сферы Fig. 1. Variants of the location of the center of the sphere

Очевидно, что в случае нахождения центра сферы в области α , например, в точке O_1 , наименьшее расстояние от центра сферы до точек звена AB равно длине отрезка O_1A . Аналогично, для области γ данное расстояние равно длине отрезка O_3B .

В случае нахождения центра сферы в области β , например,в точке O_2 , минимальное расстояние равно расстоянию между данной точкой и прямой, проходящей через отрезок AB. Данное расстояние может быть найдено по формуле расстояние между точкой и прямой:

$$d = \frac{|\overrightarrow{AB} \times \overrightarrow{AO_2}|}{|\overrightarrow{AB}|}.$$
 (1)

Таким образом, задача сводится к определению области нахождения центра сферы.

В случае нахождения центра сферы в области α , включая разделительный перпендикуляр, угол между векторами \overrightarrow{AB} и $\overrightarrow{AO_1}$ неострый, таким образом, скалярное произведение $\overrightarrow{AB} \cdot \overrightarrow{AO_1}$ неположительно.

Аналогично, для области β , включая разделительный перпендикуляр, скалярное произведение $\overrightarrow{AB} \cdot \overrightarrow{BO_1}$ неотрицательно.

Таким образом, минимальное расстояние от точек звена AB до центра сферы O может быть найдено по формуле:

$$d = \begin{cases} |\overrightarrow{AO}|, \text{ если } \overrightarrow{AB} \cdot \overrightarrow{AO_1} \leq 0, \\ \frac{|\overrightarrow{AB} \times \overrightarrow{AO_2}|}{|\overrightarrow{AB}|}, \text{ если } \overrightarrow{AB} \cdot \overrightarrow{AO_1} > 0 \text{ и } \overrightarrow{AB} \cdot \overrightarrow{BO_1} < 0, \\ |\overrightarrow{BO}|, \text{ если } \overrightarrow{AB} \cdot \overrightarrow{BO_1} \geq 0. \end{cases}$$
 (2)

А условие успешного обхода препятствия для данной статичной ситуации принимает вид:

$$d \ge r$$
. (3)

Предложенную методику можно распространить на произвольное количество звеньев.

Задача нахождения первого приближения конечного положения манипулятора

Для поиска первого приближения конечного положения манипулятора в виде углов Эйлера для двигателей шарниров, необходимо воспользоваться методом решения обратной задачи кинематики для трехзвенного манипулятора с 7-ю степенями подвижности по критерию минимизации энергопотребления.

В общих условиях задача формулируется как поиск углов Эйлера для двигателей шарниров используя данные о начальном M(A, B, C, D) и конечном M'(A', B', C', D') положении координат звеньев, которые находятся решением задачи нелинейной оптимизации [8-22].

Целевая функция представлена в виде: $\alpha_A * P_1(\alpha_A) + \alpha_B * P_4(\alpha_B) + \alpha_C * P_6(\alpha_C) + \beta_A *$

 $P_2(\beta_A) + \beta_B * P_5(\beta_B) + \beta_C * P_7(\beta_C) + \gamma_A * P_3(\gamma_A) => min,$ где $P_{\text{ycp}} = [P_1(\alpha_A); P_2(\beta_A); P_3(\gamma_A); P_4(\alpha_B); P_5(\beta_B); P_6(\alpha_C); P_7(\beta_C)]$ — усредненные показатели мощности потребляемого электрического тока для двигателей шарниров; а $M_{\alpha\beta\gamma}=$ $[\alpha_A; \beta_A; \gamma_A; \alpha_B; \beta_B; \alpha_C; \beta_C]$ углы Эйлера двигателей для поворота звеньев манипулятора.

Целевая функция оптимизации выводит суммарную потребляемую мощность двигателей при выполнении перемещения манипулятора в заданную точку.

Задача определения функций от времени для координат узловых точек.

Т. к. точка плечевого сустава принята за начало отсчета, её координаты имеют постоянное значение, независимо от времени:

$$x_A(t) = 0,$$

 $y_A(t) = 0,$
 $z_A(t) = 0.$ (4)

Для нахождения уравнений остальных узловых точек перейдем к рассмотрению систем координат, связанных с узловыми точками. Будем считать, что в процессе движения происходит смещение начала координат соответствующих систем относительно глобальной системы координат, связанной с точкой A, при этом оси остаются сонаправленными соответствующим осям глобальной системы координат, как показано на рис.2.

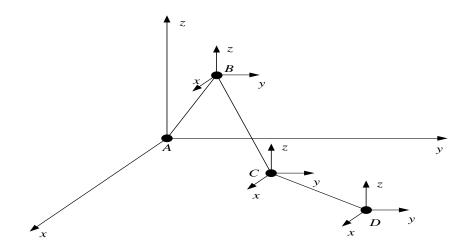


Рис. 2 Связанные системы координат манипулятора Fig. 2 Associated coordinate systems of the manipulator

Рассмотрим точку D в системе координат Cxyz. Перейдем от декартовых координат к сферическим, отсчитывая азимутальный угол от оси Cx, а зенитный от оси Cz, как показано на рисунке 3.

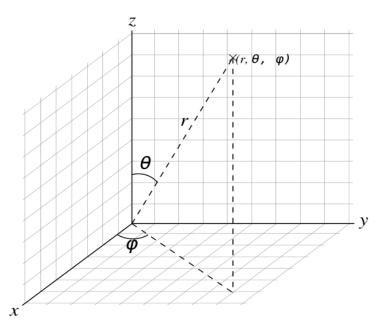


Рис. 3 Сферическая система координат манипулятора Fig. 3 Spherical coordinate system of the manipulator

Тогда, формулы перевода имеют следующий вид:

$$r_D^C = |\overrightarrow{CD}|,$$

$$\varphi_D^C = \begin{cases} \arccos\left(\frac{CD_x}{\sqrt{CD_x^2 + CD_y^2}}\right), \text{ если } CD_y \ge 0, \\ 2\pi - \arccos\left(\frac{CD_x}{\sqrt{CD_x^2 + CD_y^2}}\right), \text{ если } CD_y < 0, \end{cases}$$

$$\theta_D^C = \arccos\left(\frac{cD_z}{\sqrt{cD_x^2 + cD_y^2 + cD_z^2}}\right), \tag{5}$$

где нижний индекс обозначает точку, координаты которой вычисляются, а верхний точку, в которой расположено начало координат.

По данным формулам можно найти угловые координаты точки D относительно сферический системы координат, связанной с точкой C в начальном и конечном состоянии $-r_{DH}^{C}=r_{DK}^{C}=r_{D}^{C}$ (так как длина звена остается неизменной), φ_{DH}^{C} , φ_{DK}^{C} , θ_{DH}^{C} , θ_{DK}^{C} . Примем время движения из начального положения в конечное равным единице, а также,

что угловые скорости изменения сферических координат постоянны, тогда зависимость угловых координат от времени можно записать в следующем виде:

$$\varphi_D^C(t) = \varphi_{DH}^C + t \cdot \left(\varphi_{DK}^C - \varphi_{DH}^C\right),$$

$$\theta_D^C(t) = \theta_D^C + t \cdot \left(\theta_{DK}^C - \theta_{DH}^C\right).$$
 Перейдя обратно в декартову систему координат можно получить уравнения для прямо-

угольных координат:

$$x_D^C(t) = r_D^C \cdot \sin[\theta_D^C(t)] \cdot \cos[\varphi_D^C(t)],$$

$$y_D^C(t) = r_D^C \cdot \sin[\theta_D^C(t)] \cdot \sin[\varphi_D^C(t)],$$

$$z_D^C(t) = r_D^C \cdot \cos[\theta_D^C(t)].$$
(7)

Аналогично можно получить уравнения в декартовых координатах для точки ${\cal C}$ относительно точки B, и точки B относительно точки A.

Тогда временная зависимость декартовых координат точки D в абсолютной системе координат будет иметь вид:

$$x_{D}(t) = x_{D}^{A}(t) = x_{B}^{A}(t) + x_{C}^{B}(t) + x_{D}^{C}(t),$$

$$y_{D}(t) = y_{D}^{A}(t) = y_{B}^{A}(t) + y_{C}^{B}(t) + y_{D}^{C}(t),$$

$$z_{D}(t) = z_{D}^{A}(t) = z_{B}^{A}(t) + z_{C}^{B}(t) + z_{D}^{C}(t),$$
(8)

Подобным образом можно найти функции от времени координат остальных узловых точек.

Метод нахождения того, задевает ли манипулятор в процессе движения препятствие.

Данную задачу можно представить, как оптимизационную, где изменяемой переменной является время движения, имеющее значения в диапазоне от 0 до 1, от которого зависят координаты узловых точек в виде функций, определенных ранее. Данную оптимизацию необходимо провести для каждого звена, целевой функцией которой является минимум расстояния до центра препятствия, определяемого согласно методу, приведенному ранее. В случае, если минимум для каждого звена больше радиуса препятствия, можно считать движение обходящим препятствие, в противном случае необходимо изменить траекторию согласно алгоритму, приведенному ниже.

Алгоритм изменения траектории манипулятора для обхода препятствия.

Рассмотрим простейший случай изменения траектории однозвенного манипулятора, состоящего из звена AB.

Пусть точка B звена перемещается из положения $B_{\rm H}$ в положение $B_{\rm K}$ напрямую, проходя при этом через препятствие. По описанной ранее методике мы можем найти точку $B_{\rm \Pi0}$, в которой расстояние от звена до центра препятствия будет минимальным, по известному времени для данной точки и функции координат точки B от времени. Данная ситуация изображена на рис.4.

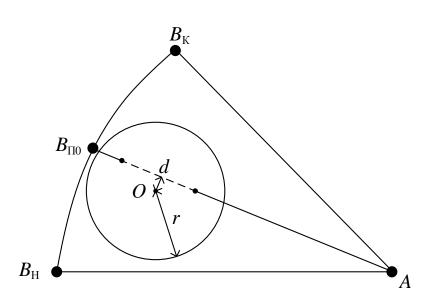


Рис. 4 Прохождение звена AB через препятствие Fig. 4 Passing the link AB through an obstacle

В приведенной на рис.4 ситуации звено проходит «над» центром препятствия, и для коррекции траектории необходимо поднять его ещё «выше». Для этого воспользуемся следующим приемом:

1. Рассмотрим плоскость, проходящую через отрезок $AB_{\Pi 0}$ и центр сферы. В данной плос-

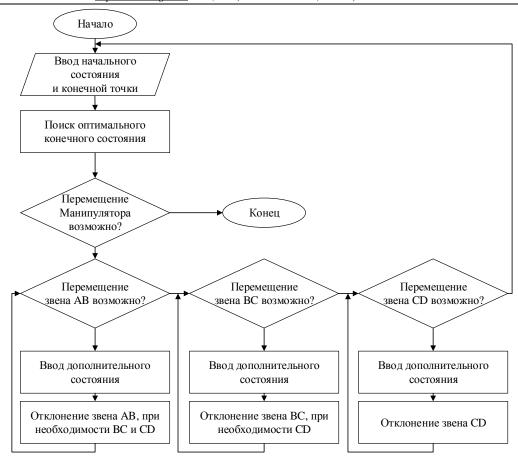
кости осуществим поворот звена вокруг точки A так, чтобы звено не проходило через сечение сферы данной плоскостью. Данное новое положение звена AB является промежуточным, через которое должен пройти отрезок по пути из начального в конечное.

2. Проанализируем движение из начального положения в промежуточное и из промежуточного в конечное. Если при движении между двумя состояниями звено снова проходит через препятствие, вводим ещё одно промежуточное положение аналогично первому пункту и снова проверяем движения на обход препятствия.

Рассмотрим более сложный случай изменения траектории трехзвенного манипулятора.

Изменение траектории также начнем со звена AB, как самого ограниченного в перемещении (т. к. сочление A жестко закреплено) и энергозатратного (т. е. его перемещения должны быть минимальны).

Алгоритм изменения его траектории аналогичен предыдущему случаю, но дополнен некоторыми действиями с последующими звеньями.


- 1. По заданному начальному положению манипулятора и конечной точке рабочего окончания оптимизационными методами проводится расчет положения узловых точек манипулятора в конечном положении.
- 2. Анализируется возможность прямого перемещения из начального положения в конечное в обход препятствия. В случае его невозможности вводится дополнительное промежуточное состояние. После смещения в это состояние звена *AB* также проводится проверка, не проходит ли звено *BC* через препятствие. В случае если проходит, производится его поворот аналогично звену *AB*. Те же самые действия производятся со звеном *CD*. Если данный шаг выполняется после первого, обозначим введенное состояние как первое промежуточное состояние.
- 3. Проводится проверка возможности прямого движения из начального состояния во введенное на первом шаге промежуточное. Если прямое движения невозможно, вводятся дополнительные промежуточные состояния до тех пор, пока манипулятор не сможет попасть в первое промежуточное состояние.
- 4. После того, как построена траектория перевода звена AB из начального состояние в первое введенное промежуточное, проверка на возможность движения и введение дополнительных состояний проводится для звена BC, при этом также производится коррекция звена CD, при необходимости.
- 5. Затем аналогичным образом проводится коррекция движения звена *CD*.
- 6. После построения траектории перемещения манипулятора из исходного положения в промежуточное осуществляется построение траектории по алгоритму начиная с первого шага, куда вместо начального положения подставляется первое промежуточное.

Алгоритм в виде блок-схемы приведен на рис.5.

Метод отклонения звеньев от препятствия

Рассмотрим произвольное звено MN, с известными точками начала $M(x_M, y_M, z_M)$ и конца $N(x_N, y_N, z_N)$, проходящее в некоторый момент времени через препятствие, представленное сферой с центром в точке $O(x_0, y_0, z_0)$ и радиусом r.

Целью метода является нахождение ближайших положений звена в плоскости, проходящей через звено и центр сферы препятствия, которые позволят реализовать приведенный ранее алгоритм.

Puc. 5 Алгоритм изменения траектории Fig. 5 Algorithm for changing the trajectory

Вид звена и препятствия в данной плоскости представлен на рис. 6.

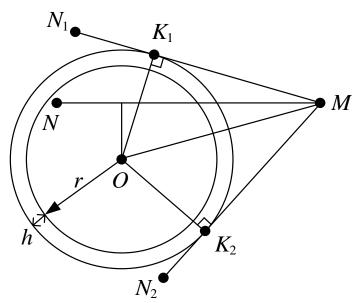


Рис. 6 Отклонение произвольного звена Fig. 6 Deviation of an arbitrary link

Введем новую окружность с центром в точке O и радиусом r+h, где h- некоторый параметр, влияющий на плавность траектории, как будет показано далее. Найдем отклонение звена как отрезок, ближайшей к исходному звену касательной, проведенной из точки M.

Для этого необходимо найти точки касания K_1 и K_2 . Данные точки лежат в точках пересечения сферы с центром в точке 0 и радиусом r + h, сферы с центром в точке M и радиусом $R = MK_1$, а также плоскости, проходящей через центр окружности и звено MN. Система уравнений для данных точек имеет вид:

$$\begin{cases} (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=(r+h)^2,\\ (x-x_M)^2+(y-y_M)^2+(z-z_M)^2=R^2,\\ Ax+By+Cz+d=0, \end{cases} \tag{9}$$
 где $R^2=\min[MN;MO^2-(r+h)^2];\{A;B;C\}=\overrightarrow{MO}\times\overrightarrow{MN}$ – направляющий вектор плос-

кости; $D = -A \cdot x_M - B \cdot y_M - C \cdot z_M$.

Данная система уравнений имеет аналитическое решение, которое здесь не приводится ввиду его громоздкости.

Для нахождения ближайшей к звену MN касательной необходимо выбрать ту, у которой направляющий единичный вектор имеет большее по модулю скалярное произведение с вектором звена:

$$K = \begin{cases} K_{1}, если \frac{\left| \overrightarrow{MK_{1}} \cdot \overrightarrow{MN} \right|}{\left| \overrightarrow{MK_{1}} \right|} \geq \frac{\left| \overrightarrow{MK_{2}} \cdot \overrightarrow{MN} \right|}{\left| \overrightarrow{MK_{2}} \right|}, \\ K_{2}, если \frac{\left| \overrightarrow{MK_{1}} \cdot \overrightarrow{MN} \right|}{\left| \overrightarrow{MK_{1}} \right|} < \frac{\left| \overrightarrow{MK_{2}} \cdot \overrightarrow{MN} \right|}{\left| \overrightarrow{MK_{2}} \right|}. \end{cases}$$
(10)

А затем отложить вдоль неё отрезок длиной MN

$$\overrightarrow{MN'} = \frac{\overrightarrow{MK} \cdot |\overrightarrow{MN}|}{|\overrightarrow{MK}|} \tag{11}$$

где $\overrightarrow{MN'}$ – искомый вектор отклоненного положения.

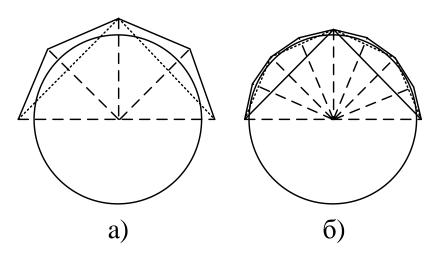


Рис. 7. Влияние параметра h на плавность траектории: а) большее значение: б) меньшее значение

Fig. 7. Influence of the parameter h on the smoothness of the trajectory: a) greater importance; b) a smaller value

Вывод. Метод планирования оптимальной траектории движения трехзвенного манипулятора с 7-ю степенями подвижности в объемном пространстве, содержащем препятствие, обладает гибкостью, которая достигается за счет варьирования введенного ранее параметра h. Его увеличение делает перемещение манипулятора более угловатым за счет уменьшения количества промежуточных состояний, что уменьшает вычислительные затраты, но также увеличивает энергозатраты, уменьшая при этом скорость перемещения. Уменьшение параметра наоборот, уменьшает энергозатраты и увеличивает скорость, но также увеличивает вычислительные затраты, так как увеличивается количество промежуточных состояний и перемещение становится более гладким.

Однако при этом, для уменьшения расчетного времени предполагается использование параллельных вычислений при расчете углов Эйлера для двигателей во время перемещения между промежуточными точками, что значительно ускорит процесс вычисления. Иллюстрирует данное высказывание рис. 7, на котором схематично приведены траектории некоторой точки при различных значениях h. При значении h=0 траектория вырождается в кривую и применение предложенного метода не является оправданным.

Библиографический список:

- 1. Шаньгин Е. С. Управление роботами и робототехническими системами: конспект лекций / Е. С. Шаньгин. Уфа, 2005.
- 2. Погорелов А.Д. Обзор алгоритмов планирования траектории движения манипуляторов // Молодежный научнотехнический вестник, август 2016. 2016. №8. УДК: 621.865:004.896.
- 3. Камильянов А.Р. Планирование траекторий движения многозвенного манипулятора в сложном трехмерном рабочем пространстве на основе эволюционных методов диссертация кандидата технических наук, Уфимский гос. авиационный университет, Уфа, 2007 г.
- 4. Morales, D.O., Westerberg, S., La Hera, P.X., Mettin, U., Freidovich, L., Shiriaev, A.S. Increasing the level of automation in the forestry logging process with crane trajectory planning and control // Journal of Field Robotics. 2014. №31 (3). C. 343-363.
- 5. Lin, H.-I. A fast and unified method to find a minimumjerk robot joint trajectory using particle swarm optimization // Journal of Intelligent and Robotic Systems: Theory and Applications. - 2014. - №75 (3-4). - C. 379-392.
- 6. Qi, R., Zhou, W., Wang, T. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm // Jiqiren/Robot. 2014. №36 (3). C. 263-270.
- 7. Howard, T., Pivtoraiko, M., Knepper, R.A., Kelly, A. Model-predictive motion planning: Several key developments for autonomous mobile robots // IEEE Robotics and Automation Magazine. 2014. №21 (1), статья № 6740036. С. 64-
- 8. Liu, W., Chen, D., Zhang, L. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration // Jiqiren/Robot. -2016. N238 (4), pp. 504-512.
- 9. Chen, Y.-J., Ju, M.-Y., Hwang, K.-S. A virtual torquebased approach to kinematic control of redundant manipulators // IEEE Transactions on Industrial Electronics. – 2017. - №64 (2), статья № 7444179, pp. 1728-1736.
- 10. Alekh, V., Rahul, E.S., Bhavani, R.R. Comparative study of potential field and sampling algorithms for manipulator obstacle avoidance // International Journal of Control Theory and Applications. 2016. №9 (Specialissue33), pp. 71-78.
- 11. Ren, Z.-W., Zhu, Q.-G., Xiong, R. Trajectory planning of 7-DOF humanoid manipulator under rapid and continuous reaction and obstacle avoidance environment // Zidonghua Xuebao/Acta Automatica Sinica. − 2015. №41 (6), pp. 1131-1144
- 12. Pham, C.D., Coutinho, F., Lizarralde, F., Hsu, L., From, P.J. An analytical approach to operational space control of robotic manipulators with kinematic constraints // IFAC Proceedings Volumes (IFAC-PapersOnline). 2014. №19, pp. 8509-8515.

References:

1. Shan'gin E. S. Upravlenie robotami i robototekhnicheskimi sistemami: konspekt lektsii. Ufa; 2005. [Shan'gin E. S. Control of robots and robotic systems: a summary of lectures. Ufa; 2005. (In Russ.)]

- 13. Simba, K.R., Uchiyama, N., Aldibaja, M., Sano, S. Vision-based smooth obstacle avoidance motion trajectory generation for autonomous mobile robots using Bézier curves // Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. − 2017. №231 (3), pp. 541-554.
- 14. Tsai C.C., Hung C.C., Chang C.F. Trajectory Planning and Control of a 7-DOF Robotic Manipulator // 2014 International conference on advanced robotics and intelligent systems. JUN 06-08, 2014. (ARIS), pp. 1131-1144.
- 15. Xidias E.K. Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces // Robotics and computer-integrated manufacturing. 2018. №50, pp. 286-298
- 16. Menon M.S., Ravi V.C., Ghosal A. Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots // Journal of mechanisms and robotics-transactions of the ASME. 2017. №9 (4). Номер статьи: 041010.
- 17. Abu-Dakka F.J., Valero F.J., Suner J.L., Mata V. A direct approach to solving trajectory planning problems using genetic algorithms with dynamics considerations in complex environments // ROBOTICA. − 2015. №33(3), pp. 669-683.
- 18. Mahdavian, M., Shariat-Panahi, M., Yousefi-Koma, A., Ghasemi-Toudeshki, A. Optimal trajectory generation for energy consumption minimization and moving obstacle avoidance of a 4DOF robot arm // International Conference on Robotics and Mechatronics, ICROM 2015. 2017. статья № 7367810, pp. 353-358.
- 19. Тебуева Ф.Б. Математические модели и методы для задач многокритериального выбора на графах в условиях недетерминированности исходных данных // автореферат дис. ... доктора физико-математических наук: 05.13.18 / Южный федеральный университет. Ставрополь, 2013.
- 20. Антонов В. О., Гурчинский М. М., Петренко В. И., Тебуева Ф. Б. Метод планирования траектории движения точки в пространстве с препятствием на основе итеративной кусочно-линейной аппроксимации // Системы управления, связи и безопасности. 2018. № 1. С. 168-182. URL: http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf 21. Макаров А.Н., Кутлубаев И.М., Усов И.Г. Основы механики многодвигательных машин // Учебное пособие / Пол редакцией А.Н. Макарова. Магнитогорск: ГОУ ВПО
- 21. Макаров А.Н., Кутлуоаев И.М., Усов И.Т. Основы механики многодвигательных машин // Учебное пособие / Под редакцией А.Н. Макарова. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова». Магнитогорск, 2006. (2-е изд., перераб. и доп).
- 22. Антонов В.О., Пижевский Д.Е. Алгоритм выбора стратегии поведения мобильного манипуляционного робота в нештатной ситуации при разрыве связи и утрате контроля оператором // В сборнике: Студенческая наука для развития информационного общества Сборник материалов V Всероссийской научно-технической конференции. 2016. С. 557-559.
- 2. Pogorelov A.D. Obzor algoritmov planirovaniya traektorii dvizheniya manipulyatorov. Molodezhnyi nauchnotekhnicheskii vestnik. 2016;8. [Pogorelov A.D. Review of algorithms for planning the trajectory of motion of manipulators. Molodezhnyi nauchno-tekhnicheskii vestnik. 2016;8. (In Russ.)]

- 3. Kamil'yanov A.R. Planirovanie traektorii dvizheniya mnogozvennogo manipulyatora v slozhnom trekhmernom rabochem prostranstve na osnove evolyutsionnykh metodov. Dissertatsiya kandidata tekhnicheskikh nauk. Ufimskii gos. aviatsionnyi universitet. Ufa; 2007. [Kamil'yanov A.R. Planning the trajectories of a multi-link manipulator in a complex three-dimensional workspace based on evolutionary methods. Candidate of technical sciences thesis. The Ufa state aviation technical university. Ufa; 2007. (In Russ.)]
- 4. Morales D.O., Westerberg S., La Hera P.X., Mettin U., Freidovich L., Shiriaev A.S. Increasing the level of automation in the forestry logging process with crane trajectory planning and control. Journal of Field Robotics. 2014;31(3):343-363.
- 5. Lin H.-I. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. Journal of Intelligent and Robotic Systems: Theory and Applications. 2014;75(3-4):379-392.
- 6. Qi R., Zhou W., Wang T. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm. Jiqiren/Robot. 2014;36(3):263-270.
- 7. Howard T., Pivtoraiko M., Knepper R.A., Kelly A. Model-predictive motion planning: Several key developments for autonomous mobile robots. IEEE Robotics and Automation Magazine. 2014;21(1):64-73.
- 8. Liu W., Chen D., Zhang L. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration. Jiqiren/Robot. 2016;38(4):504-512.
- 9. Chen Y.-J., Ju M.-Y., Hwang K.-S. A virtual torque-based approach to kinematic control of redundant manipulators. IEEE Transactions on Industrial Electronics. 2017;64(2):1728-1736.
- 10. Alekh V., Rahul E.S., Bhavani R.R. Comparative study of potential field and sampling algorithms for manipulator obstacle avoidance. International Journal of Control Theory and Applications. 2016;9(Special issue33):71-78.
- 11. Ren Z.-W., Zhu Q.-G., Xiong R. Trajectory planning of 7-DOF humanoid manipulator under rapid and continuous reaction and obstacle avoidance environment. Zidonghua Xuebao/Acta Automatica Sinica. 2015;41(6):1131-1144.
- 12. Pham C.D., Coutinho F., Lizarralde F., Hsu L., From P.J. An analytical approach to operational space control of robotic manipulators with kinematic constraints. IFAC Proceedings Volumes (IFAC-Papers Online). 2014;19:8509-8515.
- 13. Simba K.R., Uchiyama N., Aldibaja M., Sano S. Vision-based smooth obstacle avoidance motion trajectory generation for autonomous mobile robots using Bézier curves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017;231(3):541-554.
- 14. Tsai C.C., Hung C.C., Chang C.F. Trajectory Planning and Control of a 7-DOF Robotic Manipulator. 2014 International conference on advanced robotics and intelligent systems (ARIS). JUN 06-08, 2014. P.1131-1144.
- 15. Xidias E.K. Time-optimal trajectory planning for hyperredundant manipulators in 3D workspaces. Robotics and computer-integrated manufacturing. 2018;50:286-298.
- 16. Menon M.S., Ravi V.C., Ghosal A. Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots.

- Journal of mechanisms and robotics-transactions of the ASME. 2017;9(4):041010.
- 17. Abu-Dakka F.J., Valero F.J., Suner J.L., Mata V. A direct approach to solving trajectory planning problems using genetic algorithms with dynamics considerations in complex environments. ROBOTICA. 2015;33(3):669-683.
- 18. Mahdavian M., Shariat-Panahi M., Yousefi-Koma A., Ghasemi-Toudeshki A. Optimal trajectory generation for energy consumption minimization and moving obstacle avoidance of a 4DOF robot arm. International Conference on Robotics and Mechatronics (ICROM 2015). 2017;7367810:353-358.
- 19. Tebueva F.B. Matematicheskie modeli i metody dlya zadach mnogokriterial'nogo vybora na grafakh v usloviyakh nedeterminirovannosti iskhodnykh dannykh. Aavtoreferat dis. ... doktora fiziko-matematicheskikh nauk: 05.13.18. Yuzhnyi federal'nyi universitet. Stavropol'; 2013. [Tebueva F.B. Mathematical models and methods for multicriteria selection problems on graphs in conditions of indeterminacy of the initial data. Published summary of the Doctor of Physica and mathematical Sciences Thesis: 05.13.18. Southern Federal Unversity. Stavropol'; 2013. (In Russ.)]
- 20. Antonov V.O., Gurchinskii M.M., Petrenko V.I., Tebueva F.B. Metod planirovaniya traektorii dvizheniya tochki v prostranstve s prepyatstviem na osnove iterativnoi kusochnolineinoi approksimatsii. Sistemy upravleniya, svyazi i bezopasnosti.

 2018;1:168-182.

 URL: http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf [Antonov V.O., Gurchinskii M.M., Petrenko V.I., Tebueva F.B. Method for planning the trajectory of the motion of a point in an obstacle space on the basis of iterative piecewise-linear approximation. Systems of Control, Communication and Security.

 2018;1:168-182.

 URL: http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf [Incomplete Incomplete I
- http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf (In Russ.)]
- 21. Makarov A.N., Kutlubaev I.M., Usov I.G. Osnovy mekhaniki mnogodvigatel'nykh mashin. Uchebnoe posobie. Pod red. A.N. Makarova. 2-e izd. Magnitogorsk: GOU VPO "MGTU im. G.I. Nosova". Magnitogorsk; 2006. [Makarov A.N., Kutlubaev I.M., Usov I.G. Fundamentals of mechanics of multi-motor vehicles. Tutorial. A.N. Makarov (Ed.). 2nd ed. Magnitogorsk: GOU VPO "MGTU im. G.I. Nosova". Magnitogorsk; 2006. (in Russ.)]
- 22. Antonov V.O., Pizhevskii D.E. Algoritm vybora strategii povedeniya mobil'nogo manipulyatsionnogo robota v neshtatnoi situatsii pri razryve svyazi i utrate kontrolya operatorom. Sbornik materialov V Vserossiiskoi nauchnotekhnicheskoi konferentsii "Studencheskaya nauka dlya razvitiya informatsionnogo obshchestva". 2016. S. 557-559. [Antonov V.O., Pizhevskii D.E. Algorithm for choosing the behaviour strategy of the mobile manipulation robot in an abnormal situation when the communication is broken and the operator had lost control. The materials of the V All-Russian scientific and technical conference "Student science for the development of the information society". 2016. P. 557-559. (In Russ.)]

Сведения об авторах:

Антонов Владимир Олегович – аспирант.

Гурчинский Михаил Михайлович – магистрант.

Петренко Вячеслав Иванович - кандидат технических наук, доцент, заместитель директора института информационных технологий и телекоммуникаций по науке; заведующий кафедрой «Организация и технология защиты информации».

Тебуева Фариза Биляловна – доктор физико-математических наук, доцент, заведующая кафедрой прикладной математики и компьютерной безопасности.

Information about the authors.

Vladimir O. Antonov - Post-graduate Student.

Mikhail M. Gurchinsky- Graduate Student.

Vyacheslav I. Petrenko - Cand. Sc. (Technical), Assoc. Prof., Deputy Director of the Institute of Information Technology and Telecommunications in Science; Department "Organization and technology of information protection."

Tebuueva Fariza Bilyalovna – Dr.Sci.(Physical and Mathematical), Department of Applied Mathematics and Computer Security.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов. **Поступила в редакцию** 24.12.2017.

Принята в печать 30.01.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 24.12.2017.

Accepted for publication 30.01.2018.

Для цитирования: Ветров А.Н. Когнитивный подход как основа системного и финансового анализа сложных объектов исследования Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 113-128. DOI:10.21822/2073-6185-2018-45-1-113-128

For citation: Vetrov A.N. A cognitive approach forming the basis of system and financial analysis of complex research objects. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 113-128. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-113-128

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК 336.74(075.8)

DOI: 10.21822/2073-6185-2018-45-1-113-128

КОГНИТИВНЫЙ ПОДХОД КАК ОСНОВА СИСТЕМНОГО И ФИНАНСОВОГО АНА-ЛИЗА СЛОЖНЫХ ОБЪЕКТОВ ИССЛЕДОВАНИЯ

Ветров А.Н

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»,

197376, г. Санкт-Петербург, ул. Профессора Попова, 5,

Россия, Международный банковский институт,

191023, г. Санкт-Петербург, Невский пр., 60,

Poccuя,e-mail: vetrovan@nwgsm.ru

Резюме. Цель. Когнитивный подход является существенно сложным, поскольку занисуперпозицию различных подходов: системного, информационного, экономического, финансово-аналитического, финансово-экономического, аналитического, кибернетического и прочих. С учетом этого, целью исследования является повышение эффективности функционирования хозяйствующего субъекта за счет реализации процедуры горизонтального, вертикального и трендового (микроскопического) финансового анализа на основе сформированных инновационных блоков параметрических когнитивных моделей и системы аналитических коэффициентов. Метод. Системный анализ и моделирование информационнообразовательных сред, финансовый анализ высоко-интегрированных предприятий и кредитных организаций. Результат. Когнитивный подход в современной информатике разработан автором на основе слойно-ступенчатой модели восприятия, обработки и понимания содержания разнородных информационных фрагментов. Разработанный инновационный блок параметрических когнитивных моделей является информационной основой (микроскопического) финансового анализа, содержит когнитивные модели для горизонтального, вертикального и трендового финансового анализа предприятия или кредитной организации на основе сформированной системы аналитических коэффициентов, каждая из которых выступает сложным репертуаром параметров (показателей), эшелонированным на ряд портретов и стратифицированным на несколько независимых множеств, расположенных на двух различных уровнях выделенной иерархии (структуры). Вывод. Генезис когнитивного подхода обусловлен возможностью вертикального, горизонтального и трендового финансового анализа на основе системы аналитических коэффициентов первичных регистров бухгалтерского учета и финансового анализа посредством самостоятельно разработанного блока параметрических когнитивных моделей. Финансовый анализ высоко-интегрированных (кредитных) организаций инициирует необходимость учета широкого спектра разных научных фундаментальных и прикладных направлений современной науки, а также обуславливает необходимость использования инновационного аппарата исследования. Внедрение и практическое использование когнитивного подхода имеет существенное значение для развития ключевых отраслей народного хозяйства.

Ключевые слова: когнитивная модель, технология когнитивного моделирования, системный анализ, сложный объект исследования, финансовый анализ

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

A COGNITIVE APPROACH FORMING THE BASIS OF SYSTEM AND FINANCIAL ANALYSIS OF COMPLEX RESEARCH OBJECTS

Anatoly N. Vetrov

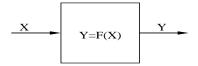
Saint Petersburg Electrotechnical University «LETI», 5 Professora Popova Str., Saint Petersburg 197376, Russia, International Banking Institute, 60 Nevsky Ave., Saint Petersburg 191023, Russia, e-mail: vetrovan@nwgsm.ru

Abstract Objectives. A cognitive approach that represents a superposition of various approaches such as system, informational, socio-economic, financial-analytical, financial-economic, analytical, cybernetic and others, is inherently complex. Having this in mind, the aim of the present study is to increase the operational efficiency of economic entities through the implementation of a horizontal, vertical and trend-based (microscopic) financial analysis procedure based on the generated innovative block of parametric cognitive models and a system of analytical coefficients. Methods. System analysis, modeling of information and educational environments, financial analysis of highly integrated enterprises and credit organisations. Results. The described cognitive approach in contemporary computer science was developed by the author on the basis of a layer-step model of perception, the processing and understanding of the content of heterogeneous information fragments. The developed innovative block of parametric cognitive models forms the informational basis of (microscopic) financial analysis containing the cognitive models for horizontal, vertical and trend financial analysis of an enterprise or a credit organisation. It is based on the generated system of analytical coefficients, each representing a complex of parameters (indicators), echeloned for a series of portraits and stratified into several independent sets, arranged on two different levels of the selected hierarchy (structure). Conclusion. The genesis of the cognitive approach is due to the possibility of vertical, horizontal and trend-based financial analysis based on the system of analytical coefficients of primary registers of accounting and financial analysis through an independently developed block of parametric cognitive models. Financial analysis of highly-integrated (credit) organisations initiates the need to take into account a wide range of different scientific fundamental and applied areas of contemporary science, as well as necessitating the use of an innovative research apparatus. The introduction and practical use of the cognitive approach is essential for the development of key sectors of the national economy.

Keywords: cognitive model, cognitive modeling technology, system analysis, complex research object, financial analysis

Введение. В настоящее время существуют различные уровни рассмотрения «сложного» объекта, процесса или явления в статической или динамической среде его функционирования: макроскопический; гравитационный (физика и механика) — гравитационные свойства; геополитический (политика) — политические течения; общественный (теория социальных групп) — общественные свойства; социальный (социология) — социальные свойства; микроскопический; биологический (биология и экология) — биологические свойства; химический (химия) — изменение химических свойств (реакции); физический (физика) — изменение физических свойств (опыты); генетический (генетика) — генетические свойства (геном); молекулярный (биохимия) — химические свойства; ядерный (атомная физика) — физические свойства.

Как правило, в экономике и финансовом анализе рассматриваются только микроскопический (биологический и экологический аспекты) и макроскопический (социальный, общественный и геополитический аспекты) уровни информационного взаимодействия при рассмотрения экономического и эконометрического объекта исследования.


Системный анализ сложных объектов, процессов и явлений предполагает предварительный анализ среды функционирования объекта исследования; выявление связей выбранного объекта со средой его функционирования; разработку концепции или концептуальной схемы непосредственного решения определенной задачи системного и финансового анализа; создание модели как намеренно структурно или функциональной обедненной сущности, которая отражает поведение объекта исследования в заданной локальности.

Системный анализ сложных объектов исследования представляет собой последовательность этапов обработки информации выраженной в форме данных: сбор информации, которая характеризует объект, процесс или явление; систематизация и накопление информации выраженной в данных; классификация информации выраженной в данных на машинном носителе; структурирование данных в файлах, базах и банках на машинном носителе; создание, распределение и использование информационных ресурсов, продуктов и услуг для повышения эффективности объекта, процесса или явления; подбор метода системного и финансового анализа объекта исследования; математическая обработка апостериорных данных посредством использования набора различных статистических методов обработки накопленных данных; выявление тенденций, зависимостей, закономерностей и связей.

Постановка задачи. Целью исследования является повышение эффективности функционирования хозяйствующего субъекта за счет реализации процедуры горизонтального, вертикального и трендового финансового анализа на основе сформированных инновационных блоков параметрических когнитивных моделей и системы аналитических коэффициентов.

Методы исследования. Системный подход в технике и экономике основан на структурной декомпозиции заданного объекта исследования в среде его функционирования, что позволяет провести детальное исследование его различных структурных элементов в разных локальностях. Система (техническая, экономическая и прочая) характеризуется рядом свойств: выполняет заданную цель в процессе своего функционирования; состоит из совокупности элементов выполняющих различные функции; вхождение каждого элемента в систему не является случайным; совокупность элементов представляют собой интегральное единство.

Система рассматривается как функциональный преобразователь типа «вход-выход», который осуществляет взаимно однозначное отображение операндов вектора входа в результирующие значения вектора выхода на основе набора разных операций (рис. 1).

Puc. 1. Система как функциональный преобразователь Fig. 1. The system as a functional converter

Вектор входа непосредственно включает набор различных параметров, которые представляют собой значения различных операндов заданной функции. Вектор выхода включает набор результирующих значений заданной функции.

Выделяют несколько видов аналитически-численных функций: унарные – функция содержит только один операнд F(x); бинарные – функция содержит только два операнда $F(x_1, x_2)$; n-арные – функция содержит n операндов $F(x_1, x_2, ..., x_i, ..., x_n)$.

Объект исследования задается несколькими основными разными способами: аналитическим – аналитическая формула (для двоичной логики применяется логическая модель с использованием исчисления высказываниями и предикатами первого и второго порядка, которые непосредственно образуют ядра продукционного вывода: антецедент – условие, консенвент – прямое действие в случае истинности исходной посылки и альтернативное действие в случае ее ложности); табличным – таблица взаимно-однозначного соответствия между входом и выходом; графическим – обеспечивает визуальную репрезентацию и интерпретацию; структурная схема – содержит конечное множество структурных элементов; функциональная схема – со-

держит конечномерный набор различных условно-графических обозначений функциональных компонентов; временная диаграмма — отражает динамику изменения значений функции на выходе под влиянием изменения значений операндов на входе; электрическая принципиальная схема — содержит конечномерный набор условно-графических обозначений электрических элементов.

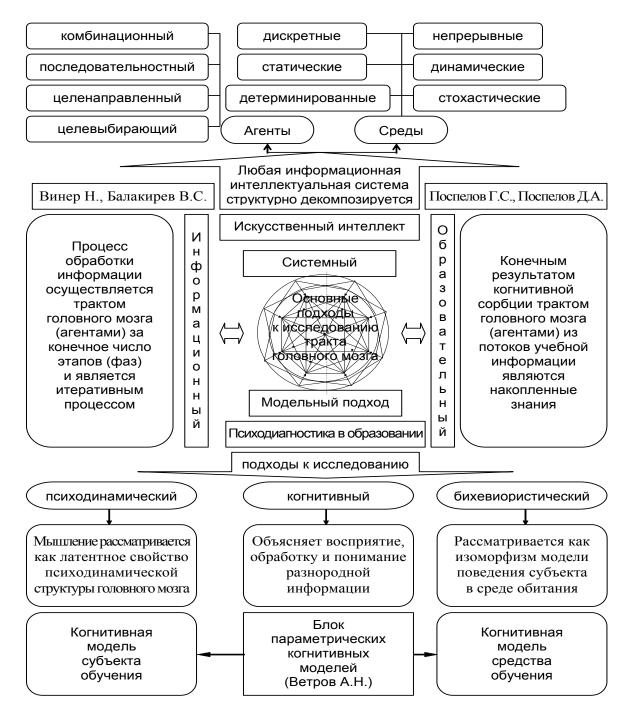
При применении информационного подхода в технике и экономике структурная декомпозиция объекта, процесса или явления в определенной среде его функционирования позволяет выделить совокупность потоков информации на входе, непосредственно между компонентами, на выходе структурной схемы.

Любая система характеризуется набором определенных различных свойств:

- выступает сложным или простым конструктом (конфигурацией);
- структурно декомпозируется на совокупность различных элементов;
- элементы системы непосредственно взаимодействуют между собой;
- вхождение каждого элемента не является случайным (кроме синергетической);
- выполняет набор задач для достижения определенной цели функционирования;
- цель функционирования может быть прямой или альтернативной.

Информационный подход предполагает выделение ряда потоков информации:

- входной поток информации внешние воздействия на систему;
- внутрисистемные потоки информации внутренние воздействия на элементы;
- выходной поток информации выходное воздействие системы (элементов);
- межсистемные потоки информации (межсистемное воздействие) (рис. 2).



Puc. 2. Трансформация информации в процессе информационного обмена Fig. 2. Transformation of information in the process of information exchange

- Последовательность информационных фрагментов обеспечивает технологический процесс управляемого формирования знаний контингента обучаемых:
- поиск объектов, процессов и явлений для исследования в среде функционирования;
- выбор метода или технического средства исследования (средства измерения);
- получение информации выраженной в сигнальной форме (сигнал как носитель);
- получение (преобразование) информации выраженной в форме данных;
- первичная обработка апостериорных данных экспериментов;
- выявление статистических неоднородностей (артефакты и выбросы);
- подбор статистических методов обработки апостериорных данных;
- вторичная математическая обработка апостериорных данных посредством набора статистических методов обработки апостериорных данных.

Обсуждение результатов. Когнитивный подход в информационно-образовательной среде выступает комплексным и сложным, предполагает исследование и объяснение закономерностей процесса формирования знаний контингента обучаемых посредством использования

последовательности информационных фрагментов, которые обеспечивают доведение субъекта обучения (обучаемого) до заданного уровня осведомленности посредством использования традиционных ИТ и КТ, а также современных средств адаптивного обучения (рис. 3).

Puc. 3. Основные направления исследования обработки информации при обучении Fig. 3. The main directions of the study of information processing in training

Когнитивный подход в психологии предполагает изучение процессуальных основ обработки информации на уровне психодинамического конструкта головного мозга познающего субъекта (Холодная М.А.) и слойно-ступенчатой модели восприятия, обработки и понимания информации в системе автоматизированного обучения (АДО) со свойствами адаптации на основе блока когнитивных моделей (КМ) и технологии когнитивного моделирования (ТКМ) для системного анализа информационно-образовательной среды (Ветров А.Н.) (рис. 4).

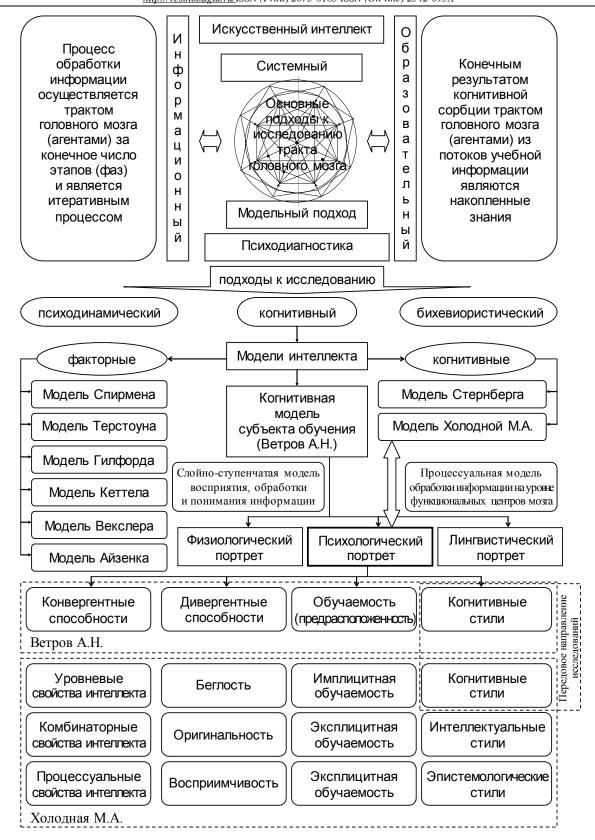


Рис. 4. Основные направления исследования интеллекта и структура психологического портрета когнитивной модели субъекта

Fig. 4. The main directions of the study of intelligence and the structure of the psychological portrait of the subject's cognitive model

На рис. 5 представлена непосредственно КМ в психологической интерпретации Холодной М.А. для анализа эффективности функциональных центров мозга человека.

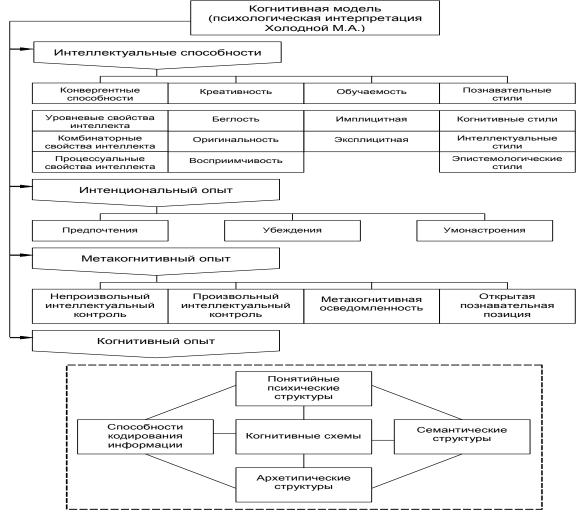


Рис. 5. Основные направления исследования интеллекта и структура психологического портрета когнитивной модели Холодной М.А.

Fig. 5. The main directions of research of intelligence and the structure of the psychological portrait of the cognitive model of M.A. Holodnaya

Когнитивный подход в современной информатике разработан мною на основе слойноступенчатой модели восприятия, обработки и понимания содержания разнородных информационных фрагментов (рис. 6).

Рис. 6. Генезис ТКМ для системного анализа информационно-образовательной среды и когнитивной информатики как современного научного направления в области теории информации

Fig. 6. Genesis of the technology of cognitive modeling for the system analysis of the information-educational environment and cognitive informatics as a modern scientific direction in the field of information heory

В авторской монографии «Среда автоматизированного обучения со свойствами адаптации на основе когнитивных моделей» непосредственно отражается аппарат ТКМ для системно-

го анализа информационно-образовательных сред. Способы исследования объекта, процесса или явления представлены на рис. 7.

Puc. 7. Способы исследования объекта, процесса или явления Fig. 7. Methods of investigating an object, process or phenomenon

Когнитивная модель субъекта обучения для поддержки задач системного анализа ИОС и повышения эффективности функционирования системы АДО представлена на рис. 8.

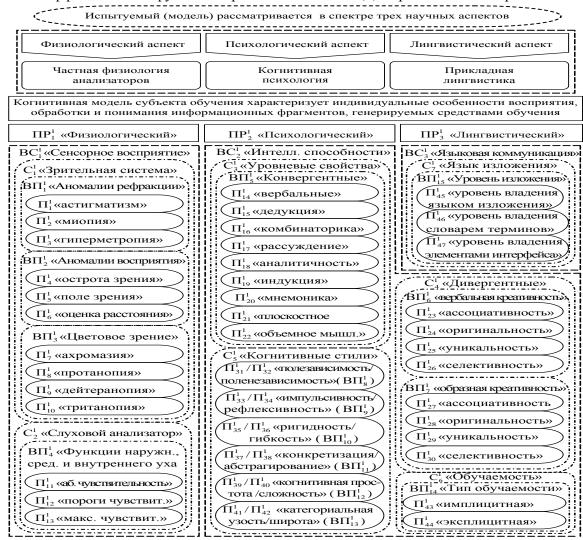
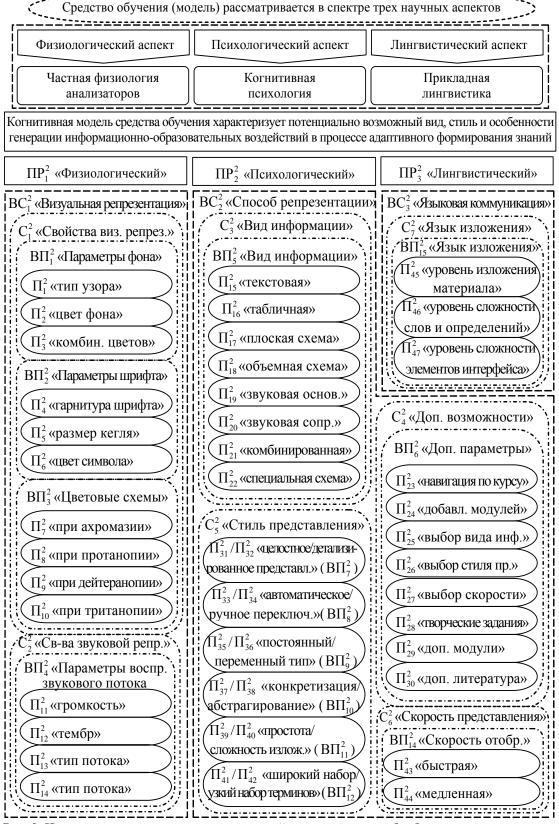



Рис. 8. Направления исследования восприятия, обработки и понимания информации, а также структура когнитивной модели субъекта обучения Ветрова А.Н. Fig. 8. Directions of the study of perception, processing and understanding of information, as well as the structure of the cognitive model of the subject of training A.N. Vetrova

Когнитивная модель средства обучения для поддержки задач системного анализа ИОС и повышения эффективности (результативности) функционирования системы АДО представлена на рис. 9.

Puc. 9. Направления исследования визуальной репрезентации, обработки и представления информации, а также структура когнитивной модели средства обучения Ветрова А.Н. Fig. 9. Directions for the study of visual representation, processing and presentation of information, as well as the structure of the cognitive model of the training tool Vetrova AN

Генезис когнитивного подхода обусловлен возможностью вертикального, горизонтального и трендового финансового анализа на основе системы аналитических коэффициентов пер-

вичных регистров бухгалтерского учета и финансового анализа посредством самостоятельно разработанного блока параметрических КМ (рис. 10).

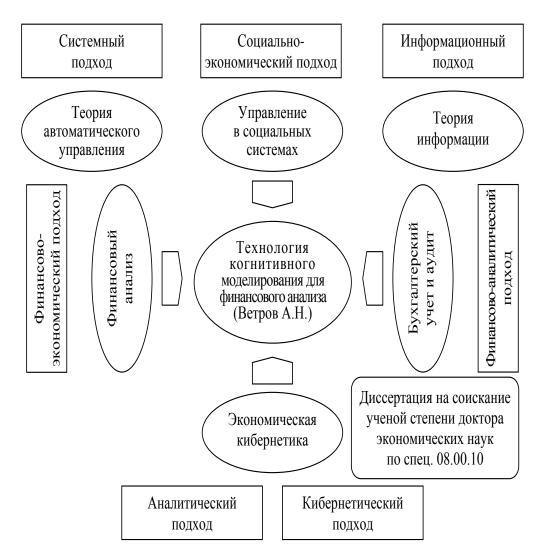


Рис. 10. Генезис технологии когнитивного моделирования для финансового анализа высоко-интегрированных предприятий и (кредитных) организаций, как современного научного направления в области экономики

Fig. 10. Genesis of cognitive modeling technology for the financial analysis of highly integrated enterprises and (credit) organizations as a modern scientific direction in the field of economics

В авторской монографии «Технология когнитивного моделирования для финансового анализа и аудита организации» предлагается инновационный аппарат ТКМ для финансового анализа организационной структуры на основе блока параметрических КМ.

Технология когнитивного моделирования позволяет провести анализ полученных результатов финансово-хозяйственной деятельности организации посредством параметрических КМ для вертикального, горизонтального и трендового финансового анализа на основе системы аналитических коэффициентов, которые сформированы с использованием первичных регистров бухгалтерского и финансового учета как универсальной информационной основы финансового анализа, бухгалтерского учета и аудита.

Структура когнитивной модели для проведения горизонтального финансового анализа организации представлена на рис. 11.

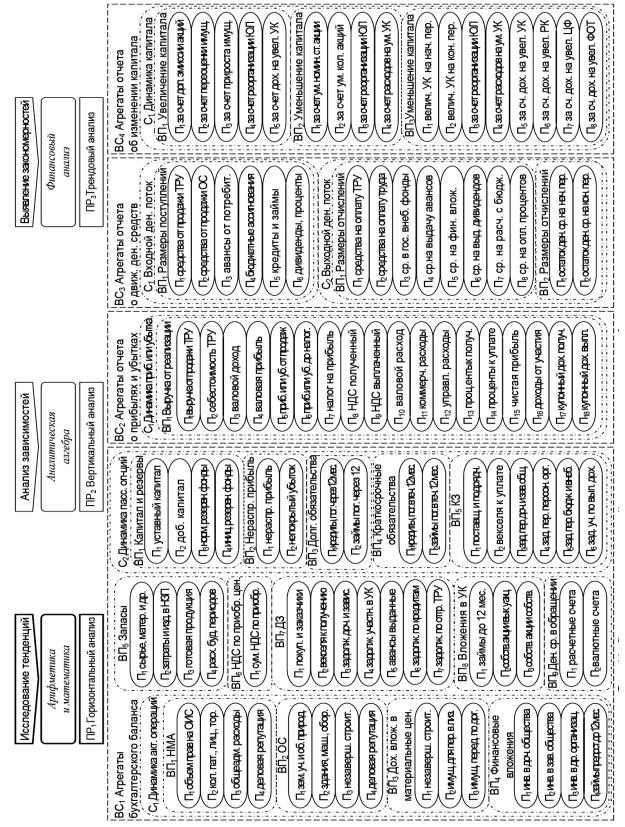


Рис. 11. Структура когнитивной модели для горизонтального финансового анализа организации Ветрова А.Н.

Fig. 11. The structure of the cognitive model for horizontal financial analysis of the organization A.N.Vetrov

Структура когнитивной модели для проведения вертикального финансового анализа организации представлена на рис. 12.

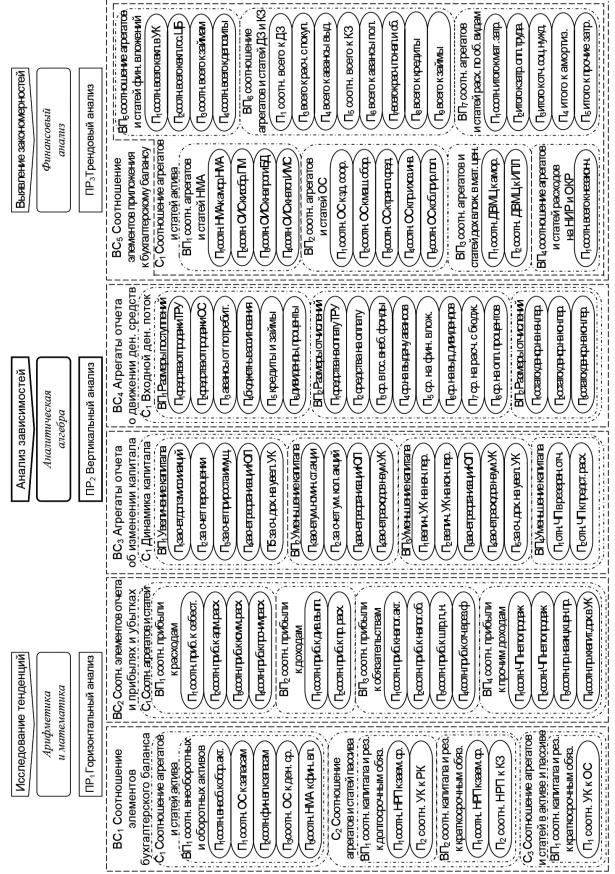


Рис. 12. Структура когнитивной модели для вертикального финансового анализа организации Ветрова А.Н.

Fig. 12. The structure of the cognitive model for vertical financial analysis of the organization A.N. Vetrov

Когнитивная модель для трендового финансового анализа организации представлена на рис. 13, при этом непосредственно отражает систему аналитических коэффициентов, которые характеризуют:

- имущественное положение сумма средств на балансе, соотношение агрегатов баланса;
- ликвидность организации потенциальная способность оборачивать один актив в другой;
- ликвидность обслуживающего банка потенциальная способность удовлетворять требования контрагентов и гарантировать выполнение финансовых обязательств;
- финансовую устойчивость текущая и долгосрочная динамика собственного капитала;
- деловую активность длительность операционного (производственного) цикла, интервал замораживания оборотного капитала организации, привлечение заемных средств;
- норму рентабельности эффекты операционного и финансового левериджа;
- рыночную активность динамика доходности каждой вложенной условной единицы, котировочная стоимость дисконтных и купонных ценных бумаг организации.

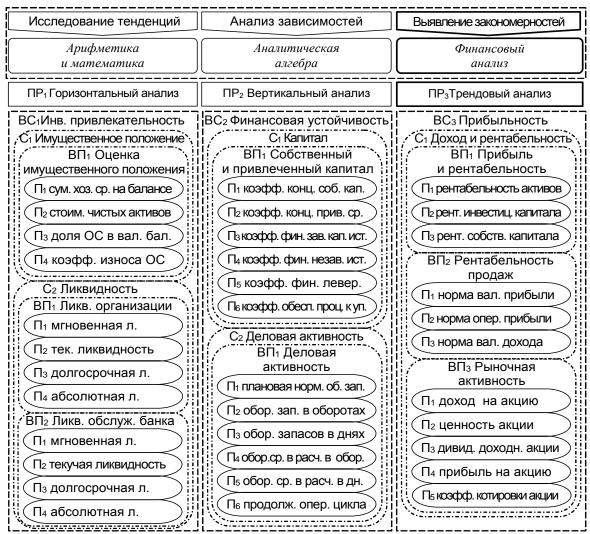


Рис. 13. Структура когнитивной модели для трендового финансового анализа организации на основе системы аналитических коэффициентов Ветрова А.Н.

Fig. 13. Structure of the cognitive model for the trend financial analysis of the organization based on the system of analytical coefficients A.N..Vetrov

Вывод. Технология когнитивного моделирования для финансового анализа организации (например, кредитной организации) предполагает:

- системный подход система структурно декомпозируется на элементы;
- теория автоматического управления (научная специальность 05.13.01) концептуальные

основы сигналов как материальных носителей информации, системы управления по разомкнутому и замкнутому принципу управления, локальные, дискретные, линейные и нелинейные, адаптивные системы управления;

- социально-экономический подход каждая органическая особь испытывает потребность в информации и информационном взаимодействии (обмене);
- управление в социальных системах (научная специальность 05.13.10) интенсификация деятельности организационной структуры за счет повышения уровня социальной организации социальных субъектов;
- информационный подход современный процесс информационного взаимодействия структурно декомпозируется на совокупность этапов информационного обмена и фаз преобразования информации выраженной в сигналах и данных;
- теоретические основы информатики (научная специальность 05.13.17) концептуальные основы информации, информационного взаимодействия, арифметические и логические основы цифровых автоматов, архитектуры информационных систем, программное обеспечение современных компьютеров;
- финансово-экономический подход глобальная экономическая интеграция и транснационализация хозяйствующих субъектов обуславливает необходимость создания, внедрения и использования новых подходов, методов и технологий;
- финансовый анализ (научная специальность 08.00.10) концептуальные основы вертикального, горизонтального и трендового финансового анализа;
- финансово-аналитический подход возникает существенная необходимость создания, внедрения и использования международных стандартов бухгалтерского учета и финансового анализа для унификации форм отчетности;
- бухгалтерский учет и статистика (научная специальность 08.00.12) концептуальные основы первичных регистров бухгалтерского учета и финансового анализа;
- аналитический подход возникает необходимость создания, распределения и использования новых технологий для финансового анализа сложных объектов, процессов и явлений в (не)производственной сфере деятельности;
- теоретическая экономическая кибернетика, математические и инструментальные методы экономики (научная специальность 08.00.13) концептуальные основы разработки моделей экономических объектов, процессов и явлений;
- кибернетический подход возникает необходимость создания, внедрения и использования экономических моделей как намеренно функционально или структурно обедненных сущностей, которые отражают поведение экономических объектов, процессов и явлений в заданной локальности;
- практическая экономическая кибернетика, математические и инструментальные методы экономики (научная специальность 08.00.13) концептуальные основы реализации моделей экономических объектов, процессов и явлений.

Библиографический список:

- 1. Бабин Э.П. Основы внешнеэкономической политики. М.: Экономика. 1997. 126 с.
- 2. Бланк И.А. Основы финансового менеджмента: В 2 т. К.: Ника-центр, 2001 21 с.
- 3. Ван Хорн Дж. Основы управления финансами: Пер. с англ. / Под ред. И.И. Елисеевой. М.: Финансы и статистика, 2005.-799 с.
- 4. Горлов И.Я. Теория финансов. Изд. 2-е. СПб., 1845. 272 с
- 5. Кидуэлл Д.С., Петерсон Р.Л., Блэкуэлл Д.У. Финансовые институты, рынки и деньги. СПб.: Питер, 2000. 749 с.
- 6. Ковалев В.В. Введение в финансовый менеджмент. М.: Финансы и статистика, 2004. 767 с.
- 7. Ковалев В.В. Финансовый анализ: методы и

- процедуры. М.: Финансы и статистика, 2006. 559 с.
- 8. Коса Л. Основы финансовой науки. М.: типо-лит. т-ва И.Н. Кушнерев и К $^{\circ}$, 1900. 185 с.
- 9. Крушвиц Л. Финансирование и инвестиции. Неоклассические основы теории финансов / Пер. с нем. под общ. ред. В.В. Ковалева и З.А. Сабова. СПб.: Питер, 2000. 381 с.
- 10. Куттер М.И. Теория и принципы бухгалтерского учета: Учеб. пособие. М.: Финансы и статистика, Экспертное бюро, 2000.-543 с.
- 11. Макконнелл К.Р., Брю С.Л. Экономикс: Принципы, проблемы и политика: В 2 т.: Пер. с англ. М.: Республика, 2007. 956 с.
- 12. Маршалл Дж., Бансал В. Финансовая инженерия: Полное руководство по финансовым нововведениям: Пер. с англ. М.: ИНФРА-М, 1998. 782 с.

- 13. Масленников В.В. Факторы развития национальных банковских систем. СПб.: Изд-во СПбГУЭФ, 2000. 206 с.
- 14. Матук Ж. Финансовые системы Франции и других стран: В 2 т. / Пер. с фр. М.: Финстатинформ, 1994. 22 с
- 15. Медведев Ж.А. Россия в окружающем мире. Долги России. М.: Изд-во МНЭПУ, 1999. 267 с.
- 16. Меньков Ф.А. Основные начала финансовой науки. М.: Фин.-экон. бюро НКФ СССР, 1924. 22 с.
- 17. Михайлов Д.М. Мировой финансовый рынок: тенденции и инструменты. М.: Экзамен, 2000. 766 с.
- 18. Мэтьюс М., Перера М. Теория бухгалтерского учета: Учебник / Пер. с англ. под ред. Я.В. Соколова, И.А. Смирновой. М.: Аудит, ЮНИТИ, 1999. 663 с.
- 19. Моисеева Н.К. Международный маркетинг: Учеб. пособие. М.: Центр экономики и маркетинга, 1998. 313 с.
- 20. Озеров И.Х. Основы финансовой науки: В 2 вып. Рига: Д. Гликсман, 1923. 364 с.
- 21. Основы международных валютно-финансовых и

References:

- 1. Babin E.P. Osnovy vneshneekonomicheskoi politiki. M.: Ekonomika; 1997. 126 s. [Babin E.P. Fundamentals of foreign economic policy. M.: Ekonomika; 1997. 126 p. (In Russ.)]
- 2. Blank I.A. Osnovy finansovogo menedzhmenta: V 2 t. K.: Nika-tsentr; 2001. 21 s. [Blank I.A. Fundamentals of financial management: In 2 parts. K.: Nika-tsentr; 2001. 21 p. (In Russ.)]
- 3. Van Khorn Dzh. Osnovy upravleniya finansami. Pod red. I.I. Eliseevoi. M.: Finansy i statistika; 2005. 799 s. [Van Khorn Dzh. Fundamentals of Financial Management. I.I. Eliseeva (Ed.). M.: Finansy i statistika; 2005. 799 p. (In Russ.)]
- 4. Gorlov I.Ya. Teoriya finansov. Izd. 2-e. SPb.; 1845. 272 s. [Gorlov I.Ya. The theory of finances. 2nd edition. SPb.; 1845. 272 p. (In Russ.)]
- 5. Kiduell D.S., Peterson R.L., Blekuell D.U. Finansovye instituty, rynki i den'gi. SPb.: Piter; 2000. 749 s. [Kiduell D.S., Peterson R.L., Blekuell D.U. Financial institutions, markets and money. SPb.: Piter; 2000. 749 p. (In Russ.)]
- 6. Kovalev V.V. Vvedenie v finansovyi menedzhment. M.: Finansy i statistika; 2004. 767 s. [Kovalev V.V. Introduction to financial management. M.: Finansy i statistika; 2004. 767 p. (In Russ.)]
- 7. Kovalev V.V. Finansovyi analiz: metody i protsedury. M.: Finansy i statistika; 2006. 559 s. [Kovalev V.V. Financial analysis: methods and procedures. M.: Finansy i statistika; 2006. 559 p. (In Russ.)]
- 8. Kosa L. Osnovy finansovoi nauki. M.: tipo-lit. t-va I.N. Kushnerev i K°; 1900. 185 s. [Kosa L. Fundamentals of financial science. M.: tipo-lit. t-va I.N. Kushnerev i K°; 1900. 185 p. (In Russ.)]
- 9. Krushvits L. Finansirovanie i investitsii. Neoklassicheskie osnovy teorii finansov. Pod red. V.V. Kovaleva i Z.A. Sabova. SPb.: Piter; 2000. 381 s. [Krushvits L. Financing and investment. Neoclassical fundamentals of the theory of finance. V.V. Kovalev and Z.A. Sabov (Eds). SPb.: Piter; 2000. 381 p. (In Russ.)]
- 10. Kutter M.I. Teoriya i printsipy bukhgalterskogo ucheta: Ucheb. posobie. M.: Finansy i statistika, Ekspertnoe byuro; 2000. 543 s. [Kutter M.I. Theory and principles of accounting: a tutorial. M: Finance and Statistics, Expert Bureau. 2000. 543 p. (In Russ.)]
- 11. Makkonnell K.R., Bryu S.L. Ekonomiks: Printsipy, problemy i politika: V 2 t. M.: Respublika; 2007. 956 s. [Makkonnell K.R., Bryu S.L. Economics: Principles, problems and politics: In 2 volumes. M.: Respublika; 2007. 956 p. (In Russ.)]
- 12. Marshall Dzh., Bansal V. Finansovaya inzheneriya: Polnoe rukovodstvo po finansovym novovvedeniyam. M.: INFRA-M;

- кредитных отношений: Учебник / Научн. ред. д-р. экон. наук, проф. А.В. Круглов. М.: ИНФРА-М, 2000. 431 с.
- 22. Основы страховой деятельности / Отв. ред. проф. Т.А. Федорова. М. БЕК, 2002 749 с.
- 23. Погорлецкий А.И. Экономика зарубежных стран: Учебник, СПб.: Изд-во Михайлова В.А., 2001. 491 с.
- 24. Полфреман Д., Форд Ф. Основы банковского дела. М.: ИНФРА-М, 1996. 287 с.
- 25. Рау К.Г. Основные начала финансовой науки: В 2 т. Пер. с нем., СПб., 1867. 965 с.
- 26. Робертсон Дж. Аудит /Пер. с англ. М.: KPMG; Ауд. фирма «Контакт», 1993. 568 с.
- 27. Сажин А.Ф., Смирнова Е.Е. Институты рынка. М.: БЕК, 1998. 287 с.
- 28. Соколов Я.В. Основы теории бухгалтерского учета. М.: Финансы и статистика, 2005. 495 с.
- 29. Шумистер Й.А. История экономического анализа: В 3-х т. Пер. с англ. / Под ред. В.С. Автономова. СПб.: Экономическая школа, 2001.-336 с.
- 30. Научно-образовательный портал «АЕТ ТКМ СФА» Ветрова А.Н. www.vetrovan.spb.ru.
- 1998. 782 s. [Marshall Dzh., Bansal V. Financial Engineering: A Comprehensive Guide to Financial Innovation. M.: INFRA-M; 1998. 782 p. (In Russ.)]
- 13. Maslennikov V.V. Faktory razvitiya natsional'nykh bankovskikh sistem. SPb.: Izd-vo SPbGUEF; 2000. 206 s. [Maslennikov V.V. Factors of development of national banking systems. SPb.: Izd-vo SPbGUEF; 2000. 206 p. (In Russ.)]
- 14. Matuk Zh. Finansovye sistemy Frantsii i drugikh stran: V 2 t. M.: Finstatinform; 1994. 22 s. [Matuk Zh. Financial systems of France and other countries: in 2 volumes. M.: Finstatinform; 1994. 22 p. (In Russ.)]
- 15. Medvedev Zh.A. Rossiya v okruzhayushchem mire. Dolgi Rossii. M.: Izd-vo MNEPU; 1999. 267 s. [Medvedev Zh.A. Russia in the world around us. The debts of Russia. M.: Izd-vo MNEPU; 1999. 267 p. (In Russ.)]
- 16. Men'kov F.A. Osnovnye nachala finansovoi nauki. M.: Fin.-ekon. byuro NKF SSSR; 1924. 22 s. [Men'kov F.A. Basic principles of financial science. M.: Fin.-ekon. byuro NKF SSSR; 1924. 22 p. (in Russ.)]
- 17. Mikhailov D.M. Mirovoi finansovyi rynok: tendentsii i instrumenty. M.: Ekzamen; 2000. 766 s. [Mikhailov D.M. The world financial market: trends and tools. M.: Ekzamen; 2000. 766 p. (In Russ.)]
- 18. Met'yus M., Perera M. Teoriya bukhgalterskogo ucheta: Uchebnik. Pod red. Ya.V. Sokolova, I.A. Smirnovoi. M.: Audit, YuNITI; 1999. 663 s. [Met'yus M., Perera M. Theory of Accounting: A Textbook. Ya.V. Sokolov, I.A. Smirnova (Eds.). M.: Audit, YuNITI; 1999. 663 p. (In Russ.)]
- 19. Moiseeva N.K. Mezhdunarodnyi marketing: Ucheb. posobie. M.: Tsentr ekonomiki i marketinga; 1998. 313 s. [Moiseeva N.K. International Marketing: a tutorial. M.: Tsentr ekonomiki i marketinga; 1998. 313 p. (In Russ.)]
- 20. Ozerov I.Kh. Osnovy finansovoi nauki: V 2 vyp. Riga: D. Gliksman; 1923. 364 s. [Ozerov I.Kh. Fundamentals of financial science: in 2 volumes. Riga: D. Gliksman; 1923. 364 p. (In Russ.)]
- 21. Osnovy mezhdunarodnykh valyutno-finansovykh i kreditnykh otnoshenii: Uchebnik. Pod red. A.V. Kruglova. M.: INFRA-M; 2000. 431 s. [Fundamentals of International Monetary and Financial Relations: A Textbook. A.V. Kruglov (Ed.). M.: INFRA-M; 2000. 431 p. (In Russ.)]
- 22. Osnovy strakhovoi deyatel'nosti. Pod red. T.A. Fedorova. M. BEK; 2002. 749 s. [Basis of insurance activities. T.A. Fedorov (Ed.). M. BEK; 2002. 749 p. (In Russ.)]
- 23. Pogorletskii A.I. Ekonomika zarubezhnykh stran: Uchebnik. SPb.: Izd-vo Mikhailova V.A.; 2001. 491 s. [Pogorletskii

A.I. Economics of foreign countries: a textbook. SPb.: Izd-vo Mikhailova V.A.; 2001. 491 p. (In Russ.)]

24. Polfreman D., Ford F. Osnovy bankovskogo dela. M.: IN-FRA-M; 1996. 287 s. [Polfreman D., Ford F. Fundamentals of banking. M.: INFRA-M; 1996. 287 p. (In Russ.)]

25. Rau K.G. Osnovnye nachala finansovoi nauki: V 2 t. SPb.; 1867. 965 s. [Rau K.G. The basic principles of financial science: In 2 vol. SPb.; 1867. 965 p. (In Russ.)]

26. Robertson Dzh. Audit. M.: KPMG. Aud. firma "Kontakt"; 1993. 568 s. [Robertson Dzh. Audit. M.: KPMG. Aud. firma "Kontakt"; 1993. 568 p. (In Russ.)]

27. Sazhin A.F., Smirnova E.E. Instituty rynka. M.: BEK; 1998. 287 s. [(Sazhin A.F., Smirnova E.E. Institutes of the market. M.: BEK; 1998. 287 p.(In Russ.)]

28. Sokolov Ya.V. Osnovy teorii bukhgalterskogo ucheta. M.: Finansy i statistika; 2005. 495 s. [Sokolov Ya.V. Fundamentals of accounting theory. M.: Finansy i statistika; 2005. 495 p. (In Russ.)]

29. Shumister I.A. Istoriya ekonomicheskogo analiza: V 3-kh t. Pod red. V.S. Avtonomova. SPb.: Ekonomicheskaya shkola; 2001. 336 s. [Shumister I.A. History of economic analysis: in 3 volumes. V.S. Avtonomov (Ed.). SPb.: Ekonomicheskaya shkola; 2001. 336 p. (In Russ.)]

30. Nauchno-obrazovatel'nyy portal "AET TKM SFA" Vetrova A.N. www.vetrovan.spb.ru. [Scientific and educational portal "AET TKM SFA" Vetrova A.N www.vetrovan.spb.ru (In Russ.)]

Сведения об авторе.

Ветров Анатолий Николаевич – инженер кафедры автоматики и процессов управления, президент ГМО «Академия когнитивных естественных наук», автор единой технологии когнитивного моделирования

Information about the author.

Anatoly N. Vetrov – Engineer, Department of Automation and Control Processes, President of the «Academy of Cognitive Sciences»; the author of the unique cognitive modeling technology

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Поступила в редакцию 26.12.2017.

Принята в печать 10.02.2018.

Conflict of interest.

The author declare no conflict of interest.

Received 26.12.2017.

Accepted for publication 10.02.2018.

Для цитирования: Ехлаков Ю.П., Малаховская Е.К.. Семантическая сеть формирования содержания текстового коммуникационного сообщения для продвижения мобильных приложений на потребительский рынок. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 129-138. DOI:10.21822/2073-6185-2018-45-1-129-138

For citation: Ehlakov Y.P., Malakhovskaya E.K Semantic network for forming the content of text messages for the promotion of mobile applications to the consumer market. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 129-138. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-129-138

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК: 659.113

DOI: 10.21822/2073-6185-2018-45-1-129-138

СЕМАНТИЧЕСКАЯ СЕТЬ ФОРМИРОВАНИЯ СОДЕРЖАНИЯ ТЕКСТОВОГО КОММУНИКАЦИОННОГО СООБЩЕНИЯ ДЛЯ ПРОДВИЖЕНИЯ МОБИЛЬНЫХ ПРИЛОЖЕНИЙ НА ПОТРЕБИТЕЛЬСКИЙ РЫНОК

Ехлаков Ю.П.¹, Малаховская Е.К.²

1-2Томский государственный университет систем управления и радиоэлектроники,

¹⁻²634050, г. Томск, пр. Ленина, 40, Россия,

Резюме. Цель. Цель данной работы заключается в описании подхода, позволяющем формировать эффективные коммуникационные сообщения для продвижения мобильных приложений на потребительский рынок специалистам, не компетентным в вопросах маркетинга и рекламы. Рынок мобильной разработки находится в массовом сегменте. Метод. Подход основан на комбинации методов: идеях семиотики, как одного из ключевых разделов теории коммуникации, методах искусственного интеллекта и шаблонах проектирования содержания коммуникационных сообщений в контексте накопленного опыта. В ходе исследования проведен анализ положений классического и Digital-маркетинга, копирайтинга, семиотики, психолингвистики, методологии Customer Development. Индукционный метод позволил описать некоторые закономерности составления эффективных коммуникационных сообщений, что нашло отражение в модели предметной области. Результат. Представлена концептуальная модель предметной области в виде семантической сети, описывающая основные понятия и отношения элементов маркетинга, необходимых для формирования содержания коммуникационного сообщения. Ключевыми понятиями в семантической сети являются «мобильное приложение» и «потребитель». В зависимости от маркетинговых характеристик данных понятий (особенности восприятия информации, свойств мобильного приложения и других) и должен быть сформирован рекламный текст. Семантическая сеть положена в основу проектирования шаблонов коммуникационных сообщений. Задача шаблонов, с одной стороны, формирование «каркаса» сообщения, подходящего для некоторого часто возникающего контекста как совокупности характеристик целевой группы потребителей, мобильных приложений, инструментов его распространения. С другой стороны, шаблон состоит из последовательности лексических единиц, подобранных с учетом маркетинговых характеристик объектов понятий, описанных семантической сетью, которые с наибольшей вероятностью спровоцируют потенциальных потребителей на совершение нужных продавцу действий. Представлены результаты апробации на примере деятельности группы разработчиков-энтузиастов. Вывод. Предложенный подход, может помочь малым ИТ-компаниям (в том числе стартапам) самостоятельно разрабатывать эффективные коммуникационные сообщения.

Ключевые слова: Интернет-маркетинг; малобюджетное продвижение; мобильное приложение; разработка коммуникационных сообщений; семантическая сеть; потребительский рынок; потребительские предпочтения; шаблоны проектирования содержания; B2C (C2C) рынок

¹e-mail:upe@tusur.ru, ²e-mail: elena_tusur@mail.ru

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

SEMANTIC NETWORK FOR FORMING THE CONTENT OF TEXT MESSAGES FOR THE PROMOTION OF MOBILE APPLICATIONS TO THE CONSUMER MARKET

Yuriy P. Ehlakov¹, Elena K.Malakhovskaya²

¹⁻²Tomsk Institute of Radioelectronics and Electronic Technology,

Abstract Objectives. The greatest potential for development of the mobile communications market is located in the mass segment. The aim of this work is to describe an approach allowing specialists who may not be competent in marketing and advertising to generate effective communication messages for promoting mobile applications to the consumer market. Methods. The approach is based on a combination of the following methods: the ideas of semiotics as one of the key elements of communication theory, artificial intelligence methods and patterns involved in the design of content of communication messages in the context of accumulated experience. In the study, provisions of classical and digital marketing, copywriting, semiotics, psycholinguistics as well as Customer Development methodology are analysed. The induction method made it possible to describe some regularities in the compilation of effective communication messages, which was reflected in the subject area model. Results. The conceptual model of the subject area in the form of a semantic network is presented, in which the basic concepts and relationships of marketing elements necessary for the formation of communication message content are described. The key concepts in the semantic network are the "mobile application" and the "consumer". Advertising texts are to be generated according to the marketing characteristics of these concepts (especially in terms of the perception of information, properties of the mobile application and others). The semantic network is the basis for the design of communication message templates. The task of the templates, on the one hand, is the formation of the "frame" of the message, suitable for some typically emerging context seen as the set of characteristics of the target group of consumers, mobile applications and the tools for its distribution. On the other hand, the template consists of a sequence of lexical units matched to the marketing characteristics of the conceptual objects described by the semantic network, which are most likely to induce potential consumers to commit the actions desired by the seller. The results of approbation are presented by the example of the activity of the group of enthusiastic developers. Conclusion. The proposed approach can help small IT companies (including start-ups) to independently develop effective communication messages.

Keywords: Internet Marketing; low-budget promotion; mobile application; development of communication messages; semantic network; consumer market; consumer preferences; content design templates; B2C (C2C) market

Введение. В настоящее время один из наиболее перспективных секторов экономики представлен информационными технологиями (ИТ) (в том числе мобильными приложениями), где даже малыми ресурсами могут быть созданы инновационные продукты, имеющие большой экономический потенциал.

Одним из перспективных направлений ИТ-рынка является мобильная разработка, которая перешла в массовый сегмент, где отдельный кластер составляют малые ИТ-компании (в том числе малый бизнес, стартапы, группы единомышленников). Они чаще всего работают по модели В2С (С2С) и реализуют собственными силами весь стек задач от технической разработки мобильного приложения (МП) до его тиражирования на потребительский рынок, объектом которого являются отдельные лица и домохозяйства [1].

Вместе с тем малые ИТ-компании, как правило, не имеют достаточного количества ресурсов и соответствующих компетенций в маркетинговой сфере, что не позволяет им организо-

¹⁻²4 Lenina Ave., Tomsk 634050, Russia,

¹e-mail:upe@tusur.ru, ²e-mail: elena_tusur@mail.ru

вать качественные маркетинговые коммуникации при продвижении на рынок своих МП. В качестве основного информационного носителя в процессе маркетинговых коммуникаций между разработчиком МП и потребителем выступает коммуникационное сообщение (КС), которое распространяется с целью передачи рациональной и эмоциональной информации о продукте, обязательным условием которой является провоцирование вполне определенной ментальновербальной или физической ответной реакции потребителя.

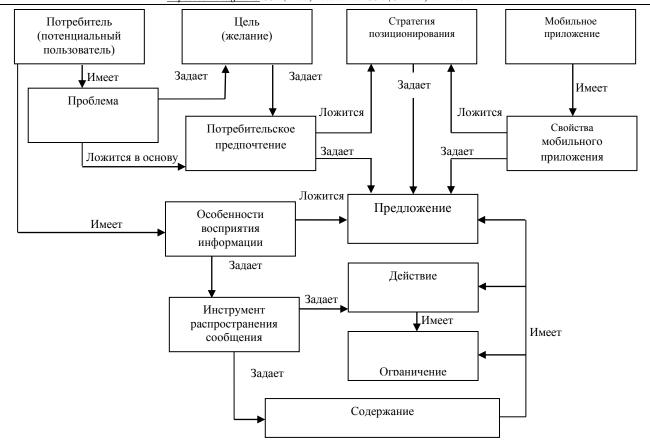
Для достижения этой цели в текстах КС (особенно в рамках Интернет-маркетинга) используются разнообразные лингвистические и психологические приёмы.

Постановка задачи. Основная проблема малых ИТ-компаний при создании КС заключается в том, что сформированный ими рекламный текст излагается на «языке» разработчика и мало ориентирован на потребности (ожидания) потребителей, что снижает эффективность коммуникации. Вместе с тем, потребительский рынок сильно дифференцирован и требует глубокого понимания функционирования его элементов. В этой связи представляется целесообразным использовать опыт успешных маркетинговых практик компаний и рекламных агентств, анализируя рекламные тексты, разработанные и опубликованные в традиционных и электронных СМИ для продвижения на потребительский рынок товаров и услуг [2-3].

Методы исследования. В статье предлагается подход к созданию семантической сети формирования текстовых коммуникационных сообщений для продвижения мобильных приложений на потребительский рынок, основанный на идеях семиотики, как одном из ключевых разделов теории коммуникации, методах искусственного интеллекта и шаблонах проектирования содержания КС в контексте накопленного опыта.

Семантическая сеть формирования содержания коммуникационного сообщениядля продвижения мобильного приложения. Анализ трудов классического маркетинга [4-5], а также работ, посвященных современным исследованиям в сферах Digital-маркетинга [6-7], психолингвистики [8-9], копирайтинга [10], методологии Customer Development [11] позволил сделать ряд умозаключений.

Во-первых, для формирования эффективного содержания КС необходимо выполнение трех условий:


- информация должна в полной мере раскрывать те свойства и характеристики мобильного приложения, которые интересны конкретному потребителю (адресату КС);
- информация в КС должна отображаться такими знаками и символами (в том числе складывающимися в лексические единицы), которые понятны и находят «отклик» в сознании потребителя;
- адресат должен доверять источнику (инструменту распространения) КС.

Во-вторых, в содержании КС должны содержаться уникальное торговое *предложение* для адресата КС, *призыв* к совершению действия, ожидаемого от него, *ограничение* к предложению (по времени, количеству и т.д.).

В-третьих, важнейшими стилевыми чертами рекламных текстов являются: ограниченность объема информации; прямая обращенность к адресату; дифференцированность подачи информации в зависимости от адресата; динамичность [12].

Представим модель формирования содержания текстового КС в виде семантической сети, где вершинам соответствуют определенные *понятия*, которые обозначают элементы маркетинга и факторы, влияющие на них, дуги задают *отношения* или ассоциации междуними, выраженные в глагольной форме (рис.1.) [13].

Ключевыми понятиями в семантической сети являются «мобильное приложение» и «потребитель». Понятию *«мобильное приложение»* соответствует информация о товарной группе, к которой относится продвигаемый программный продукт. Каждое мобильное приложение обладает определенными *свойствами*, которые могут быть выражены в терминах, описывающих цену, функциональные возможности, качество и т. д.

Puc. 1. Семантическая сеть разработки текстового содержания коммуникационного сообщения Fig. 1. Semantic network for the development of the text content of the communication message

Однако, учитывая особенности современного общества потребителей, важно отметить, что содержание КС зависит не только от характеристики и свойств предлагаемого мобильного приложения, но и что особенно важно, должно соответствовать потребностям, ценностям и мотивам его адресата [14].

Понятие «потребитель» (часто соотносится с потенциальным пользователем мобильного приложения) объединяет в себе группы получателей коммуникационных сообщений со сходными потребительскими предпочтениями (ожиданиями) по отношению к МП и особенностями восприятия информации, т.е. одинаково реагирующими на применяемые методы привлечения внимания к продукции. Адресация к целевым потребителям, их потребностям и ценностям может проявляться в рекламном дискурсе с помощью использования слов определенной направленности, например, молодежный сленг, элементы мужской или женской речи (при ориентации на гендер), некоторые универсалии детской речи и др. [15].

В [16] отмечается, что *гендерные особенности восприятия рекламной информации* для женской аудитории являются наиболее выгодными с точки зрения результативности рекламы, это обусловлено её психологическими особенностями: легкая восприимчивость, желание поделиться новинкой с окружающими (эффект «сарафанного» радио) и др.

В коммуникационном сообщении рекомендуется делать акценты на эмоциональную составляющую: преобладание образов и изображений над текстовым описанием; красочность; положительные эмоции (улыбки, радость); традиционные ценности (красота, здоровье, дом, семья) [16]. Важно уделить внимание практической части использования приложения: однозначность предназначения продукта (какую конкретную проблему решает), при этом не рекомендуется прямо говорить о негативных проблемах; легкость (простота) в использовании МП (интуитивно понятный интерфейс); в основу должна быть положена идея персонализации, т.е. женщина должна чувствовать, что мобильное приложение создано лично для неё.

КС, ориентированное на *мужчин*, напротив, должно затрагивать профессиональную сферу, оперировать четкими и логичными фактами; иметь перечисление функциональных ха-

рактеристик приложения, конкретных преимуществ. Кроме того, проведенное авторами статьи социологическое исследование показало, что женщины отдают предпочтение бесплатным приложениям, реже, предоставляющим возможность расширять функционал за дополнительную плату, в то время как мужчины приемлют любые способы приобретения МП, в том числе его покупку.

Группы потребителей рассматриваются как носители *«цели»* по использованию МП в практической деятельности (развлечься, выполнить определённую задачу и т.п.). Цель обуславливается *«проблемой»* (потребностью), которую потребитель хочет (может) решить с помощью МП. Акцент в КС, таким образом, важно делать не на собственно потребительских качествах и свойствах мобильного приложения, а на его символической ценности для отдельной группы потребителей. Особенности восприятия информации потребителей, кроме как при проектировании содержания КС («предложения» или рекламного посыла), также должны быть учтены в выборе дизайна, формы и формата представления КС, и *инструментов* их распространения (контекстная реклама, личная рассылка и т.п.).

Свойства и качества мобильного приложения, проблемы и характеристики групп потребителей, для которых оно разработано, ложатся в основу «стратегии позиционирования» на потребительском рынке. Существует широкий спектр стратегий позиционирования, в данном случае с учетом особенностей распространяемого продукта и обобщая накопленный опыт, предлагается использовать одну из пяти: существенная выгода от использования МП; решение ярко выраженной проблемы потребителя с помощью МП; наличие у МП отличительного атрибута (свойства) или сильного конкурентного преимущества; МП предназначено для ярко выраженной целевой аудитории; ассоциация использования МП к месту или времени.

Стратегия позиционирования раскрывается в *«предложении*», цель которого с одной стороны сформировать в сознании потребителей выгодные, отличные от продуктовконкурентов потребительские свойства МП, а с другой – решение конкретных проблем и (или) достижение желаемого результата. Описание предложения может быть изложено в вопросительном формате, формате новости, рекомендации и т. д. Содержание предложения в КС должно не только привлечь внимание представителей целевой аудитории, но и вызвать у неё ответную реакцию. Для этого в КС добавляют призывы к *действию*, побуждающие, например, более подробно ознакомиться с предложениями: *«выбирайте»*, *«покупайте»*, *«скачайте»*, *«приобретайте»* и т. д.

Важно отметить, что на выбор конкретного глагола влияет инструмент распространения КС, например, если это баннерная реклама, то для осуществления перехода на «посадочную страницу» следует использовать фразу «нажми» (на баннер), в печатных брошюрах уместнее побуждать позвонить или прийти в компанию лично (за подарком). В дополнении к этому, при описании действия в содержании КС может быть указано время и место где и когда потенциальный потребитель может совершить какое-либо действие: адрес офиса или сайта организации, время или дату - периода акций, распродажи, дату выдачи подарков, дату проведения семинара и т.д.

Понятие «ограничение» призвано усилить эффективность КС, стимулируя «потребителя» совершить «действие» в ближайшее время («прямо сейчас», «только 2 дня»). Ограничением может служить время («только 3 дня», «только в декабре», «с 1 по 15 июня» и др.), количество продукта или услуги («только первым трём покупателям» и др.) Представленная семантическая сеть является концептуальной моделью предметной области, описывающей основные понятия и отношения элементов маркетинга, и может служить основой для формирования шаблонов содержания текстовых КС.

Понятие шаблона как средства разработки и проектирования впервые описано в работе «A Pattern Language: Towns, Buildings, Construction», где изложена концепция языка шаблонов как «структурированного подхода к описанию эффективных методов проектирования в контексте накопленного опыта» [17]. Идея использования шаблонов состоит не в том, чтобы бездумно копировать результаты чужой работы (рекламных текстов), а в том, чтобы накопленный маркетинговый опыт экспертов данной области и проверенные методы решения проблемы использо-

вать для составления и выбора варианта КС [18-20], содержание которого будет наилучшим образом соответствовать основным характеристикам потребителей мобильного приложения на потребительском рынке.

Таким образом, задача проектирования шаблонов текстовых KC — сформировать последовательность лексических единиц (слов, словосочетаний), которые с наибольшей вероятностью спровоцируют потенциальных потребителей на совершение нужных продавцу (разработчику МП) действий, превратив их тем самым в реальных потребителей, что будет способствовать эффективности рекламного воздействия.

В основу разработки шаблонов КС положены совокупности лексических единиц, подобранные с учетом маркетинговых характеристик объектов понятий (табл. 1).

Таблица 1. Фрагмент лексических единиц, относящихся к понятию «Особенности восприятия информации» потребителей по возрастным группам

Table 1. Fragment of lexical units related to the concept of «Peculiarities of the perception of information» by consumers by age groups

Объекты	by consumers by age groups	
понятия	Маркетинговые характеристики объекта	Лексические единицы
Objects	Marketing characteristics of the property	Lexical units
notions		
Дети до 6 лет Children under 6 years old (родители parents)	Решение о приобретении МП для детей до 6 лет, принимают их родители. Факторы, формирующие наполнение рекламы: — должно быть описание приложение с перечислением полезных для ребенка функций; — негативно относятся к встроенной в МП рекламе; — отдают предпочтение педагогической составляющей приложения и качеству продукта; — необходимо указать на какую возрастную группу рассчитан продукт.	Развивает, увлекает, заинтересовывает, не оставит равнодушным Красочное, интересное, веселое, обучающее У вас есть прекрасная возможность поучаствовать в этом вместе с ребенком для детей, для лет
Младшие школьники (7-14 лет) Younger schoolchildren (7-14 years)	Ребенок включается во взрослую жизнь, становится уверенным пользователем мобильных устройств, легко ориентируется в использовании МП (особенно игровых), однако он еще не умеет ограничивать свои запросы и использовать представленные навыки рационально. Факторы, формирующие наполнение рекламы: — юмор, яркость и динамика; — привлекает больше в движение (картинка) нежели смысл сообщений; — стремятся выделиться (быть лучше); — стремиться к признанию и популярности; — активное подражание своим кумирам (спортсмены, супер-герои и т.п.)	Супер-герой уже на мобильном Самое модное приложение С ним ты удивишь своих друзей Сможешь ли ты обогнать своих друзей?
Подростки (15-19 лет) Teens (15-19 years)	Группа представителей «переходного», «критического», «трудного» возраста, которые стремятся к осмыслению «своего места» в жизни, ориентируясь на сверстников и СМИ. Самостоятельно принимают решения в вопросах, какими МП пользоваться, что устанавливать и т.п. Факторы, формирующие наполнение рекламы: — сильное влияние оказывает среда; — тяготеют к престижу бренда; — не признают мультипликационных образов.	Такого ты еще не видел!, Успей получить бесплатную версию прямо сейчас!, Выделись в кругу своих сверстников, Самооценка, самоутверждение, общественное мнение. Будь в центре внимания!

В табл.1 представлены лексические единицы, относящиеся к объектам понятия «Особенности восприятия информации», подобранные с учетом возрастных особенностей потребителей МП. В основу языка проектирования шаблонов КС положены три группы предметноориентированных лексических конструкций (ЛК), удовлетворяющих следующим требованиям: они должны быть достаточно простыми для использования маркетологами и специалистами, не обладающими серьезными навыками в инженерии знаний; применимы для широкого спектра КС, легко расширяемы для поддержки описания новых типов задач генерации КС. Первая

группа ЛК задаёт формат рекламного посыла; вторая группа описывает переменные, относящиеся к характеристикам объектов понятий «мобильное приложение» (их цену, наименование, функционал и т.п.) или «потребитель» (указывают потребительские предпочтения, которые необходимо учитывать при выборе лексических единиц); третья группа ЛК, усиливает рекламный посыл, основываясь на особенностях восприятия рекламной информации потребительскими группами.

Структура и состав шаблонов содержания КС, а также задаваемые ими лексические единицы, определяются экспертами предметной области совместно с инженерами знаний через обобщение успешных практик маркетинговых агентств, анализ рекламных текстов, разработанных и опубликованных в традиционных и электронных СМИ для продвижения на потребительский рынок мобильных приложений.

В табл. 2 приведены примеры *шаблонов содержания КС*, сгруппированные в зависимости от формата представления (изложения) рекламного посыла.

Таблица 2. Фрагмент представления шаблонов содержания коммуникационного сообщения в зависимости от формата представления рекламного посыла

Table 2. A fragment of presentation of content message templates depending on the presentation format of the advertising message

Формат КС Format of the communication message	Общий вид шаблона КС General view of the communi- cation message template	Шаблон КС Communication message tem- plate	Пример использования Example of use
Вопрос Question	[Вопрос действия] <вид MП>? [Зачем платить дорого?!] [Question of action] <mp type="">? [Why pay expensive?!]</mp>	[Ищите, ждёте, в поисках, хотите и др.] <вид МП>? [Зачем платить дорого?!] [Look, wait, search, want, etc.] <type mp="">? [Why pay expensive?!]</type>	Ищите СУБД? Зачем платить дорого?! Looking for DBMS? Why pay dearly ?!
	[Обращение к пользователям МП], перейдем на <потребительские свойства МП> мобильный сервис <наименование МП>?	[Дамы, женщины, девушки], перейдем на <потребительские свойства МП, интересные женщинам> мобильный сервис <наименование МП>?	Дамы, перейдем на простой и надежный мобильный сервис «Фитнес тренер»?
Новость News	<Наименование МП> - [характеристика МП, описывающее качество МП, важное для мужчин] мобильное решение, которое обеспечивает ⟨главная функция МП>.	«Наименование МП» - [передовое, новое, современное, обновленное] мобильное решение, которое обеспечивает <главная функция МП».	Avira Free Antivirus» — передовое мобильное решение, которое обеспечивает полноценную защиту от всех видов угроз вашего мобильного устройства, защищает информацию и личные данные.
	Внимание $< Oбращение к$ пользователям $M\Pi>$!	Внимание <i>< пользователям МП></i> !	Внимание бухгалтерам!
Утверждение Statement	«Наименование МП» [фраза, описывающая качество МП, ориентированная на главную ценность потребителя]!	<Наименование МП> [сохраняет традиции качества]!	АВСZОО – сохраняет традиции качественного образования детей!
Предложение Sentence	«Целевое действие, которому посвящено МП» с удовольствием в мобильном приложении <наименование МП»	«Целевое действие, которому посвящено МП> с удовольствием в мобильном приложении <наименование МП>	Учите английский язык с удовольствием в мобильном приложении ABCZOO

Сформированное множество шаблонов содержания коммуникационных сообщений составляет базу данных, позволяющую малым ИТ-компаниям, подобрать тот, который задаст основу для эффективного КС с учетом различных факторов, характеризующих разработанный продукт и его потенциальных потребителей.

Механизм выбора построен на основании теории множеств, правил продукции и после-

довательного отбора объектов понятий, характеризующих целевую аудиторию, тип потребительского поведения, стратегию позиционирования, инструмент распространения КС и структурный элемент КС. Уточнение правил продукции и оценку эффективности коммуникационного воздействия предполагается проводить на основании реакции целевой аудитории на сгенерированные рекламные тексты на основе анализа показателя конверсии (отношения числа целевых действий (переход на сайт, содержащий информацию о МП, загрузку МП) к количеству пользователей, имевших контакт с КС, выраженного в процентах).

Обсуждение результатов. В Томском государственном университете систем управления и радиоэлектроники (ТУСУР) в рамках технологии группового проектного обучения с 2011 года реализуется проект по разработке и тиражированию мобильных приложений: АОИ-1102 «Mobileapplications». За 6 лет существования проекта в GooglePlay размещено более 15 мобильных приложений (Развивайка, АВС Zoo, Русско-английский разговорник (FREE) и др.). При формировании текстовой рекламы для распространения МП на потребительский рынок использовался набор шаблонов, разработанный на основе обобщения опыта различных маркетинговых агентств и местных ИТ-компаний.

Например, в рамках продвижения детского мобильного приложениядля изучения английского языка «ABCZoo» было определено две целевые группы потребителей: дети и их родители. Представители данных групп с точки зрения выстраивания маркетинговых коммуникаций обладают не схожими особенностями восприятия информации, целями использования МП и т.п., что обуславливает необходимость формирования отдельных КС, состав и лексические единицы которых различны.

Таблица 3. Коммуникационные сообщения для мобильного приложения «ABCZoo»

Table 3. Communication messages for the mobile application «ABCZoo»

Table 3. Communication messages for the mobile application «ABCZoo»				
Группа потребителей Group consumers	Шаблон Template	Итоговое сообщение Summary message		
Дети до 6 лет (родители) Children under 6 years old (parents)	«Авторитетные лица» [рекомендуют, советуют, обязывают] для «Качества, которые развивает мобильное приложение» «указание возраста детей» лет использовать [обучающее, развивающее, увлекательное] мобильное приложение «Наименование приложения». Нажми, чтобы скачать «условие установки» прямо сейчас. «Authoritative persons» [recommend, advise, oblige] for «Qualities that the mobile application develops» «indication of the age of children» years to use [training, developing, exciting] mobile application «Name of application». Click to download the «installation condition» right now.	Психологи рекомендуют для изучения английского языка детьми 4-5 лет использовать обучающее мобильное приложение <i>ABCZoo</i> . Нажми, чтобы скачать бесплатно прямо сейчас. Psychologists recommend using ABCZoo's mobile mobile application to learn English by children of 4-5 years of age. Click to download for free right now.		
Младшие школьники (7-14 лет) Younger school- children (7-14 years)	[Супер-герой, модный помощник] уже на твоё мобильном! <i>Ключевое действие — цель МП></i> с <i><наименование героя из МП></i> и удивляй своих друзей! Нажми, чтобы начать [скачивать, устанавливать, играть] <i>сусловие установки></i> прямо сейчас. Super-hero, fashion assistant] is already on your mobile! <i>compared to the purpose of the MP></i> with <i>compared to the hero from the MP></i> and surprise your friends! Click to start [download, install, play] <i>compared to the total total</i>	Супер-герой уже на твоём мобильном! Изучай английский язык с Бэтменом и удивляй своих друзей! Нажми, чтобы начать играть бесплатно прямо сейчас. Super-hero is already on your mobile! Learn English with Batman and surprise your friends! Click to start playing for free right now.		

В табл. 3 приведены шаблоны и итоговые КС, используемые в продвижении данного мобильного приложения на потребительский рынок. Для обоснования прикладного эффекта применения изложенного в статье методического аппарата, была проанализирована динамика количества установок мобильного приложения «АВСZоо». Темп роста установок МП до и после использования коммуникационных сообщений, составленных на основании шаблонов, увеличился в 3 раза. Подобная тенденция отмечается и в рамках продвижения других продуктов. Та-

ким образом, полагается, что за счет формирования и использования КС, в которых грамотно подобраны лексические единицы, учитывающие особенности целевых групп, возможноповысить эффективность коммуникации между разработчиками и потенциальными пользователями МП и, в конечном счете, увеличить количество установок (объем прибыли).

Вывод. Разработанная семантическая сеть формирования содержания текстового КС, основанная на идеях классического и Digital-маркетинга, копирайтинга, семиотики, психолингвистики, а также методологии Customer Development и методах искусственного интеллекта положена в основу проектирования шаблонов КС. Шаблоны проектирования текстового содержания КС задают лексические единицы, представляющие каркас КС, подходящий для некоторого часто возникающего контекста как совокупности характеристик целевой группы потребителей, мобильных приложений, инструментов распространения КС.

Таким образом, использование шаблонов проектированиятекстового содержания КС в контексте накопленного опыта, ориентировано на решение важной задачи по организации интернет - рекламы при продвижении на рынок мобильных приложений. Предложенный подход поможет, в первую очередь, малым отечественным ИТ-компаниям (в т.ч. стартапам) самостоятельно разрабатывать грамотные коммуникационные сообщения при продвижении мобильных приложений на потребительский рынок, что, в конечном счете, сохранит сектор мобильной разработки в массовом сегменте и увеличит объем создаваемой инновационной продукции.

Библиографический список:

- 1. Особенности потребительского рынка [Электронный ресурс]. Режим доступа: http://adload.ru/page/mark2_427.htm
- 2. Бабурин В.А., Яненко М.Е. Маркетинг свободного программного обеспечения: новые технологии и инновационные маркетинговые решения // ТТПС. 2011. №15. C.87-92
- 3. Полякова О. В. Рекламные технологии как инструментарий маркетинга продвижения // Известия ТулГУ. Экономические и юридические науки. 2012. №1-1. С.108-122
- 4. Котлер, Ф. Основы маркетинга: краткий курс: [перевод с английского] / Филип Котлер. Москва [и др.]: Вильямс, 2012. 488 с
- 5. Кеннеди, Дэн. Секретное оружие маркетолога: найдите ваше уникальное преимущество, превратите его в мощное рекламное сообщение и донесите до правильных клиентов / Дэн Кеннеди; [пер. с англ. А.Яковенко]. М.: ГИППО, 2012. 203 с.
- 6. Пономарева А.М. Интегрированные интерактивные offon-line-коммуникации на рынке digital-маркетинга в Интернет-экономике // Государственное и муниципальное управление. Ученые записки СКАГС. 2015. №1. С.58-64
- 7. Пантелеева И.А., Прокопьева Г.Ю. Интерактивные технологии в рекламе: особенности построения рекламной коммуникации в интернет-сегменте // Вестник ТГПУ. 2014. №3 (144). С.172-178
- 8. Поварницына М.В. Манипуляция, суггестия, аттракция и фасцинация в креолизованном тексте // Известия ВГПУ. 2016. №2 (106). С.117-124
- 9. Квят А.Г. Позиционирование товаров и услуг в рекламном тексте: лингвокогнитивный подход // Вестн. Том. гос. ун-та. 2009. №319.
- 10. Костенко Е.В. Копирайтинг и рерайтинг в сетевых СМИ новые виды журналистики? // Изв. Сарат. ун-та Нов.

References:

- 1. Osobennosti potrebitel'skogo rynka [Elektronnyi resurs]. Rezhim dostupa: http://adload.ru/page/mark2_427.htm [Features of the consumer market [Electronic resource]. Available at: http://adload.ru/page/mark2_427.htm (In Russ.)]
- 2. Baburin V.A., Yanenko M.E. Marketing svobodnogo programmnogo obespecheniya: novye tekhnologii i inno-

- сер. Сер. Филология. Журналистика. 2014. №1. С.110-113
- 11. Окольнишникова И. Ю. К вопросу о методике оценки эффективности брендинга и расчета уровня вовлеченности покупателей в бренд // Экономические исследования. 2011. №1. С.7
- 12. Лексико-семантические особенности рекламного текста [Электронный ресурс]. Режим доступа: http://schpori.narod.ru/dip/d1.html
- 13. Ехлаков Ю. П., Бараксанов Д. Н., Малаховская Е. К. Модели и процедуры продвижения программных продуктов на рынок корпоративных продаж // Доклады ТУСУР. 2017. Т. 20, № 3. С. 90–97.
- 14. Ластовецкая, М.А. Вариативность англоязычного рекламного текста как фактор его прагматического воздействия : автореф. дис. . . . канд. филол. наук : 10.02.04 / М.А. Ластовецкая ; Моск. гос. лингв. ун-т, 2005.-24 с
- 15. Карасик, В.И. О типах дискурса // Языковая личность : институциональный и персональный дискурс : сб. науч. тр. Волгоград : Перемена, 2000. С. 5–20.
- 16. Мамаева В. Ю. Гендерные особенности поведения потребителей // Вестник ТГЭУ. 2012. №3. С.87-97
- 17. Alexander C., Ishikawa S., Silverstein M. A (1977) Pattern Language: Towns, Buildings, Construction / C. Alexander, S. Ishikawa, M. Silverstein.
- 18. Rian van der Merwe Design Patterns: When Breaking The Rules Is OK [Электронныйресурс]. Режим доступа: https://www.smashingmagazine.com/2012/06/design-patterns-when-breaking-rules-ok/
- 19. Text Message Template Ideas To Increase Customer Engagement [Электронныйресурс]. Режимдоступа: https://www.directsms.com.au/text-message-template-ideas-improve-customer-engagement/
- 20. A Guide To Effective LinkedIn Sales Messages [Templates] [Электронный ресурс]. Режим доступа:https://linkedprospect.com/guide-effective-linkedin-sales-messages-templates/
- vatsionnye marketingovye resheniya. TTPS. 2011;15:87-92. [Baburin V.A., Yanenko M.E. Marketing of free software: new technologies and innovative marketing solutions. TTPS. 2011;15:87-92. (In Russ.)]
- 3. Polyakova O.V. Reklamnye tekhnologii kak instrumentarii marketinga prodvizheniya. Izvestiya TulGU. Ekonomicheskie i yuridicheskie nauki. 2012;1-1:108-122. [Polyakova O.V. Ad-

- vertising technologies as a marketing promotion toolkit. News of the Tula state university. Economic and legal sciences. 2012;1-1:108-122. (In Russ.)]
- 4.Kotler F. Osnovy marketinga: kratkii kurs. Moskva: Vil'yams; 2012. 488 s. [Kotler F. Fundamentals of Marketing: a short course. Moscow: Williams; 2012. 488 p. (In Russ.)]
- 5. Kennedi D. Sekretnoe oruzhie marketologa: naidite vashe unikal'noe preimushchestvo, prevratite ego v moshchnoe reklamnoe soobshchenie i donesite do pravil'nykh klientov. M.: GIPPO; 2012. 203 s. [Kennedi D. The secret weapon of a marketer: find your unique advantage, turn it into a powerful advertising message and report it to the right customers. M.: GIPPO; 2012. 203 p. (In Russ.)]
- 6. Ponomareva A.M. Integrirovannye interaktivnye off-on-line-kommunikatsii na rynke digital-marketinga v Internet-ekonomike. Gosudarstvennoe i munitsipal'noe upravlenie. Uchenye zapiski SKAGS. 2015;1:58-64. [Ponomareva A.M Integrated interactive off-line communications in the market of digital marketing in the Internet economy. State and municipal management. Uchenye zapiski SKAGS. 2015;1:58-64. (In Russ.)]
- 7.Panteleeva I.A., Prokop'eva G.Yu. Interaktivnye tekhnologii v reklame: osobennosti postroeniya reklamnoi kommunikatsii v internet-segmente. Vestnik TGPU. 2014;3(144):172-178. [Panteleeva I.A., Prokop'eva G.Yu. Interactive technologies in advertising: the features of building advertising communication in the Internet segment. Tomsk State Pedagogical University Bulletin. 2014;3(144):172-178. (In Russ.)]
- 8.Povarnitsyna M.V. Manipulyatsiya, suggestiya, attraktsiya i fastsinatsiya v kreolizovannom tekste. Izvestiya VGPU. 2016;2(106):117-124. [Povarnitsyna M.V. Manipulation, suggestion, attraction and fascination in the creolised text. Izvestiya VGPU. 2016;2(106):117-124. (In Russ.)]
- 9. Kvyat A.G. Pozitsionirovanie tovarov i uslug v reklamnom tekste: lingvokognitivnyi podkhod. Vestn. Tom. gos. un-ta. 2009;319. [Kvyat A.G. Positioning of goods and services in the advertising text: a linguistic cognitive approach. Tomsk State University Journal. 2009;319. (In Russ.)]
- 10. Kostenko E.V. Kopiraiting i reraiting v setevykh SMI novye vidy zhurnalistiki? Izv. Sarat. un-ta. Nov. ser. Ser. Filologiya. Zhurnalistika. 2014;1:110-113. [Kostenko E.V. Copywriting and rewriting in online media are the new types of journalism? Izv. Saratov Univ. (N.S.), Ser. Philology. Journalism. 2014;1:110-113. (In Russ.)]
- 11. Okol'nishnikova I. Yu. K voprosu o metodike otsenki effektivnosti brendinga i rascheta urovnya vovlechennosti pokupatelei v brend. Ekonomicheskie issledovaniya. 2011;1:7. [Okol'nishnikova I. Yu. On the question of the methodology

- for evaluating the effectiveness of branding and calculating the level of customer involvement in the brand. Ekonomicheskie issledovaniya. 2011;1:7. (In Russ.)]
- 12. Leksiko-semanticheskie osobennosti reklamnogo teksta [Elektronnyi resurs]. Rezhim dostupa: http://schpori.narod.ru/dip/d1.html [Lexic-semantic features of the advertising text [Electronic resource]. Available at: http://schpori.narod.ru/dip/d1.html (In Russ.)]
- 13. Ekhlakov Yu. P., Baraksanov D. N., Malakhovskaya E. K. Modeli i protsedury prodvizheniya programmnykh produktov na rynok korporativnykh prodazh. Doklady TUSUR. 2017;20(3):90–97. [Ekhlakov Yu. P., Baraksanov D. N., Malakhovskaya E. K. Models and procedures for promoting software products to the corporate sales market. Proceedings of TUSUR University. 2017;20(3):90–97. (In Russ.)]
- 14. Lastovetskaya M.A. Variativnost' angloyazychnogo reklamnogo teksta kak faktor ego pragmaticheskogo vozdeistviya. Avtoref. dis. ... kand. filol. nauk: 10.02.04. Mosk. gos. lingv. un-t, 2005. 24 s. [Lastovetskaya M.A. Variability of the English-language advertising text as a factor of its pragmatic impact. Published summary of Candidate of Philological Sciences thesis. Moscow State Linguistic University, 2005. 24 p. (In Russ.)]
- 15. Karasik V.I. O tipakh diskursa. Yazykovaya lichnost': institutsional'nyi i personal'nyi diskurs: sb. nauch. tr. Volgograd: Peremena; 2000. S. 5–20. [Karasik V.I. On the types of discourse. Language personality: institutional and personal discourse: scientific work collection. Volgograd: Peremena; 2000. P. 5–20. (In Russ.)]
- 16. Mamaeva V. Yu. Gendernye osobennosti povedeniya potrebitelei. Vestnik TGEU. 2012;3:87-97. [Mamaeva V. Yu. Gender features of consumer behavior. Vestnik TGEU. 2012;3:87-97. (In Russ.)]
- 17. Alexander C., Ishikawa S., Silverstein M. A. Pattern Language: Towns, Buildings, Construction. 1977.
- 18. Van der Merwe R. Design Patterns: When Breaking The Rules Is OK [Elektronic resource]. Available at: https://www.smashingmagazine.com/2012/06/design-patterns-when-breaking-rules-ok/
- 19. Text Message Template Ideas To Increase Customer Engagement [Elektronic resource]. Available at: https://www.directsms.com.au/text-message-template-ideas-improve-customer-engagement/
- 20.A Guide To Effective LinkedIn Sales Messages [Templates] [Elektronic resource]. Available at: https://linkedprospect.com/guide-effective-linkedin-sales-messages-templates/

Сведения об авторах:

Ехлаков Юрий Поликарпович – доктор технических наук, профессор, заведующий кафедрой автоматизации и обработки информации.

Малаховская Елена Константиновна – ассистент кафедры автоматизации и обработки информации. Information about the authors.

Yuriy P. Ehlakov – Dr.Sci (Technical), Prof., Department of Automation and Information Processing.

Elena K. Malakhovskaya – Assistant, Department of Automation and Information Processing.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 23.12.2017.

Принята в печать 10.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 23.12.2017.

Accepted for publication 10.02.2018.

Для цитирования: Кадиев И.П., Кадиев П. Основы индексной структуризации пхп - комбинаторных конфигураций. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 139-146. DOI:10.21822/2073-6185-2018-45-1-139-146

For citation: Kadiev I.P., Kadiev P.A. Fundamentals of index structuring of nxn - combinatorial configurations. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45(1): 139-146. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-139-146.

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК: 519.5

DOI: 10.21822/2073-6185-2018-45-1-139-146

ОСНОВЫ ИНДЕКСНОЙ СТРУКТУРИЗАЦИИ NXN - КОМБИНАТОРНЫХ КОНФИГУРАЦИЙ

Кадиев И.П.¹, Кадиев П.А.²

¹Отделение - Национальный банк по Республике Дагестан Южного главного управления Центрального банка Российской Федерации,

367000, г. Махачкала, ул. Даниялова, 29, Россия,

 2 Дагестанский государственный технический университет,

²367026, г. Махачкала, пр.И.Шамиля,70, Россия

¹⁻²e-mail: islam – kadi@mail.ru

Резюме. Цель. Разработать новый подход к формированию конфигураций из элементов пхп -массивов множеств, перестановками их элементов, в основе которого требование упорядочение структур строк и столбцов на основе индексного признака. Метод. В основе предлагаемого метода «индексной структуризации» nxn – массивов множеств функциональные зависимости значений индексов элементов окружения, непосредственно расположенных вокруг любого из элементов формируемой перестановками конфигурации, от значений индексов элемента, который они окружают. Формирование конфигураций из элементов пхп – массивов множеств осуществляется перестановками элементов строк и столбцов по заданным правилам индексации, в основе которых функциональная зависимость значений индексов элементов окружения от значения индексов элемента, который они окружают. Результат. Предложен новый подход к организации перестановок элементов информационных массивов, определенный авторами как «индексная структуризация», характеризующая однозначное определение правилами индексации элементов комбинаторных конфигураций её структурных свойств. Сформулированы общие требования к функциональным зависимостям значений индексов элементов окружения, приведены эти зависимости. Введено понятие коэффициентов индексной удаленности элементов окружения и исследовано их влияние на структуру формируемых конфигураций. Исследованы свойства формируемых по предложенным зависимостям конфигураций и области возможного применения их в качестве моделей дискретных систем и процессов. Вывод. Предложенный подход к формированию конфигураций, образованных перестановками элементов пхп – массивов множеств, в основе которого - «индексная структуризация», характеризующая однозначное определение правилами индексации элементов комбинаторных конфигураций её структурных свойств, создает основу индексной структуризации комбинаторных конфигураций.

Ключевые слова: индексная структуризация, индексация окружения, перестановки элементов, пхп -комбинаторные конфигурации, индексное упорядочение элементов

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

FUNDAMENTALS OF INDEX STRUCTURISATION OF NXN-COMBINATORY CONFIGURATIONS

Islamudin P. Kadiev¹, Pashaj A. Kadiev²

¹Branch - National Bank for the Republic of Daghestan Southern Central Administration of the Central Bank of the Russian Federation,

¹29 Danialova , Makhachkala 367000, Russia,

²Daghestan State Technical University,

70 I. Shamilya Ave., Makhachkala 367026, Russia,

¹⁻²e-mail: islam – kadi@mail.ru

Abstract Objectives The aim of the research was to develop a new approach to the configuration formation from the elements of nxn-arrays of sets by the permutations of their elements based on the requirement to order the structures of rows and columns according to the index characteristic. Methods. The proposed method of "index structurisation" of nxn-arrays of sets is based on the functional dependencies of the index values of the surrounding elements, located directly around any of the elements formed by the configuration permutation, from the index values of the element they surround. The configuration formation from elements of nxn-arrays of sets is carried out by permutations of row and column elements according to given indexing rules and based on the functional dependency of the index values of the surrounding elements from the index values of the element they surround. Results. A new "index structurisation" approach to the organisation of elemental permutations of information arrays characterising the unique definition of the elements of combinatorial configurations of its structural properties by the rules of indexing, is proposed. General requirements are formulated for the represented functional dependencies of the index values of surrounding elements. The notion of the index remoteness coefficients of surrounding elements is introduced and their influence on the structure of configurations formed is investigated. The properties of the configurations formed by the proposed dependencies as well as the scope of their possible application as discrete system and process models are investigated. Conclusion. The proposed approach to configuration using permutations of elements of nxn-array of sets, based on the "index structurisation" characterising the unique rules of indexing the elements of combinatorial configurations of its structural properties, establishes a basis for index structurisation of combinatorial configurations.

Keywords: index structuring, surrounding indexing, permutations of elements, nxn - combinatorial configurations, index ordering of elements

Введение. Вопросам перестановок элементов *пхп* - матричных конфигураций в комбинаторике уделяется достаточно много внимания [1-2, 6]. Предложено множество методов перестановок, как на уровне строк и столбцов, так и на уровне перестановок элементов между строками и столбцами [3-5]. Разработка новых методов перестановок и в настоящее время остается востребованной задачей.

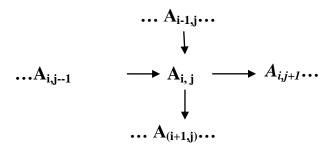
Постановка задачи. Анализ существующих методов перестановок показал, что в их основе некоторое правило, предопределяющее свойства формируемых конфигураций.

Общим для результатов всех методов перестановок является то, что все они изменяют, принятую в массивах множеств матричного типа, классическую систему индексации элементов, которая определяет местоположение элементов. Изменения местоположения элементов приводит к изменению структуры массива.

Таким образом, любые перестановки приводят к изменениям индексации, что сопровождается изменением ее структуры и наоборот, структура определяет систему индексации и сама определяется этой системой. Задание правил индексации одновременно предопределяет её структуру. [1-2, 6]. Приведенное выше обстоятельство, а также взаимные зависимости систем индексации элементов и структур компонентов массивов множеств, могут быть использованы для задания правил перестановки, определяющих структуру формируемой конфигурации, через требование к системе индексации и наоборот.

Задание правил индексации элементов при перестановках в массивах множеств может быть определено как «индексная структуризация» формируемых перестановками элементов конфигураций.

Индексная структуризация — процессы формирования комбинаторных конфигураций, перестановками элементов nxn - массивов множеств, при которых правила индексного упорядочения расположения элементов в строках и столбцах, определяющие их структуру, задаются системой индексации.


Методы исследования. В основе предлагаемого метода «индексной структуризации» *пхп* –массивов множеств функциональные зависимости значений индексов элементов окружения, непосредственно расположенных вокруг любого из элементов формируемой перестановками конфигурации, от значений индексов элемента, который они окружают.

Анализ существующих методов перестановок показал, что указанный выше признак функциональной зависимости значений индексов элементов окружения от значений индексов элемента, который они окружают, в них не использован. Особенность индексной структуризации состоит в том, что требования к структурным свойствам формируемых перестановками элементов конфигураций, могут рассматриваться как требования к системе индексации их элементов, к их индексным свойствам. [5-8]

Требования к индексным свойствам могут быть сформулированы в виде определенной индексной упорядоченности — закономерности в индексации элементов, в виде определенной закономерности индексации элементов массивов.

Более определенным, с точки зрения системности решений, представляется задание этих требований в виде функциональных зависимостей значений индексов элементов в компонентах (строках или столбцах массивов) формируемых конфигураций.

При этом можно отметить, что при «классической» индексации (рис.1) такие зависимости уже использованы: в строках первые индексы постоянны, а вторые увеличиваются на единицу от начала строки к ее концу.

Puc. 1 Общий вид индексации окружения элемента Aij при классической индексации Fig. 1 General view of the indexing of the environment of the element Aij under classical indexing

В столбцах имеет место эта же закономерность, но относительно первых символов, при постоянстве вторых.

В общем случае функциональные зависимости индексов в формируемых конфигурациях могут быть, для двумерных массивов, представлены так, как это приведено на рис. 2. Функции $F_1(i,j) \div F_4(i,j)$ являются зависимостями значений индексов окружения от значений индексов элемента $A_{i,j}$, который они окружают.

Первый из элементов индексов этих функций — i, определяет номер строки (множества), из которого берется элемент окружения, второй элемент индексов — j, указывает местоположение элемента в выбранной строке или столбец, из которого выбирается элемент окружения.

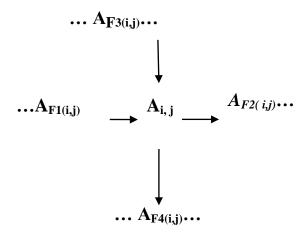


Рис.2 Общий вид индексации элементов окружения элемента Aij Fig.2 General view of indexing of elements of environment of element Aij

Задача формулировки требований, к структуре и индексации формируемой перестановками конфигурации, сводится к определению приведенных выше функций зависимостей значений индексов элементов окружения от значений индексов элемента, который они окружают.

К выбору функций $F_1(i,j) \div F_4(i,j)$ предъявляются следующие требования:

- при любых значениях индексов элементов $A_{i,j}$, значения индексов элементов окружения не должно ни на одной позиции повторяться, что исключает появление в формируемой конфигурации элементов с одинаковой индексацией;
- выбор зависимости значений первых символов в функциях F_1 (i, j) ÷ F_4 (i, j), должен определять номера строк в исходной конфигурации, из которых формируется значения символов окружения элемента Aij, выбранное значение индекса не должно превышать размерности исходного nxn массива, числа в нем множеств и элементов в них;
- выбор зависимости индексов окружения по вторым символам определяет выбор местоположения элемента в выбранных строках окружения, значение индекса не должно превышать размерности массива;
- значения индексов элементов окружения не зависят от местоположения элемента $A_{i,j}$ в формируемой конфигурации;
- F_1 (i, j) ÷ F_4 (i, j) должны формировать все пары индексов (ij), где каждый из индексов принимает все значения чисел от 1 до n, что предопределяет изменения значений индексов в пределах от 1 до n;

При выполнении приведенных требований перестановки любого элемента исходной nxn-конфигурации приводит к перестановке всех остальных ее элементов.

Предложены и исследованы конфигурации, сформированные перестановками элементов массивов, с функциональными зависимостями между значениями индексами элементов окружения следующего вида:

по строкам:
$$F_1(i,j)=i-k, j-k$$
, $F_2(i,j)=i+k, j+k$; по столбцам: $F_3(i,j)=[(i-k),\ j-(k+L)], F_4(i,j)=[\ i+k,\ j+(k+L)],$

где k и L является переменными, характеризующими удаленность строк - \pm k, из которых выбираются элементы окружения, \pm L- место расположение элементов в выбранных строках, относительно местоположения элемента $A_{i,j}$.

Представленные зависимости являются обобщением результатов, приведенных авторами в их работах [1,13-14], сохранены условия, обеспечивающие формирование полученных конфигураций и присущие им структурные свойства и ограничения: размерность исходных конфигураций n - число нечетное, для значений индексов i, j и k, L коэффициентов удаленности должно выполнятся условие их неравенства.

Для выполнения условий ограничения применения предложенных функциональных зависимостей значений индексов элементов окружения от значения индексов элемента, который они окружают, при выборе функций, определяющих значения индексов элементов окружения, сохранена симметричность, характерная для классической индексации, относительно строки расположения элемента $A_{i,i}$, окружение которого определяется.

Выбор функций, определяющих значения вторых индексов в столбцах, выполнен таким образом, чтобы значения индексов элементов в строках и столбцах не совпадали, индексация исходного nxn — массива проведена в последовательности изменения индексов от 1 до n, суммирование значений индексов элементов окружения выполнена по модулю n.

Разность значений первых индексов элементов окружения элемента $A_{i,j}$ и значений индексов самого элемента, равна величине \pm k, и является характеристикой «разнесённости» или «удалённости», стоящих рядом элементов в исходном массиве, по строкам.

Он может быть определен как «коэффициент строчный индексной удаленности элементов окружения». Разности значений их вторых индексов равны величине \pm L,и определяют смещённость мест этих элементов в выбранных строках относительно места, которое занимает элемент $A_{i,j}$.

Она может быть определена как «коэффициент строчной удаленности элементов окружения».

При значениях постоянной «разнесённости» символов окружения в строках равной L, общий вид функциональных зависимостей значений индексов окружения от индексов элемента $A_{i,\,j}$, приведен на рис. 2.

Рис. 3. Общий вид зависимости индексации элементов окружения с коэффициентом индексной удаленности по строке k и столбцу k+L

Fig. 3. The general view of the dependence of the indexing of environmental elements with the index distance coefficient in row k and column k + L

Предлагаемые функциональные зависимости значений индексов окружения от значения индексов произвольно взятого элемента $A_{i,j}$ исключают:

- попадание в каждую из строк и столбцов формируемой перестановками конфигурации более одного элемента из каждого множества исходного массива;
- нахождение в любой паре его строк и столбцов элементов, занимающих одноименные места в соответствующих им множествах nxn массива.

Это обеспечивает возможность формирования конфигураций, в которых в каждой строке и в каждом столбце располагаются по одному элементу из каждой строки и каждого столбца каждого из множеств, образующих *пхп* — массив конечных множеств, расположенные на разных позициях в этих множествах, что можно отметить как одно из основных их структурных свойст [12-15].

Исследования показали, что выбор значения коэффициентов индексной удаленности k u L не влияет на указанные основные структурные свойства формируемых конфигураций, т.е. представительство элементов из каждого множества в массиве и различие их местоположения в них сохраняется. Они определяют индексную структуру строк и столбцов, отличие вариантов

индексной их упорядоченности.

Меняя эти коэффициенты можно формировать конфигурации с различной индексной структуризацией (рис.4).

Рис. 4. Изменение структуры строки и столбца конфигурации в функции от значения коэффициента индексной удаленности окружения — k и значениях строчной удаленности L=1. Fig. 4. Change the structure of the row and the configuration column in the function from the value of the index of the remoteness of the environment - k and the value of the line remoteness k.

На рис. 4, на примере, показаны при k=1 конфигурация, сформированная из элементов массива множеств A_{5x5} , по предложенным функциональным зависимостям значений индексов окружения элемента A_{55} от значений этого элемента.

На рис.4 показаны структуры конфигураций при значениях коэффициента индексной удаленностиокружения k, равных 2, 3, с использование суммирования значений индексов по mod 5. Важно отметить, что приведенные результаты влияния значений коэффициентов k и L на структуры строк и столбцов, могут быть использованы для задания правил перестановок в процессе формирования конфигураций. Эти правила будут состоять в выборе значений этих коэффициентов при вводе функциональных зависимостях, вместо используемых операций умножения результатов перестановок на перестановочные (0.1) - [9-11, 16-20] матрицы [10].

Обсуждение результатов. Предложен общий подход к организации перестановок элементов *пхп* — массива конечных множеств методом «индексной структуризации», выполненный по функциональным зависимостям значений индексов окружения элементов от значений индексов элемента, который они окружают.

Предложен общий вид схемы, отражающей зависимости значений индексов элементов окружения от значения индексов элемента, который они окружают.

Сформулированы требования к функциональным зависимостям, обеспечивающие индексную упорядоченность конфигураций, формируемых по предлагаемым зависимостям.

Предложен вариант одного из возможных видов этих функциональных зависимостей, отражающие индексную удаленность элементов окружения от индексов элемента, который они окружают и пример реализации варианта.

Введены понятия коэффициентов индексной удаленности элементов окружения, определяющие различные варианты индексной структуризации строк и столбцов в формируемых конфигурациях.

Вывод. В работе предложен новый подход к решению комбинаторных задач - «индексная структуризация» формируемых конфигураций, в основе которого перестановки элементов *пхп*-массивов множеств, с индексным упорядочением расположения элементов, которое реализуется по функциям, определяющим значения индексов элементов окружения, от значений индексов элемента, который они окружают, и определяют структуры формируемых конфигураций.

Библиографический список:

- 1. Риордан Дж. Введение в комбинаторный анализ. М.: Мир, 1963г.
- 2. РайзнерГ.Дж. Комбинаторная математика.- М.: ИЛ, Мир 1966г.
- 3. Айгнер М.А. Комбинаторная теория.- М.: Мир,1982г., 362с.
- 4. Холл М. Комбинаторика./Перевод с английского С.А. Широкова под ред. ГельфандаА.О. и Тараканова В.Е.- М.: Мир,1970г.
- 5. Стенли Р. Перечислительная комбинаторика М.: Мир, 1990г.
- 6.Рыбников К.А. Введение в комбинаторный анализ.-М.:МГУ,1994г.
- 7. Леонтьев В.К.Избранные задачи комбинаторного анализа.-М.:Изд-во МГТУ им.Н.Э. Баумана, 2001г.-127c.
- 8.Электронный ресурс http://www.Google/ru. Алгоритмы индексной сортировки массивов данных/ 9.Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. М.: Мир, 1980.- 436с.
- 10. Тараканов В.Е. Комбинаторные задачи и {0,1}-матрицы. М.: Наука, 1985г. 190с.
- 11.Виленкин Н.Я. Комбинаторика. М.: Наука, 1969.-235c.
- 12.Кадиев И.П., Кадиев П.А. Циклические методы индексной сортировки элементов массивов данных. Вестник ДГТУ, Технические науки, 2015, №36. с.79-

References

- 1. Riordan Dzh. Vvedenie v kombinatornyi analiz. M.: Mir; 1963. [Riordan Dzh. Introduction to combinatorial analysis. M.: Mir; 1963. (in Russ.)]
- 2. Rayzer G.Dzh. Kombinatornaya matematika. Moscow: Mir; 1966. [Rayzer G.Dzh. Combinatorial mathematics. Moscow: Mir; 1966. (in Russ.)]
- 3. Aygner M. Kombinatornaya teoriya. Moscow: Mir; 1982. [Aygner M. Combinatorial theory. Moscow: Mir; 1982. (in Russ.)]
- 4. Holl M. "Kombinatorika = Combinatorial Theory" pod red. Gel'fanda A.O. i Tarakanova V.E. Moscow: Mir; 1970. [Holl M. "Combinatorics = Combinatorial Theory" Gel'fand A.O. and Tarakanov V.E. (Eds). Moscow: Mir; 1970. (in Russ.)]
- 5. Stenli R. Perechislitel'naya kombinatorika. M.: Mir; 1990. [Stenley R. Enumerative combinatorics. M.: Mir; 1990. (in Russ.)]
- 6. Rybnikov K.A. Vvedenie v kombinatornyy analiz. Moscow: Izd. MGU; 1985. [Rybnikov K.A. Introduction to combinatorial analysis. Moscow: MSU; 1985. (in Russ.)]
- 7. Leont'ev V.K. Izbrannye zadachi kombinatornogo analiza. M.: Izd-vo MGTU im. N.E. Baumana; 2001. 127 s. [Leont'ev V.K. Selected problems of combinatorial analysis. M.: Izd-vo MGTU im. N.E. Baumana; 2001. 127 p. (in Russ.)]
- 8. Elektronnyi resurs http://www.Google/ru. Algoritmy indeksnoi sortirovki massivov dannykh/ [The electronic resource http://www.Google/ru. Algorithms for index sorting of data arrays/ (in Russ.)]

- 83.
- 13. Кадиев И.П., Кадиев П.А. Способ заданияправил индексации элементов матричных комбинаторных конфигураций. Вестник ДГТУ, Технические науки, 2016, № 3(42), с.101-109
- 14. Кадиев И.П. Индексные методы формирования комбинаторных конфигураций класса систем различных представительств.. Вестник ДГТУ, Технические науки, 2016, № 4(43), с.96-102
- 15. Кадиев П.А., Мирзабеков Т.М., Кадиев И.П. Программа скремблирования информационного потока. Свидетельство о гос. регистрации программы для ЭВМ №201662043, 28.10.2016г.
- 16. AlexanderSchrijver. Chapter 22 «Transversals», chapter 23 «Common transversals» // Combinatorial optimization. Springer, 2003.
- 17. СвамиК. Тхуласираман. Графы, сетииалгоритмы /Graphs, Networks, and Algorithms, пер. сангл. М. В. Горбатовой, В. Л. Тархова, С. А. Фролова, В. Н. Четверикова; под ред. В. А. Горбатова. М.: Мир, 1984. 455 с.
- 18. Denes J., Keedwell A. D. Latin Squares and their Applications, Budapest, 1974
- 19. Curien P.-L. Categorical combinatory logic. LNCS, 194, 1985, pp.~139-151.
- 20.Cardone F., Hindley *J.R.* History of lambda calculus and combinators, in Handbook of the History of Logic, Volume 5, D. M.Gabby and J Woods (eds) (Amsterdam: Elsevier Co., to appear).
- 9. Reingol'd E., Nivergel't Yu., Deo N. Kombinatornye algoritmy. Teoriya i praktika. M.: Mir; 1980. 436 s. [Reingol'd E., Nivergel't Yu., Deo N. Combinatorial algorithms. Theory and practice. M.: Mir; 1980. 436 p. (in Russ.)]
- 10. Tarakanov V.E. Kombinatornye zadachi i $\{0,1\}$ -matritsy. M.: Nauka; 1985. 190 s. [Tarakanov V.E. ombinatorial problems and $\{0,1\}$ -matrices. M.: Nauka; 1985. 190 p. (in Russ.)]
- 11. Vilenkin N.Ya. Kombinatorika. Moscow: Nauka; 1969. [Vilenkin N.Ya. Combinatorics. Moscow: Nauka; 1969. (in Russ.)]
- 12. Kadiev I.P., Kadiev P.A. Tsiklicheskie metody indeksnoy sortirovki elementov massivov dannykh. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2015; 36:79-83. [Kadiev I.P., Kadiev P.A. Cyclic methods of index sorting of data array elements. Herald of Daghestan State Technical University. Technical Sciences. 2015; 36:79-83. (in Russ.)]
- 13. Kadiev I.P., Kadiev P.A. Sposob zadaniya pravil indeksatsii elementov matrichnykh kombinatornykh konfiguratsiy. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 2016;3(42):93-101. [Kadiev I.P., Kadiev P.A. The method of specifying indexing rules for elements of matrix combinatorial configurations. Herald of Daghestan State Technical University. Technical Sciences. 2016;3(42):93-101. (in Russ.)]
- 14. Kadiev I.P. Indeksnye metody formirovaniya kombinatornykh konfiguratsii klassa sistem razlichnykh pred-

stavitel'stv. Vestnik DGTU. Tekhnicheskie nauki. 2017;1(44):96-102. [Kadiev I.P. Indexing methods for forming combinatorial configurations of the class of systems of distinct representatives. Herald of Daghestan State Technical University. Technical Sciences. 2017;1(44):96-102. (in Russ.)]

15. Kadiev P.A., Mirzabekov T.M., Kadiev I.P. Programma skremblirovaniya informatsionnogo potoka. Svidetel'stvo o gos. registratsii programmy dlya EVM №201662043, 28.10.2016 [Kadiev P.A., Mirzabekov T.M., Kadiev I.P. The program of information stream scrambling. Certificate of state registration of the computer programme №201662043, October 28, 2016. (in Russ.)]

16. Schrijver A. Chapter 22 "Transversals", chapter 23 "Common transversals" in Combinatorial optimization. Springer; 2003.

17. Svami K.T. Grafy, seti i algoritmy. Pod red. Gorbatova V.A. Moscow: Mir; 1984. 455 s. [Svami K.T. Graphs, Networks, and Algorithms. Gorbatov V.A. (Ed). Moscow: Mir; 1984. 455 p. (in Russ.)]

18. Denes J., Keedwell A. D. Latin Squares and their Applications. Budapest; 1974.

19. Curien P.-L. Categorical combinatory logic. LNCS. 1985;194:139-151.

20. Cardone F., Hindley J.R. History of lambda calculus and combinators. Handbook of the History of Logic, Volume 5. D.M. Gabby and J. Woods (eds). Amsterdam: Elsevier Co.; to appear.

Сведения об авторах:

Кадиев Исламудин Пашаевич — ведущий специалист информационно-аналитического отдела Управления инспектирования кредитных организаций.

Кадиев Пашай Абдулгамидович - кандидат технических наук, профессор.

Information about the authors.

Islamudin P. Kadiev– Leading specialist of the information and analytical department of the Inspectorate of Credit Organizations

Pashaj A. Kadiev - Cand. Sci. (Technical), Prof.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 15.01.2018.

Принята в печать 18.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 15.01.2018.

Accepted for publication 18.02.2018.

Для цитирования: Качаева Г.И., Попов А.Д., Рогозин Е.А. Показатели эффективности функционирования при разработке систем защиты информации от несанкционированного доступа в автоматизированных информационных системах. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 147-159. DOI:10.21822/2073-6185-2018-45-1-147-159

For citation: Kachaeva G.I., Popov A.D., Rogozin E.A. Functional performance indicators during systems development to protect information from unauthorised access. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1):147-159. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-147-159

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УЛК: 004.056

DOI: 10.21822/2073-6185-2018-45-1-147-159

ПОКАЗАТЕЛИ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ ПРИ РАЗРАБОТКЕ СИСТЕМ ЗАЩИТЫ ИНФОРМАЦИИ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА В АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМАХ

Качаева Г.И. 1 , Попов А.Д. 2 , Рогозин Е.А. 3

¹Дагестанский государственный технический университет, ¹367026, г. Махачкала, пр.И.Шамиля 70, Россия,

²⁻³Воронежский институт МВД России,

³⁻⁴394065, г. Воронеж, пр. Патриотов,53, Россия,

 1 e-mail: $Providetc@mail.ru,^{2}e$ -mail:anton. $holmes@mail.ru,^{3}e$ -mail: evgenirogozin@yandex.ru

Резюме: Цель. Целью и задачами исследования являются: анализ нормативных международных и российских документов, а также научных материалов по проблемам оценки качества программного обеспечения; исследование свойств эффективности функционирования систем защиты информации от несанкционированного доступа в автоматизированных информационных системах; аналитическое обобщение существующих недостатков систем защиты информации от несанкционированного доступа в автоматизированных информационных системах, на основе которых разработать показатели эффективности функционирования. На основе проведенного анализа обосновать и разработать критерии оценок эффективности функционирования систем защиты информации от несанкционированного доступа в автоматизированных информационных системах. На основе созданных критериев и показателей разработать алгоритм интегральной оценки эффективности функционирования систем защиты информации от несанкционированного доступа в автоматизированных информационных системах. Метод. Методической основой решения поставленных цели и задач являются основные положения теории эффективности и теории систем. Результат. Разработаны критерии и показатели эффективности функционирования при создании в автоматизированных информационных системах на основе проведенного анализа открытых литературных источников и существующих недостатков реального использования систем защиты информации от несанкционированного доступа. Разработан алгоритм интегральной оценки эффективности функционирования систем защиты информации от несанкционированного доступа. Вывод. Создана система показателей эффективности функционирования систем защиты информации от несанкционированного доступа, включающая частные показатели (статические), практически независимые от времени, достоверность которых основывается на экспертных оценках) и интегральные (динамические), зависимые от времени, оценка которых основывается на математическом моделировании.

Ключевые слова: автоматизированная информационная система, несанкционированный доступ к информации, качество, показатель, критерий, система защиты информации, оценка эффективности

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

FUNCTIONAL PERFORMANCE INDICATORS DURING SYSTEMS DEVELOPMENT TO PROTECT INFORMATION FROM UNAUTHORISED ACCESS

Gyulkhanum I. Kachaeva¹, Anton D. Popov², Evgeny A. Rogozin ³

¹Daghestan State Technical University,

¹70 I. Shamilya Ave., Makhachkala, 367026, Russia,

²⁻³Voronezh Institute of the Ministry of Internal Affairs of Russia,

²⁻³53 Patriotov Ave., Voronezh 394065, Russia,

¹e-mail:Providetc@mail.ru, ²e-mail:anton.holmes@mail.ru, ³e-mail: evgenirogozin@yandex.ru

Abstract Objectives. In order to investigate the property of the operational effectiveness of automated systems for protecting information from unauthorised access, it is necessary to analyse the normative documents (both international and Russian) and scientific materials devoted to the evaluation of software quality. The aim of the study consists in the analysis of the existing deficiencies in systems for protecting information from unauthorised access, on the basis of which analysis it is possible to develop performance indicators, substantiate and develop the criteria for assessing the operational effectiveness of the information protection systems from unauthorised access in automated information systems and develop an algorithm for the integrated evaluation of the operational effectiveness of information protection systems on the basis of the established criteria and indicators. Methods. One of the methods for solving the set goals consists in the main provisions of efficiency and systems theories, which in turn became the theoretical basis for solving problems involved in the creation of criteria and assessment of performance indicators of information protection systems. Results. The criteria and performance indicators for the creation of automated information systems are developed on the basis of the analysis of open literature sources and existing shortcomings in the real use of systems for protecting information from unauthorised access. An algorithm for the integrated evaluation of the operational effectiveness of the information protection systems is developed. Conclusion. In the article, based on the analysis of normative documents (both international and Russian), as well as on the scientific materials devoted to the quality (function efficiency) of complex software systems, to which the information protection systems can be related, a system of performance indicators was developed. These can be indicators can be classified as partial (static, practically independent of time, the evaluation of which is based on expert estimates) and integral (dynamic, time-dependent, the evaluation of which is based on mathematical modeling).

Keywords: automated information system, unauthorised access to information, quality indicator criterion, information protection system, efficiency assessment

Введение. Использование автоматизированных информационных системы (АИС), в повседневной деятельности человека уже считается обыденным. Обрабатываемая в них информация зачастую несет в себе критический характер, например, в отраслях атомной энергетики, военной, органов внутренних дел, а также в других государственных структурах, где присутствует обработка, хранение и передача конфиденциальной информации (согласно нормативных документов Федеральной службы по техническому и экспортному контролю (ФСТЭК) России под конфиденциальной понимается информации требующая защиты[1]).

Особенностью рассматриваемых систем является их повышенная привлекательность со стороны криминальных структур [2].

Для противодействия различным угрозам специалисты по информационной безопасности внедряют программно-технические средства защиты информации, к которым относятся системы защиты информации от несанкционированного доступа (СЗИ от НСД). Они представляют собой сложную организационно-программную систему, направленную на обеспечение защиты информации от несанкционированного доступа к информационному ресурсу, уничтоже-

ния, модификации, блокирования, копирования информации и иных действий, ведущих к нарушению функционирования АИС в целом [3].

Постановка задачи. Разработка СЗИ от НСД, как существующей подсистемы современной АИС, представляет собой сложный, комплексный, многоэтапный процесс [3], его ключевой особенностью является выполнение поставленных целей при проектировании, которые бы не влияли на работоспособность АИС и их компонентов в целом.

Одной из задач разработки АИС в защищенном исполнении является поиск и выбор оптимальных (с точки зрения их структуры) вариантов функционирования СЗИ от НСД в АИС, что необходимо учитывать на всех этапах разработки этих сложных систем.

Поэтому при разработке СЗИ от НСД в АИС и при ее функционировании в режиме реального времени, согласно нормативной документации ФСТЭК необходимо проводить оценку качества (эффективности функционирования) программного обеспечения (ПО), к которому, несомненно, можно отнести СЗИ от НСД [4].

Методы исследования. В настоящее время выделяют три подхода к оцениванию эффективности функционирования СЗИ от НСД в АИС: экспертный, вероятностный, оценочный [4-6]. Существует множество мнений, которые определяют один из подходов приоритетнее другого, но единственным правильным выходом из сложившихся противоречий будет комплексное использование всех трех подходов к оценке эффективности функционирования СЗИ от НСД на этапах ее разработки. Поэтому предлагается использовать вероятностно-экспертный подход, основанный на математическом моделировании и экспертных оценках, который позволяет учитывать, как динамические, так и статические характеристики эффективности функционирования СЗИ от НСД.

Вероятностный подход используется при описании неизвестных (случайных событий), в частности, их вероятностно-временных характеристик; экспертный подход, основан на мнении экспертов в данной области и определяется достаточностью статических (практически не связанных со временем) параметров, определяющих эффективность функционирования СЗИ от НСД, к которым, например, можно отнести вычислительные ресурсы АИС и т.д., а оценочный – при определении предметной области, на первоначальном этапе разработки СЗИ от НСД [3].

Существующий ГОСТ-28806-89 трактует понятие качество СЗИ, как совокупность свойств, которые обуславливают его пригодность удовлетворять заданные или подразумеваемые потребности в соответствии с его предназначением [7]. В различных российских и международных стандартах [7-11], связанных с качеством (эффективностью функционирования СЗИ от НСД) определение качества функционирования СЗИ от НСД в АИС трактуется как степень (полноту выполнения) предъявляемых к ним требований. Качество СЗИ от НСД определяется в зависимости от того с какой целью разрабатывается данный программный продукт [12-13].

Квалиметрические измерения рассматривают качество, как ранжированную совокупность свойств, которые могут включать в себя свойства, представляющие более низкий уровень. Между всеми свойствами (показателей) качества функционирования СЗИ от НСД существует взаимосвязь, которая позволяет комплексно оценивать ти системы [14].

Проведенный анализ [7] позволил определить следующие основные свойства качества функционирования при разработке СЗИ от НСД на объектах информатизации: функциональность СЗИ от НСД; надежность СЗИ от НСД; удобство использования СЗИ от НСД; эффективность СЗИ от НСД; сопровождаемость СЗИ от НСД; мобильность СЗИ от НСД.

Данный перечень свойств качества СЗИ от НСД в АИС в различных открытых литературных источниках трактуется шире [15-17], что в настоящее время при разработке СЗИ от НСД в АИС представляет собой значительную неопределенность и трудностьс точки зрения сложной (иерархической) программной системы.

Поэтому в статье рассмотрим не оценку качества функционирования СЗИ от НСД, а оценку одного из свойств качества – эффективность функционирования и его атрибутов в соответствиинормативной документации ФСТЭК [4] при разработке СЗИ от НСД на объектах информатизации. Поэтому, при оптимальном выборе параметров и характеристик СЗИ от НСД предпочтение отдается измерению эффективности функционирования СЗИ от НСД в сравне-

нии с ееразличными вариантами реализации.

Описание рассматриваемого свойства можно найти в теории эффективности сложных систем и процессов, так как СЗИ от НСД в АИС является сложной динамической системой, и каждая операция имеет четкую поставленную цель.

Под эффективностью функционирования СЗИ от НСД следует понимать степень соответствия результатов защиты информации в АИС, относительно поставленной цели при разработке СЗИ от НСД [18]. В настоящее время существует множество понятий эффективности функционирования СЗИ от НСД и их интерпретаций, значительные расхождения имеют даже место быть в нормативных документах, поэтому стоит максимально осторожно оперировать данным определением и его смысловым значением [19-21].

При эксплуатации СЗИ от НСД эти системы, как правило, на свое функционирование в АИС требуют значительных вычислительных ресурсов, то при её разработке необходимо найти разумный компромисс (с точки зрения вычислительных ресурсов) между функционированием СЗИ и АИС по своему прямому предназначению, к которым относятся (обработка, хранение и передача конфиденциальной информации).

Возникает вопрос, каким способом необходимо провести оценку их эффективности функционирования? Чтобы на него ответить необходимо оценивать результаты выполняемых операций СЗИ от НСД и сопоставлять их с поставленными задачами и затратами, требуемыми для их реализации в АИС, поскольку проблема состоит в выборе лучшего из сравниваемых вариантов функционирования СЗИ от НСД.

Под показателем эффективности функционирования СЗИ от НСД понимается мера степени соответствия реального результата функционирования СЗИ от НСД требуемому [10]. Каждый показатель эффективности функционирования характеризует достаточность определенного свойства СЗИ от НСД. При разработке СЗИ от НСД возникают сложности в ее оценки эффективности функционирования, а именно не все характеристики подвергаются оценке. В следствие этого, проанализируем показатели эффективности функционирования СЗИ от НСД и сопоставим их с недостатками, возникающими при разработке СЗИ от НСД в АИС, чтобы учесть все свойства, влияющие на работоспособность в целом АИС.

Существует множество мнений относительно выбора атрибутов (показателей) оценки эффективности функционирования в СЗИ от НСД, приведенных в табл. 1.

Перечисленные атрибуты (показатели) эффективности функционирования могут классифицироваться как частные, подробнее этот вопрос освещен в [16]. Стоит заметить, что смысловые значения показателей эффективности функционирования СЗИ от НСД (табл. 1) принципиально схожи. К недостаткам применения СЗИ от НСД на объектах информатизации АИС критического применения можно отнести [3] (табл. 2):

- 1. Оптимальность программного кода. В связи с тем, что СЗИ от НСД представляет собой комплекс программных средств защиты информации (включая организационные меры), то и разрабатываемый программный код должен быть максимально оптимизированс точки зрения оптимальности использования ресурсов АИС.
- 2. Отсутствие возможности исследовать эти системы в динамическом (временном) диапазоне.
- 3. Зависимость ресурсоёмкости СЗИ от НСД от вычислительных ресурсов АИС, к которым можно отнести процессорное время, оперативную память и дисковое пространство. Ограниченность перечисленных ресурсов АИС оказывает непосредственное влияние на время выполнения защитных функций СЗИ от НСД, и как следствие несоответствие предъявляемым к ней требованиям.
- 4. Недостатком будет являться полная или частичная неприспособленность СЗИ от НСД выполнять возложенные на нее задачи, так как моральное старение СЗИ от НСД будет характеризоваться частичной или полной непригодностью адекватно реагировать на существующие деструктивные воздействия на информационный ресурс АИС.
- 5. Изменение структуры АИС с точки зрения программного и технического обеспечения этих систем, могут оказывать влияние на выполнение защитных функций СЗИ от НСД в

АИС. В качестве примера можно привести дублирование защитных функций СЗИ от НСД антивирусными программными средствами.

Таблица 1. Представление атрибутов (показателей) оценки эффективности функционирования системы защиты информации от несанкционированного доступа

Table 1. Representation of attributes (indicators) of an estimation of the effectiveness of the system of protecting information from unauthorized access

Источник Source	Атрибут свойства эффективности Attribute of the performance property					
ISO/IEC 9126	Временная эффективность — свойство, характеризующее поведение АИС, включая и СЗИ от НСД, как при разработке, так и эксплуатации; Ресурсоемкость — свойство, характеризующее поведение используемых ресурсов АИС, включая и СЗИ от НСД, как при разработке, так и при их эксплуатации; Согласованность — свойство, характеризующее количество функций СЗИ от НСД не соответствующим стандартам. [8-11]					
ΓΟCT 28806	Времяемкость — совокупность свойств СЗИ от НСД, характеризующихся обеспечением при его функционировании временем реакции на запросы, на скорость обработки данных и на пропускную способность; Ресурсоемкость—совокупность свойств СЗИ от НСД, характеризующихся объемом используемых при его функционирования вычислительных ресурсов АИС и продолжительности их использования. Функциональность — совокупность свойств СЗИ от НСД, определяемая наличием и конкретными особенностями защитных функций, способных удовлетворять заданные или подразумеваемые потребности в защите информации на объектах информатизации [7]					
ГОСТ 25010	Результативность – точность и полнота, с которой достигается цель функционирования СЗИ от НСД; Производительность – связь точности и полноты достижения пользователями целей с израсходованными вычислительными ресурсами АИС [22]					
Липаев В.В.	Временная эффективность—свойство СЗИ от НСД, характеризующее требуемое время отклика и обработки заданий, а также производительность решения задач защиты информации с учетом количества используемых вычислительных ресурсов АИС в установленных условиях; Используемость ресурсов—степень загрузки доступных вычислительных ресурсов АИС в установленных условиях эксплуатации СЗИ от НСД. [14]					
Боем Б.	Рациональность—рассматривается с точки зрения оптимальности разработки СЗИ от НСД; Доступность—рассматривается как селективность использования ее компонент, имеется в ввиду, что при изменении какой-либо характеристики, пользователь должен иметь доступ к необходимым данным.[15]					
Петухов Г.Б.	Результативность—характеризуется результатом достижения цели функционирования СЗИ от НСД на объектах информатизации; Ресурсоемкость—характеризуется расходомвсех видов вычислительных ресурсов АИС, необходимых для проведения операции и достижения ею цели, функционирования по прямому назначению; Оперативность—характеризуется расходом операционного времени АИС, т.е. времени, потребного для достижения цели функционирования СЗИ от НСД. [4]					
Черников Б.В.	Уровень автоматизации — характеризуется рациональностью функциональной структуры СЗИ от НСД, а именно с точки зрения взаимодействия с ней пользователя и использования вычислительных ресурсов АИС; Временная эффективность — способность СЗИ от НСД выполнять заданные действия за определенный интервал времени; Ресурсоемкость — минимально необходимые вычислительные ресурсы для эксплуатации СЗИ от НСД. [16]					
Макколл Дж.А.	Эффективность исполнения — характеризуется минимальным временем функционирования СЗИ от НСД. Эффективность хранения — характеризуется эффективным доступом (минимальным временем) к информации, хранящейся в АИС. [23-24]					
FEA Consol- idated Refer- ence Model Document	Производительность — свойство, характеризующее АИС или ее приложения с точки зрения времени отклика, интероперабельности, доступности пользователей и улучшения технических возможностей или характеристик; Результативность — степень удовлетворенности пользователей соответствующим приложением или системой, независимо от того, соответствует ли они требованиям пользователя, и их влияние на производительность операций. [25]					

Для устранения приведенных недостатков, введем соответствующие показатели эффективности функционирования СЗИ от НСД, с помощью которых можно оценить реальную эффективность функционирования этих систем, приведенные в табл. 2.

Таблица 2. Показатели оценки эффективности функционирования системы защиты информации от несанкционированного доступа

Table 2. Indicators for assessing the effectiveness of the system of protecting information from unauthorized access

Показатель Index	Смысловое значение показателя The meaning of the indicator	Недостаток Drawback
$V_{\it BЭСЗИ}$ Временная эффективность функционирования СЗИ от НСД	Способность СЗИ от НСД соответствовать заявленным к ним требованиям (с точки зрения временных параметров их функционирования), а также находить разумный компромисс между функционированием АИС по прямому предназначению и СЗИ от НСД.	1)-3)
$V_{\it PC3M}$ Ресурсоемкость СЗИ от НСД	Аналогично предыдущему	3)
V _{ОСЗИ} Оптимальность программного кода СЗИ от НСД	Корректность программного кода СЗИ от НСД	1) и 5)
$V_{\Phi C3H}$ Функциональность СЗИ от НСД	Способность СЗИ от НСД при ее разработке, соответствовать предъявляемому уровню секретности, относительно ее функциональных компонентов. Данный показатель не соответствует недостаткам, так как процедура является традиционной.	-
V _{УСЗИ} Моральное старение СЗИ от НСД	Способность СЗИ от НСД выполнять свои целевые функции по истечении определенного интервала времени, связанного с жизненным циклом функционирования СЗИ от НСД в АИС	1)-5)
$V_{\it ИЗСЗИ}$ Изменяемость СЗИ от НСД	Возможность изменения (с точки зрения уменьшения ее защитных функций) в связи с модификацией существующего ПО АИС.	5)

Представленные показатели можно структурировать в зависимости от эксплуатации СЗИ от НСД, в зависимости от имеющегося количества ресурсов АИС и от необходимого количества функций защиты СЗИ от НСД рис.1.

Показатели эффективности функционирования СЗИ от НСД представлены не единственной величиной, поэтому представим ее в векторной форме (1).

$$\vec{V} = V_{B \supset C3H}, V_{PC3H}, V_{OC3H}, V_{\phi C3H}, V_{VC3H}, V_{U3C3H}.$$
 (1)

Из них частные показатели эффективности функционирования V_{PC3H} , V_{OC3H} , $V_{ФC3H}$, V_{VC3H} , V_{H3C3H} отражают адекватность типовой СЗИ от НСД требованиям по полноте имеющегося функционала СЗИ от НСД.

Расчет данных показателей осуществляют на основе эвристических методов путем определения адекватности СЗИ от НСД предъявляемым к ней требованиям на основе анализа её технической документации.

Расчет и измерение данных показателей эффективности функционирования типовой СЗИ от НСД в АИС необходимо произвести по соответствующей качественной шкале в виде булево-независимых переменных, где 1 – значение данного показателя соответствует заявленному свойству СЗИ от НСД и можно интерпретировать как соответствие предъявляемым требованиям, а 0 – значение данного показателя не соответствует заявленному свойству СЗИ от НСД, и можно интерпретировать как несоответствие предъявляемым требованиям, где $^{\it S}$ стратегия функционирования СЗИ от НСД.

Динамический (количественный) показатель эффективности функционирования при

разработке типовой СЗИ от НСД в АИС «временная эффективность функционирования СЗИ от

 ${
m HCД}$ » $V_{
m \it B}$ ЭСЗИ является отражением вероятностно-временных характеристик динамики функционирования этих систем, которые оказывают прямое и непосредственное влияние на эффективность функционирования АИС по прямому назначению.

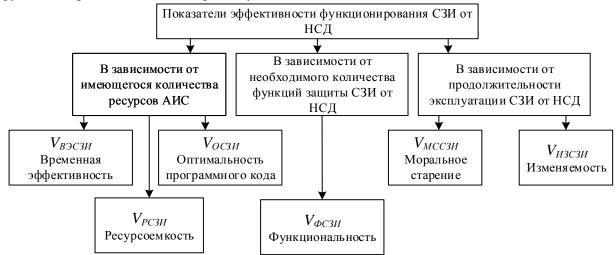


Рис. 1. Структурная схема показателей эффективности функционирования системы защиты информации от несанкционированного доступа в автоматизированной информационной системе Fig. 1. Structural diagram of the performance indicators of the information protection system from unauthorized access in the automated information system

$$V_{PC3H}(s), V_{OC3H}(s), V_{\Phi C3H}(s), V_{VC3H}(s), V_{U3C3H}(s) = \begin{cases} 1, \text{ соответствует свойству}; \\ 0, \text{ не соответствует свойству}. \end{cases}$$
 (2)

Реализация функций СЗИ от НСД, как показывает опыт эксплуатации, ведет к значительному отвлечению вычислительных ресурсов АИС (процессорного времени и оперативной памяти), что приводит к увеличению времени отклика в этих системах и является неприемлемым для выполнения АИС своих функций по прямому назначению.

Поэтому при разработке СЗИ от НСД технические требования задаются на этапе 6 [3] в виде области допустимых значений, которые могут быть получены в результате натурного эксперимента, а также при имитационном моделировании.

$$V_{B \supset C 3 H}(s) = \begin{cases} 1, e c \pi u V_{B \supset C 3 H}(s) \leq V^{mp}; \\ 0, e c \pi u V_{B \supset C 3 H}(s) > V^{mp}. \end{cases}$$
(3)

Таким образом, динамический показатель эффективности функционирования $V_{BЭСЗИ}$ СЗИ от НСД в АИС определяется как вероятность своевременной реализации функционала СЗИ от НСД, основанного на выбранной стратегии и описывается математическим выражением (4):

$$V_{B \ni C \ni U}(s) = P(s(\tau) \le s(\tau^{mp})). \tag{4}$$

где τ — время выполнения СЗИ от НСД своего функционала в АИС, τ_{mp} — максимально допустимое время выполнения своего функционала в АИС, указанного в технической документации по эксплуатации в разделе «защита информации от НСД».

Оценка данного показателя эффективности функционирования типовой СЗИ от НСД в АИС необходимо осуществить на основе анализа разработанной сети Петри как марковской цепи с конечным числом состояний, причем последнее является поглощающим [24].

Для описания соответствия реального результата функционирования СЗИ от НСД, введем функцию соответствия s, которая показывает степень достижения цели функционирования СЗИ от НСД по некоторой шкале.

$$z = z(s(\tau), s(\tau^{mp})). \tag{5}$$

Соответственно показатель временной эффективности СЗИ от НСД есть математическое ожидание от функции соответствия (6).

$$V_{B \ni C \ni M}(s) = [z(s(\tau), s(\tau^{mp}))]. \tag{6}$$

Динамический показатель эффективности функционирования при разработке типовой СЗИ от НСД в АИС «временная эффективность функционирования СЗИ от НСД» $V_{B \ni C \mid M}$ является главным, а остальные будут определяться по правилу (4).

Тогда в общем виде функционирование СЗИ от НСД в АИС должно соответствовать выражению (7).

$$\begin{cases} V_{B \supset C 3 U}(s) \leq V^{mp}; \\ V_{P \subset 3 U}(s), V_{O \subset 3 U}(s), V_{\Phi \subset 3 U}(s), V_{V \subset 3 U}(s), V_{U \supset 3 U}(s) = V_{bool}^{mp}. \end{cases}$$
(7)

Интегральную оценку эффективности функционирования типовой СЗИ от НСД в АИС необходимо провести с использованием интегрального показателя эффективности функционирования СЗИ от НСД в АИС, агрегирующего приведенные выше частные показатели в один интегральный показатель эффективности функционирования этих систем.

Выше изложенное позволяет провести оценку интегрального показателя эффективности функционирования СЗИ от НСД в АИС с помощью выражения (2, 3) получим (8) [26]:

онирования Сэй от НСД в АйС с помощью выражения (2, 3) получим (8) [20]:
$$\vec{V}_{HC3H}(s) = \begin{cases} \vec{V}_{B\ni C3H}(s), & ecnu \quad V_{PC3H}(s) \land V_{OC3H}(s) \land V_{\phi C3H}(s) \land V_{yC3H}(s) \land V_{HSC3H}(s) = 1, \\ 0, & uhave \end{cases}$$
(8)

Критерий эффективности представляет собой руководящее правило, позволяющее оценивать степень достижения цели СЗИ от НСД, относительно затрачиваемых при этом ресурсов.

Как было сказано выше показатели V_{PC3H} , V_{OC3H} , V_{VC3H} , V_{VC3H} , V_{U3C3H} являются булевыми, поэтому задачу определения критерия эффективности можно свести к определению критерия по показателю V_{B3C3H} .

Как и в оценке качества, так и в оценке эффективности, реализуется совокупность критериев, каждый из которых относится к определенной концепции, согласно теории эффективности, выделяют следующие [8-10]:

- концепция пригодности предполагает приемлемость любой стратегии функционирования, удовлетворяющей необходимым требованиям, из которых минимально выделяется одна;
- концепция оптимальности предполагает стратегию рационального выбора из заданного ограниченного множества пригодных, которые обеспечивают наилучшую результативность (максимальный эффект);
- концепция адаптивности предполагает прогнозирование возможных стратегий и способов их проведения на основе не только статической, но и изменяющейся информации. Концепция направлена, не только на выбор лучшей стратегии, но и к стремлению создания наиболее гибкой стратегии, которая учитывала все динамические свойства системы.

В рамках концепции адаптивности, также можно использовать принцип самообучения, основанного на нейросетевых технологиях, что является перспективным направлением исследования, хотя слабо формализованным [9-10]

Критерий пригодности СЗИ от НСД, представляет собой выбор любой рациональной стратегии функционирования S , при которой показатель $V_{\it BЭСЗИ}$ принимает значения не выше требуемого (9). На практике данное требование прописывается в техническом задании на разрабатываемую СЗИ от НСД.

$$V_{B \ni C3H}(s) \le V^{mp}, s \in S, \tag{9}$$

где исход всех положительных и отрицательных стратегий равноценен, а S есть множество допустимых значений.

Критерий оптимальности СЗИ от НСД, представляет собой выбор тех рациональных стратегий из множества пригодных, которые обеспечивают наибольшую результативность (максимальный эффект), то есть обеспечивает их предпочтительность (10).

$$V_{B \ni C3M}(s_{onm}) = \max V^{mp}(s), s \in S_{np}, \tag{10}$$

где S_{onm} есть множество оптимальных значений, а S_{np} область пригодных значений.

Критерий адаптивности СЗИ от НСД, представляет собой изменение стратегии $^{\it S}$ на основе не только статической, но и текущей и прогнозной информации с целью достижения или сохранения определенного состояния системы при изменяющемся комплексе условий проведения операции.

$$V_{B\supset C3H}(s_{onm}(\tau), l) \le V_{B\supset C3H}^{mp}(s(\tau), l), \ s(\tau) \in S(\tau, l), \tag{11}$$

где / – упреждение прогноза.

Как можно заметить, каждый последующий критерий является подмножеством множества стратегий предыдущего, что позволяет определить стратегию в зависимости от необходимой степени достижения цели разработки СЗИ от НСД.

На рис. 2 представлен алгоритм интегральной оценки эффективности функционирования СЗИ от НСД в АИС в соответствии с введенными критериями и показателями.

1 блок. Ввод исходных данных для работы алгоритма:

- $V_{\it BЭСЗИ}^{\it mp}$ требуемое значение показателя временной эффективности функционирования СЗИ от НСД, определяемое в требованиях на этапе 6 [3] при разработке СЗИ от НСД;
- 2) $V_{PC3H}, V_{OC3H}, V_{VC3H}, V_{VC3H}, V_{H3C3H}$. значение показателей оценки эффективности СЗИ от НСД, определяемого на основе анализа документации.
- 2 блок. Двоичное умножение значений показателей эффективности функционирования СЗИ от НСД. V_{PC3H} , V_{OC3H} , V_{OC3H} , V_{UC3H} , V_{USC3H}
 - 3 блок. Проверка условия (2), если оно не выполняется, выполняется переход к блоку 10.
 - 4 блок. Ввод критериев эффективности СЗИ от НСД.
- 5 блок. Вычисление значения показателя временной эффективности СЗИ от НСД $V_{\it BЭСЗИ}$ в соответствии с алгоритмом представленном в [26].
- 6 блок. Проверка результата вычисления $V_{\it BЭСЗИ}$ по критерию пригодности (9), при его выполнении осуществляется переход к блоку 7, при его достаточности переходим к блоку 11, а при невыполнении к блоку 10.

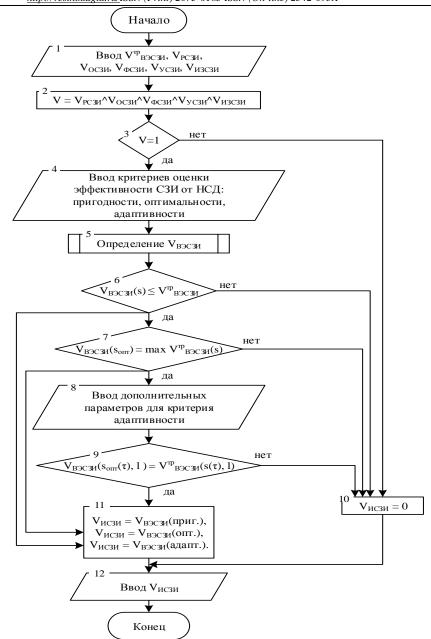


Рис. 2. Алгоритм оценки интегрального показателя эффективности функционирования при разработке системы защиты информации от несанкционированного доступа в автоматизированной информационной системе

Fig.2. Algorithm for estimating the integral indicator of the effectiveness of functioning in the development of a system for protecting information from unauthorized access in an automated information system

7 блок. Проверка результата вычисления $V_{\it BЭСЗИ}$ по критерию оптимальности(10) с использованием множества пригодных стратегий, при его выполнении осуществляется переход к блоку 8, при его достаточности переходим к блоку 11, а при невыполнении к блоку 10.

8 блок. Ввод дополнительных параметров, используемых для самообучения, требующие учета в критерии адаптивности, в зависимости от поставленных задач при разработке СЗИ от НСД.

9 блок. Проверка результата вычисления $V_{\mathit{BЭСЗИ}}$ по критерию адаптивности(11) с использованием множества оптимальных стратегий, при его выполнении осуществляется переход к блоку 11, при невыполнении к блоку 10.

10 блок. При невыполнении условий (2), (9), (10), (11) значение интегрального показателя эффективности функционирования СЗИ от НСД равно нулю.

11 блок. При выполнении условий (2), (9), (10), (11) интегрального показателя эффективности функционирования СЗИ от НСДоценивается по формуле $V_{\mathit{ИСЗИ}} = V_{\mathit{ВЭСЗИ}}$ следующей из равенства (8).

12 блок. Вывод найденного значения интегрального показателя эффективности функционирования СЗИ от $HCД(V_{\mathit{ИСЗИ}})$ – результата работы алгоритма.

Обсуждение результатов. Проведенный анализ одного из качественных свойств эффективности функционирования, позволил учесть все характеристики, прописанные в нормативных документах и научной литературе, что позволило учесть нюансы, связанные с выбором показателей эффективности функционирования СЗИ от НСД.

Выявленные недостатки функционирования СЗИ от НСД позволили их сопоставить с выделяемыми характеристиками эффективности функционирования СЗИ от НСД, что в итоге дало возможность представить показатели эффективности функционирования СЗИ от НСД для исследуемой предметной области.

Предлагается оценить эффективности функционирования СЗИ от НСД, основываясь, как на динамических показателях, так и на статических, что согласно теории эффективности, является наиболее перспективным.

Представленные критерии позволяют учитывать множественные варианты функционирования СЗИ от НСД, что позволяет осуществить выбор стратегии согласно цели разработки.

Перспективным направление в этой области является усовершенствование критерия эффективности с учетов принципов самообучения. Алгоритм интегральной оценки эффективности функционирования СЗИ от НСД поэтапно описывает порядок действий (методику) оценки и аккумулирует в себе как представленные показатели, так и критерии.

Вывод. Разработанная концепция позволит на основе как экспериментальных, так и имитационных данных оценивать эффективность функционирования СЗИ от НСД в АИС.

Представленные метрики и критерии направлены на повышение уровня надёжности СЗИ от НСД в АИС с точки зрения выбора оптимальной стратегии функционирования при разработке подобных систем.

Библиографический список:

- 1. ФСТЭК Руководящий документ Защита от несанкционированного доступа к информации. Термины и определения. URL: https://fstec.ru/component/attachments/download/298 (дата обращения: 26.02.2018).
- 2. Герасименко В.Г. Проблемы обеспечения информационной безопасности при использовании открытых информационных технологий в системах критических приложений // Информация и безопасность: Регион.науч.-техн. вестник. Воронеж: ВГТУ, 1999. Вып. $4.-C.\ 66-67.$
- 3. Е. А. Рогозин, А. Д. Попов, Т. В. Шагиров. Проектирование систем защита информации от несанкционированного доступа в автоматизированных системах органов внутренних дел // Вестник Воронежского института МВД России. -2016. -№ 2. -C. 174-183.
- 4. Петухов Г. Б., Якунин В. И. Методологические основы внешнего проектирования целенаправленных процессов и целеустремленных систем. М: АСТ, 2006. 504 с.
- 5. Авдуевский В. С. [и др.] Надежность и эффективность в технике: Т. 1 Методология. Организация. Терминология / под ред. А. И. Рембезы. М: Машиностроение, 1986. 224 с.
- 6. Дробин В. У. [и др.] Надежность и эффективность в технике: Т. 3 Эффективность технических систем / под общ.ред. В. Ф. Уткина, Ю. В. Крючкова. М: Машиностроение, 1988. 328 с.
- 7. ФСТЭК РФ. Руководящий документ. Концепция защиты средств вычислительной техники и автоматизированных систем от несанкционированного доступа к информации. URL:

- https://fstec.ru/component/attachments/download/299 (дата обращения: 26.02.2018).
- 8. ГОСТ 28806-90 Качество программных средств. Термины и определения. URL: http://www.kimmeria.nw.ru/standart/glosys/gost_28806_90.pdf (дата обращения: 23.02.2018).
- 9. ISO/IEC TR 9126-2:2003 Software engineering Product quality Part 2: External metrics.URL: https://www.iso.org/standard/22750.html (датаобращения: 26.02.2018).
- 10. ISO/IEC TR 9126-3:2003 Software engineering Product quality Part 3: Internal metrics. URL: https://www.iso.org/standard/22891.html (датаобращения: 26.02.2018).
- 11. ISO/IEC TR 9126-4:2004 Software engineering Product quality Part 4: Quality in use metrics. URL: https://www.iso.org/standard/39752.html (датаобращения: 26.02.2018).
- 12. СЗИ «Страж NT». Руководство администратора. URL: http://www.guardnt.ru/download/doc/admin_guide_nt_3_0.pdf (дата обращения: 23.02.2018).
- 13. Система защиты информации от несанкционированного доступа «Страж NT». Описание применения. URL: http://www.rubinteh.ru/public/opis30.pdf (дата обращения: 23.02.2018).
- 14. Липаев В. В. Качество программных средств. Методические рекомендации. / под. общ. ред. А. А. Полякова. М.: Янус-К, 2002. 400 с.
- 15. БоэмБ., Браун Дж., Каспар Х.[и др.] Характеристики качества программного обеспечения / пер. с англ. Е. К.

Масловского. М.: Мир, 1981. 208 с.

- 16. Черников Б. В., Поклонов Б. Е. Оценка качества программного обеспечения: Практикум: учебное пособие. М.: ИД «ФОРУМ»: ИНФРА-М, 2012. 400 с.
- 17. Герасименко В. А., Малюк А. А. Основы защиты информации Москва: МИФИ, 1997. 537 с.
- 18. ГОСТ Р 50922–2006 Защита информации. Основные термины и определения. М.: Стандартинформ, 2006. 12 с.
- 19. Юсупов Р. М., Мусаев А. А. Особенности оценивания эффективности информационных систем и технологий. // Труды СПИИРАН. 2017. № 2 (51). С. 5 34.
- 20. The Research and Discussion on Effectiveness Evaluation of Software Protection Huaijun Wang; Dingyi Fang; Junhuai Li; Yong Chang; Lei Yu 2016 12th International Conference on Computational Intelligence and Security (CIS) Year: 2016 Pages: 628 632 IEEE Conferences
- 21. Method to Evaluate Software Protection Based on Attack Modeling Huaijun Wang; Dingyi Fang; Ni Wang; Zhanyong Tang; Feng Chen; Yuanxiang Gu 2013 IEEE 10th International Conference on High Performance Computing and

References:

- 1. FSTEK Rukovodyashchii dokument Zashchita ot nesanktsionirovannogo dostupa k informatsii. Terminy i opredeleniya. URL: https://fstec.ru/component/attachments/ download/ 298 (data obrashcheniya: 26.02.2018). [FSTEK Guidance document Protection against unauthorized access to information. Terms and Definitions. URL: https://fstec.ru/component/attachments/download/298 (access date: 26.02.2018). (In Russ.)]
- 2. Gerasimenko V.G. Problemy obespecheniya informatsionnoi bezopasnosti pri ispol'zovanii otkrytykh informatsionnykh tekhnologii v sistemakh kriticheskikh prilozhenii. Informatsiya i bezopasnost': Region. nauch.-tekhn. vestnik. Voronezh: VGTU. 1999;4:66 - 67. [Gerasimenko V.G. Problems of ensuring information security when using open information technologies in critical application systems. Information and Security: Region. nauch.-tekhn. vestnik. Voronezh: VGTU. 1999;4:66 -67. (In Russ.)]
- 3. Rogozin E.A., Popov A D., Shagirov T.V. Proektirovanie sistem zashchita informatsii ot nesanktsionirovannogo dostupa v avtomatizirovannykh sistemakh organov vnutrennikh del. Vestnik Voronezhskogo instituta MVD Rossii. 2016;2:174 183. [Rogozin E.A., Popov A D., Shagirov T.V. Designing systems to protect information from unauthorized access in automated systems of internal affairs bodies. The Bulletin of the Voronezh Institute of the Ministry of Internal Affairs of Russia. 2016;2:174 183. (In Russ.)]
- 4. Petukhov G.B., Yakunin V.I. Metodologicheskie osnovy vneshnego proektirovaniya tselenapravlennykh protsessov i tseleustremlennykh sistem. M: ACT; 2006. 504 s. [Petukhov G.B., Yakunin V.I. Methodological bases of external designing of purposeful processes and purposeful systems. M: ACT; 2006. 504 p. (In Russ.)]
- 5. Avduevskii V.S. i dr. Nadezhnost' i effektivnost' v tekhnike: T. 1 Metodologiya. Organizatsiya. Terminologiya. Pod red. A.I. Rembezy. M: Mashinostroenie; 1986. 224 s. [Avduevskii V.S. et al. Reliability and efficiency in technology: V. 1 Methodology. Organisation. Terminology. A.I. Rembeza (Ed.). M: Mashinostroenie; 1986. 224 p. (In Russ.)]
- 6. Drobin V.U. i dr. Nadezhnost' i effektivnost' v tekhnike: T. 3 Effektivnost' tekhnicheskikh sistem. Pod red. V.F. Utkina, Yu. V. Kryuchkova. M: Mashinostroenie; 1988. 328 s. [Drobin V.U. et al. Reliability and efficiency in technology: V. 3 Efficiency of technical systems. V.F. Utkin, Yu. V. Kryuchkov (Eds.). M: Mashinostroenie; 1988. 328 p. (In Russ.)]
- 7. FSTEK RF. Rukovodyashchii dokument. Kontseptsiya zashchity sredstv vychislitel'noi tekhniki i avtomatiziro-

- Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing Year: 2013 Pages: 837 844 Cited by: Papers (1) IEEE Conferences.
- 22. ГОСТ 25010–2015 Требования и оценка качества систем и программного обеспечения (SQuaRE). Модели качества систем и программных продуктов URL: http://ingraf.su/wp-content/uploads/GOST-R-ISO-MEK-25010-2015.pdf(дата обращения: 21.02.2018).
- 23. McCall J.A., Richards P.K., Walters G.F. Factors in Software Quality: Metric Data Collection and Validation. Final Technical Report. Vol. 2. National Technical Information Service, Springfield. 1977.
- 24. McCall J.A., Richards P.K., Walters G.F. Factors in Software Quality: Preliminary Handbook.
- 25. FEA Consolidated Reference Model Document.
- 26. Дровникова И. Г., Мещерякова Т. В., Попов А. Д, Рогозин Е. А., Ситник С.М. Математическая модель оценки эффективности систем защиты информации с использованием преобразования Лапласа и численного метода Гивенса // Труды СПИИРАН. 2017. № 3 (52). С. 234—258.
- vannykh sistem ot nesanktsionirovannogo dostupa k informatsii. URL: https://fstec.ru/component/attachments/ download/299 (data obrashcheniya: 26.02.2018). [FSTEK of the Russian Federation. Guidance document. The concept of protecting computer facilities and automated systems from unauthorised access to information. URL: https://fstec.ru/component/attachments/download/299 (access date: 26.02.2018). (In Russ.)]
- 8. GOST 28806-90 Kachestvo programmnykh sredstv. Terminy i opredeleniya. URL: http://www.kimmeria.nw.ru/standart/glosys/gost_28806_90.pdf (data obrashcheniya: 23.02.2018). [GOST 28806-90 The quality of software. Terms and Definitions. URL: http://www.kimmeria.nw.ru/standart/glosys/gost_28806_90.pdf (access date: 23.02.2018). (In Russ.)]
- 9. ISO/IEC TR 9126-2:2003 Software engineering Product quality Part 2: External metrics. URL: https://www.iso.org/standard/22750.html (access date: 26.02.2018).]
- 10. ISO/IEC TR 9126-3:2003 Software engineering Product quality Part 3: Internal metrics. URL: https://www.iso.org/standard/22891.html (access date: 26.02.2018).
- 11. ISO/IEC TR 9126-4:2004 Software engineering Product quality Part 4: Quality in use metrics. URL: https://www.iso.org/standard/39752.html (access date: 26.02.2018).
- 12. SZI "Strazh NT". Rukovodstvo administratora. URL: http://www.guardnt.ru/download/doc/admin_guide_nt_3_0.pdf (data obrashcheniya: 23.02.2018). [SZI "Strazh NT". Administrator's guide. URL: http://www.guardnt.ru/download/doc/admin_guide_nt_3_0.pdf (access date: 23.02.2018). (In Russ.)]
- 13. Sistema zashchity informatsii ot nesanktsionirovannogo dostupa "Strazh NT". Opisanie primeneniya. URL: http://www.rubinteh.ru/public/opis30.pdf (data obrashcheniya: 23.02.2018). [System to protect information from unauthorised access "Strazh NT". Description of the application. URL: http://www.rubinteh.ru/public/opis30.pdf (access date: 23.02.2018). (In Russ.)]
- 14. Lipaev V. V. Kachestvo programmnykh sredstv. Metodicheskie rekomendatsii. Pod.red. A. A. Polyakova. M.: Yanus-K; 2002. 400 s. [Lipaev V. V. The quality of software. Guidelines. A. A. Polyakov (Ed.). M.: Yanus-K; 2002. 400 p. (In Russ.)]
- 15. Boem B., Braun Dzh., Kaspar Kh. i dr. Kharakteristiki kachestva programmnogo obespecheniya. M.: Mir; 1981. 208

- s. [Boem B., Braun Dzh., Kaspar Kh. et al. Characteristics of software quality. M.: Mir; 1981. 208 p. (In Russ.)]
- 16. Chernikov B.V., Poklonov B.E. Otsenka kachestva programmnogo obespecheniya: Praktikum: uchebnoe posobie. M.: ID "FORUM": INFRA-M; 2012. 400 s. [Chernikov B.V., Poklonov B.E. Evaluation of software quality: Workshop: a tutorial. M.: ID "FORUM": INFRA-M; 2012. 400 p. (In Russ.)]
- 17. Gerasimenko V.A., Malyuk A.A. Osnovy zashchity informatsii Moskva: MIFI; 1997. 537 s. [Gerasimenko V.A., Malyuk A.A. Fundamentals of Information Security: MIFI; 1997. 537 p. (In Russ.)]
- 18. GOST R 50922–2006 Zashchita informatsii. Osnovnye terminy i opredeleniya. M.: Standartinform; 2006. 12 s. [GOST R 50922–2006 Information protection. Basic terms and definitions. M.: Standartinform; 2006. 12 p. (In Russ.)]
- 19. Yusupov R.M., Musaev A.A. Osobennosti otsenivaniya effektivnosti informatsionnykh sistem i tekhnologii. Trudy SPIIRAN. 2017; 2(51):5 34. [Yusupov R.M., Musaev A.A. Features of the evaluation of the effectiveness of information systems and technologies. Collected works of SPIIRAN. 2017; 2(51):5 34. (In Russ.)]
- 20. Wang H., Fang D., Li J., Chang Y., Yu L. The Research and Discussion on Effectiveness Evaluation of Software Protection. 12th International Conference on Computational Intelligence and Security (CIS) Year: 2016. P. 628 632.
- 21. Wang H., Fang D., Wang N., Tang Z., Chen F., Gu Y. Method to Evaluate Software Protection Based on Attack Modeling. IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE In-

- ternational Conference on Embedded and Ubiquitous Computing Year: 2013 P. 837 844.
- 22. GOST 25010–2015 Trebovaniya i otsenka kachestva sistem i programmnogo obespecheniya (SQuaRE). Modeli kachestva sistem i programmnykh produktov URL: http://ingraf.su/wp-content/uploads/GOST-R-ISO-MEK-
- 25010-2015.pdf (data obrashcheniya: 21.02.2018). [GOST 25010-2015 Requirements and assessment of the quality of systems and software (SQuaRE). Models of quality of systems and software products. URL: http://ingraf.su/wpcontent/uploads/GOST-R-ISO-MEK-25010-2015.pdf (access date: 21.02.2018). (In Russ.)]
- 23. McCall J.A., Richards P.K., Walters G.F. Factors in Software Quality: Metric Data Collection and Validation. Final Technical Report. Vol. 2. National Technical Information Service, Springfield. 1977.
- 24. McCall J.A., Richards P.K., Walters G.F. Factors in Software Quality: Preliminary Handbook.
- 25. FEA Consolidated Reference Model Document.
- 26. Drovnikova I.G., Meshcheryakova T.V., Popov A.D, Rogozin E.A., Sitnik S.M. Matematicheskaya model' otsenki effektivnosti sistem zashchity informatsii s ispol'zovaniem preobrazovaniya Laplasa i chislennogo metoda Givensa. Trudy SPIIRAN. 2017;3(52):234 258. [Drovnikova I.G., Meshcheryakova T.V., Popov A.D, Rogozin E.A., Sitnik S.M. A mathematical model for evaluating the effectiveness of information security systems using the Laplace transform and the Givens numerical method. Collected works of SPIIRAN. 2017;3(52):234 258. [In Russ.)]

Сведения об авторах:

Качаева Гюльханум Ибадулаховна – кандидат экономических наук, заведующая кафедрой информационной безопасности.

Попов Антон Дмитриевич – адъюнкт.

Рогозин Евгений Алексеевич – доктор технических наук, профессор, кафедра автоматизированных информационных систем.

Information about the author.

Gyulkhanum I. Kachaeva- Cand. Sci.(Economics), Head of the Information Security Department.

Anton D. Popov- Adjunct.

Evgeny A. Rogozin - Dr. Sci. (Technical), Prof., Department of Automated information systems.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 23.12.2017.

Принята в печать 31.01.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 23.12.2017.

Accepted for publication 31.01.2018.

Для цитирования: Моисеева Т.В., Поляева Н.Ю. Моделирование проблемной ситуации в теории интерсубъективного управления. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 160-171. DOI:10.21822/2073-6185-2018-45-1-160-171

For citation: Moiseeva T.V., Polyaeva N.Yu. Modeling of problematic situations in intersubjective control theory. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 160-171. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-160-171

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК: 005.1

DOI: 10.21822/2073-6185-2018-45-1-160-171

МОДЕЛИРОВАНИЕ ПРОБЛЕМНОЙ СИТУАЦИИ В ТЕОРИИ ИНТЕРСУБЪЕКТИВНОГО УПРАВЛЕНИЯ

*Моисеева Т.В.*¹, Поляева Н.Ю.²

¹Институт проблем управления сложными системами Российской академии наук, 443020, г. Самара, ул. Садовая, 61, Россия,

²Поволжский государственный университет телекоммуникаций и информатики, 443010, г. Самара, ул, Л.Толстого, 23, Россия,

¹e-mail mtv-2002@yandex.ru, ²e-mail:nat.polyaeva@yandex.ru

Резюме. Цель. Классический менеджмент, связанный с организацией процессов управления на предприятиях, в регионах и государствах, ориентирован на повышение эффективности функционирования объекта управления, но никак не на разрешение проблемных ситуаций, с которыми сталкиваются представители социума. Предлагается дополнить традиционный менеджмент интерсубъективным управлением в социуме, разработав теорию совместного поиска выхода из проблемных ситуаций, в которых оказываются акторы, направленную на повышение качества жизни людей. Цель исследования - дальнейшее развитие теории интерсубъективного управления, ее дополнение формализованными средствами для практического применения. Метод. Применен системный подход, методы анализа и синтеза, математического моделирования. В целях наглядного представления последовательности этапов поиска выхода из проблемной ситуации использован метод графических изображений. Результат. Развивается теория интерсубъективного управления поиском выхода из проблемных ситуаций в обществе, представлен алгоритм анализа проблемной ситуации и поиска решения, рассмотрена цепочка «проблемная ситуация - проблема - смысл проблемной ситуации», положено начало построению формальной математической модели проблемной ситуации, описано применение основных положений теории интерсубъективного управления с помощью конкретного примера. Вывод. Предложенная схема анализа проблемной ситуации дополняет теорию управления в социальных и экономических системах средствами, которые позволят применять ее на практике.

Исследование выполнено в рамках работ по госбюджетной теме «Интерсубъективное управление инновационным развитием социотехнических объектов с применением онтологических моделей ситуаций» (№ АААА-А16-116040410061-0) института ИПУСС РАН.

Ключевые слова: интерсубъективное управление, неоднородные акторы, проблемная ситуация, проблема, единое смысловое пространство, алгоритм разрешения проблемной ситуации, модель проблемной ситуации

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

MODELING OF PROBLEMATIC SITUATIONS IN INTERSUBJECTIVE CONTROL THEORY

Tatyana V. Moiseeva¹, Natalya Yu. Polyaeva²

¹Institute for the Control of Complex Systems of Russian Academy of Sciences,

Abstract Objectives. The classical management approach associated with the organisation of management processes in enterprises, regions and states is aimed at improving the efficiency of the operation of the management object, but not at solving problem situations encountered by representatives of the society. By developing a theory of joint search for solutions to problem situations in which social actors find themselves, it is proposed to supplement traditional management techniques with an intersubjective social management approach aimed at improving the quality of life of people. The aim of the research is the further development of intersubjective management theory and its supplementation by formalised means for practical application. **Methods.** The system approach, methods of analysis and synthesis and mathematical modeling are applied. In order to visualise the stage sequence of finding a way out of a problem situation, a method relying on graphic images is used. Results. The theory of intersubjective management for finding a way out of problematic social situations is developed. Additionally, an algorithm for analysing the problem situation and finding a solution is presented, the "problem situation" is considered in terms of the meaning of the problem situation chain, a formal mathematical model of the problem situation is constructed and the application of the basic provisions of the theory of intersubjective control is described on an example. Conclusion. The proposed scheme for analysing problematic situations complements existing theoretic using an approach that will allow it to be applied in practice.

Acknowledgment. The research was carried out within the framework of the work on the state budget topic "Intersubjective management of innovative development of socio-technical objects with the use of ontological models of situations" (No. AAAA-A16-116040410061-0) of the Institute of the Complex System Problem Management of the Russian Academy of Sciences.

Keywords: intersubjective control, heterogeneous actors, problem situation, problem, single sense space, algorithm for resolving a problem situation, model of a problem situation

Введение. Классическая теория менеджмента имеет богатый арсенал средств, позволяющих организовать процессы управления на предприятиях, в регионах и государстве.

Основная цель применения положений традиционного менеджмента — повышение эффективности функционирования объекта управления, обычно бывает связана с увеличением объема выпускаемой продукции, максимально соответствующей запросам потребителей.

Но чувствуют ли себя «лучше» люди, участвующие в процессах производства, а также потребляющие то, что им нужно с точки зрения этих производителей?

Основной посыл традиционного менеджмента – думать за других, принимать за них решения и, в конце концов, нести за это ответственность. Исторически так сложилось, что мы не видим другие варианты управления, практически всегда подразумевая под менеджментом некоторое давление над неразумными, или просто не понимающими своей выгоды, или умышленно скрывающими какие-то факты, людьми.

Поскольку современное общество тяготеет к традиционному типу, большинство граждан свыклось с тем, что их собственные проблемы значительно мельче производственных и, уж тем более, общегосударственных, и не ждут от теории и практики управления помощи в разре-

¹61 Sadovaya Str., Samara 443020, Russia,

²Volga State University of Telecommunications and Informatics,

²23 L. Tolstogo Str., Samara 443010, Russia,

¹e-mail mtv-2002@yandex.ru, ²e-mail:nat.polyaeva@yandex.ru

шении таких проблемных ситуаций. При этом в обществе накапливается разочарование и недовольство существующим порядком вещей.

Дополнение традиционного менеджмента интерсубъективным управлением социальными процессами [1] позволит обеспечить людей (а с точки зрения Э. Гидденса каждый из нас – социальный теоретик) средствами совместного поиска выхода из проблемных ситуаций, в которых они оказались, что, в конечном итоге, повлияет на повышение качества жизни людей.

Основные положения нового подхода к управлению — теории интерсубъективного управления — были изложены в [2], результаты его дальнейшего развития — в [3-5], практическое применение — в [6-7].

Важность роли, которую играют неоднородные акторы (не просто созерцающие окружающий мир и познающие его, а выполняющие деятельностные функции) в процессах управления в обществе, была определена в [8].

Необходимость построения коммуникативной смысловой модели, интегрирующей взгляды всех акторов на проблемную ситуацию, обоснована в [9].

В качестве смысловых моделей предложено использовать онтологические модели ситуаций [10], т.е. формальные онтологии [11-12], а технологическая платформа для практической реализации положений теории интерсубъективного управления в сообществах, главной особенностью которых является коммуникация акторов, нацеленная на достижение их взаимопонимания, представлена в [9-10, 12].

Постановка задачи. В любой момент времени каждый из нас оказывается по крайней мере в одной проблемной ситуации, требующей разрешения. Некоторые из них имеют настолько важное значение для человека, что он не может полноценно выполнять свои служебные, общественные, семейные и бытовые обязанности, пока беспокойство по поводу урегулирования данных ситуаций не будет снято. И если в менеджменте существуют технологии принятия решений, помогающие руководителям разных уровней эти решения вырабатывать, то в повседневной жизни люди оказываются один на один с осознаваемыми ими проблемными ситуациями.


Поскольку проблемная ситуация есть «возникающее в процессе практической или духовной деятельности противоречие между определенной социальной потребностью и наличными средствами ее адекватного удовлетворения» [13], отсутствие средств удовлетворения потребности вызывает интеллектуальное затруднение человека и заставляет задуматься о том, как это противоречие разрешить, и каким может быть выход из данной проблемной ситуации.

Кто-то уверенно берется за ее разрешение, имея опыт руководящей работы, надлежащее воспитание и образование, или обладая определенными чертами характера, и становится актором, осуществляющим не только познавательные, но деятельностные функции. А кто-то теряется, озлобляется, недополучает жизненные блага, необходимые для «нормальной» жизни. В обоих случаях люди действуют в большей степени интуитивно, не имея инструментов, помогающих разрешать проблемные ситуации в повседневности.

Теория интерсубъективного управления, разрабатываемая в Самарском институте ИПУСС РАН, требует подкрепления формальными методами, которые облегчат ее применение на практике.

Методы исследования. В целях формализации задачи поиска выхода из проблемной ситуации структурируем процесс урегулирования ситуации группой акторов, показав последовательность этапов поиска решения, и построим математическую модель разрешения проблемной ситуации.

Оказавшись в проблемной ситуации акторы осознают наличие разных проблем, ищут единомышленников и совместно с ними приступают к поиску выхода из проблемной ситуации (рис. 1). Субъект осознает проблемную ситуацию, находясь внутри нее. В сознании погруженного в ситуацию человека формируется образная модель ситуации.

Puc. 1. Укрупненная схема поиска выхода из проблемной ситуации Fig. 1. Enlarged scheme for finding a way out of the problem situation

В процессе осознания проблемы он обращается к многочисленным источникам за дополнительной информацией. Это может быть вербальная коммуникация (общение с людьми, владеющими нужной, с точки зрения актора, информацией) или формальная (обращение к литературе, СМИ, телекоммуникационным и информационным средствам).

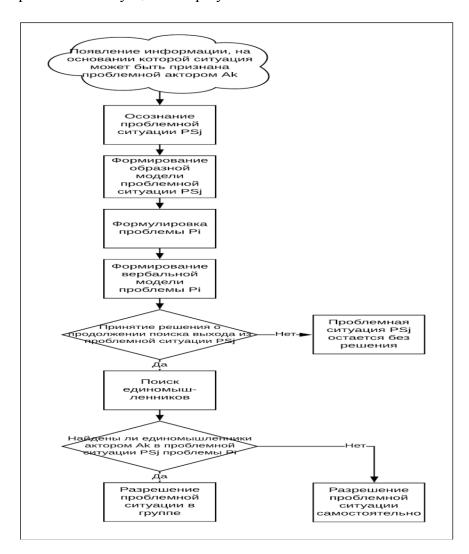
Оценивая ситуацию, субъект мысленно идентифицирует составляющие ее элементы и связи между ними, по-своему воспринимая и представляя ее, выстраивая в своем сознании субъективную модель ситуации. Субъективность означает, что видимые им факты, преломляясь через призму сознания, могут искажаться, не приниматься во внимание или вовсе теряться.

Воспользовавшись терминологией [13] отметим, что человек, осознавший *проблемную ситуацию* и проявивший себя в роли актора, формулирует *проблему*, которая принимает форму отражения объективного феномена его сознанием.

Проблема как отражение ситуации представляет собой систему высказываний о проблемной ситуации. Проблема обязательно содержит такой вопрос (или вопросы), решение которых требует получения нового знания (что, кстати, как отмечается в [13] отличает ее от задачи, для решения вопросов которой достаточно имеющихся знаний).

Проблема есть исходная форма организации знаний, представляющая собой систему высказываний о проблемной ситуации и совокупность вопросов, решение которых необходимо для ее разрешения и возможно путем получения нового знания.

Сложившиеся в сознании образы актор может описать словами (устно или письменно), т. е. выразить в языковой знаковой системе, создав *вербальную модель* проблемной ситуации, или ее информационную модель. В повседневной жизни люди, в основном, пользуются устной формой представления сформировавшихся в их сознании моделей.


Однако в дальнейшем, когда акторы объединятся в сообщества, при выработке единой смысловой модели ситуации [6] может возникнуть необходимость в ее письменном представлении.

Мыслительная работа актора, направленная на поиск выхода из проблемной ситуации, может завершиться принятием одного из следующих решений:

- нет необходимости в дальнейшем поиске путей выхода из данной ситуации (либо она разрешилась без участия актора или разрешится в ближайшее время, либо актор считает оптимальным не продолжать поиск решений);
- решение принято, и актор им удовлетворен;
- решение непременно должно быть найдено, но актор самостоятельно затрудняется раз-

решить проблемную ситуацию (т. е. актор осознает наличие некоторой потребности, но средств для ее удовлетворения недостаточно).

Интерес представляет последний вариант (рис. 2), когда актор вынужден искать других субъектов, оказавшихся в подобной проблемной ситуации и осознающих аналогичную проблему, и выход из проблемной ситуации интер-субъективно.

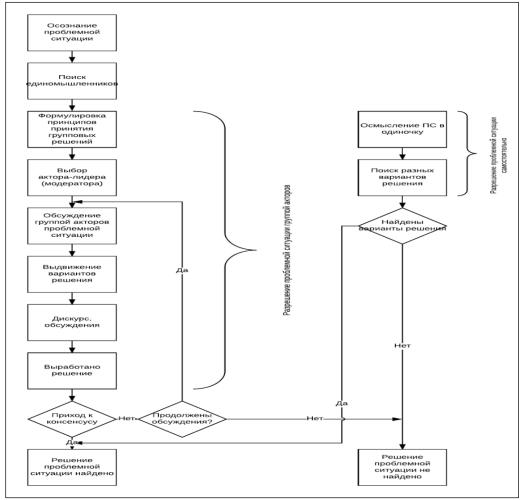
Puc. 2. Алгоритм осознания проблемной ситуации и поиска единомышленников Fig. 2. Algorithm for the problem situation awareness and finding like-minded people processes

Рациональный актор отказывается от принятия индивидуального решения, чувствуя дефицит собственных ресурсов (не только интеллектуальных, но и финансовых, материальных, информационных и пр.).

Действительно, суждения одного человека более ограничены, а вероятность принятия неудовлетворительного решения или вовсе его непринятия выше, чем при работе в группе. Групповое решение может оказаться более «богатым», чем индивидуальное, поскольку на его принятие влияют различные феномены восприятия и особенности переработки информации разными людьми [14].

Совершенно очевидно, что в одинаковых проблемных ситуациях могут оказаться разные акторы, которые либо найдут друг друга, либо будут действовать обособленно друг от друга. Достаточно легко организоваться, например, при возникновении проблемной ситуации внутри студенческой группы, образовав «ситуативную ассоциацию» (т.е. сообщество, организованное для разрешения данной проблемной ситуации, и действующее в реальном масштабе времени ее существования), понятие которой было введено в [6].

Однако если в аналогичной ситуации окажутся студенты в другом вузе, они могут и не узнать о наличии других групп акторов и будут действовать обособленно от них (рис. 3).


Наличие современных телекоммуникационных средств, интеллектуальных и социальных сетей способствуют упрощению выстраивания связей, однако создание специального информационного инструмента поиска выхода из проблемной ситуации и обучение потенциальных акторов могло бы еще более повысить эффективность взаимодействия субъектов.

Puc. 3. Пересечение информационных пространств акторов Fig. 3. Intersection of information spaces of actors

Отметим, что на основании одной и той же проблемной ситуации гетерогенными акторами могут формулироваться разные проблемы, имеющие различный смысл в понимании акторов [15].

На рис. 4 изображены только те из них, которые увидели схожие проблемы, но, возможно, наделили их разным смыслом, поскольку смысл субъективен, и, как правило, отражает личные предпочтения и видение актора, а в процессе описания проблемной ситуации актор демонстрирует собственное интеллектуальное и эмоционально-волевое отношение к ней.

Puc. 4. Схема анализа проблемной ситуации Fig. 4. Scheme of the problem situation analysis

Нравственно-ценностные установки и личный опыт каждого актора уникален и отличен от опыта других акторов. Однако для понимания смысла, вкладываемого в разрешение проблемной ситуации разными акторами, в полном совпадении нет необходимости.

Если бы требовалась тождественность понимания, достичь его было бы вообще невозможно, но поскольку решение должно быть выработано совместно, акторы стремятся получить устраивающее всех одно решение, преодолевая неполное непонимание, постигая смысл, вложенный в проблемную ситуацию другими акторами, последовательно и неуклонно повышая степень понимания, применяя технологии достижения консенсуса, «благодаря онтологическому единству мира и, следовательно, определенному единству человеческого опыта, а также благодаря единой системе концептуализации мира — общей для всех людей и инвариантной по отношению к индивидуальному опыту категориальной структуре мышления» [13].

Каждый актор в процессе формулирования смысла ситуации производит отбор из имеющейся совокупности знаний тех массивов, которые необходимы ему для осознания проблемной ситуации, а затем ее решения.

Фиксируя наличие противоречия между некоторой потребностью и наличными средствами ее удовлетворения и, учитывая, что любая конкретная проблема является формой перехода не от знания вообще, а от содержательно-конкретного знания, и не к незнанию как таковому, а к конкретно обрисованной области непознанного, отметим, что проблема (или сформулированный актором смысл ситуации) предопределяет и программирует свое будущее решение

Действительно, формулирование смысла актором содержит определенную схему будущего решения, что может быть вызвано тем, что, во-первых, из-за определенным образом иерархически упорядоченной системы связей между вопросами проблема оказывается своеобразной «пустой структурой» своего будущего решения, а, во-вторых, описание проблемы на естественном языке, средствами которого она формулируется, имплицитно содержит указания на возможные пути решения проблемы. Кроме того, прошлый опыт формулирования и разрешения проблемных ситуаций акторами переносится на последующие и при отсутствии необходимости в этом [16].

Пытаясь прийти к консенсусу, акторы представляют свое видение проблемной ситуации, причем ее описание может осуществляться в различных формах (вербальной, графической, матричной и пр.) в зависимости от ее характера, культуры акторов, образования и их ценностных установок, времени разрешения проблемы, применяющихся информационных и телекоммуникационных средств. Вербальная форма обычно предшествует и сопутствует всем прочим формам. При вербальном описании весьма важным оказывается то, какими понятийными средствами отображается проблемная ситуация.

Для того, чтобы оптимизировать процесс принятия решения в ситуативной ассоциации, акторы должны договориться о правилах, в соответствии с которыми будет вестись обсуждение, и которые регламентируют время, выделяемое на принятие решения, форму обсуждения, способы коммуницирования, принципы общения и пр. в рамках нормативной интерсубъективности. Контроль исполнения этих правил берет на себя актор-лидер (модератор), который обычно появляется в группе и готов взять на себя некие функции по управлению процессом ведения переговоров.

В ситуативной ассоциации это может быть наиболее заинтересованное в получении результатов лицо.

Следует отметить, что в тех случаях, когда такой лидер не появляется, обсуждение ситуации может со временем «зачахнуть».

Обсуждение проблемной ситуации, выдвижение гипотез и вариантов решения проблемы опираются на технологии принятия решений:

- 1. Аргументированный дискурс- форма коммуникации, в ходе которой высказывания «другого» тщательно проверяются, понимаются, уточняются, критикуются и, наконец, принимаются или отвергаются [17-18].
- 2. Инфокоммуникационные технологии, к которым сегодня, например, можно отнести

приложения-мессенджеры, социальные сети, в которых создаются опросы, обсуждения, группы единомышленников [19].

Совместное обсуждение и осмысление проблемной ситуации разными акторами в группе (ситуативной ассоциации) приводит к рождению инновационной идеи, образованию новых понятий.

Инновационная идея — это результат осмысления акторами проблемной ситуации, который формулирует представление о некотором нововведении, с помощью которого ее можно было бы урегулировать и которое создаст дополнительную ценность для акторов [20]. Новые понятия являются результатом систематизации старых знаний и их синтеза.

Эти понятия не только отражают существенные свойства проблемной ситуации, но выступают и в качестве средства формулирования проблемы, ибо, включая в себя новое содержание, выходят за пределы данных опыта и позволяют объединить в рамках проблемы разнообразные, в том числе и противоречивые, опытные данные, описывающие проблемную ситуацию [13].

Инновационные идеи и новые понятия выступают в качестве средства нового направления движения мысли при анализе проблемной ситуации.

Математическая модель анализа проблемной ситуации выглядит следующим образом.

Акторы $A_1...A_n$, $n=\{1,...,N\}$, оказавшиеся в проблемной ситуации PS_j , где $j=\{0,...,J\}$, осознавшие проблему P_i , где $i=\{1,...,I\}$, объединяются в сообщество $G_i=\{A_1,...,A_n\}$, где $i=\{1,...,I\}$.

Другие акторы, оказавшиеся в сходной проблемной ситуации, могут увидеть в ней другую проблему, и объединиться в другое сообщество.

Далее будем рассматривать только акторов, увидевших единую проблему в одной проблемной ситуации.

Каждый актор видит свой смысл в решении проблемы.

Актор A_1 - предлагает решение d_1 , актор A_2 - решение d_2 , ..., актор A_n - решение d_n .

При этом акторы осознают ограниченность собственных ресурсов, которые они могут вложить в решение данной проблемы. Для ее разрешения могут быть нужны ресурсы разного вида (финансовые, материальные и пр.) R_l , $l=\{1, ..., L\}$.

В результате необходимые ресурсы могут складываться из ресурсов, которые разные акторы захотят вложить в решение данной проблемы:

$$R_l = \sum k r_{lk}$$

Некоторые решения разных акторов могут совпадать, а один актор может поддерживать несколько решений.

Изначально каждый актор A_k , где k={1, ..., K}, одобряет некоторое множество решений D_k = { d_1 , ..., d_l }.

В ходе обсуждения видимые акторами смыслы и решения начинают сходиться (поскольку достижение общего решения жизненно важно для каждого из них, а собственных ресурсов не хватает).

Обсуждение продолжается, если $D_1 \cap D_2 \cap ... \cap D_k = \emptyset$.

Как только $D_1 \cap D_2 \cap ... \cap D_k \neq \emptyset$, это значит, что акторы пришли к консенсусу и нашли общее решение $d_{\text{итог}}$, где $D_1 \cap D_2 \cap ... \cap D_k = d_{\text{итог}}$.

Т.е. общее, удовлетворяющее всех, решение SS (Satisfactory Solution):

$$SS = \left\{ egin{aligned} 0 , & \text{если } D_1 \cap \ D_2 \cap \ldots \cap D_k = \emptyset , \text{при } k = \{1,\ldots,K\}; \\ 1 , & \text{если } D_1 \cap \ D_2 \cap \ldots \cap D_k = d_{\mathtt{итог}}, \text{при } k = \{1,\ldots,K\}. \end{aligned}
ight.$$

Обсуждение результатов. Описанный выше подход был апробирован на реальной проблемной ситуации, сложившейся в организации, занимающейся изготовлением пластиковых окон.

Проблемная ситуация оказалась связана с тем, что на производстве снизилось качество продукции. Проведенное исследование позволило выявить узкое место. Оказалось, что каче-

ство всей продукции страдает из-за снижения уровня исполнения резки металлического профиля и хлыстов ПВХ.

Среди рабочих, занимающихся нарезкой заготовок, были выявлены три человека, которые регулярно опаздывали на работу, поскольку жили в отдаленном районе, и утром сталкивались с транспортными затруднениями при движении. Начав работу с опозданием, они старались догнать коллег, торопились, и неаккуратно нарезали заготовки, которые шли в дальнейшую обработку.

В данную проблемную ситуацию оказались вовлечены сотрудники цеха подготовки заготовок, руководство цеха, руководство организации. Первоначально ситуация была обсуждена в рамках цеха, часть сотрудников которого опаздывала.

В результате оказалось, что все рабочие цеха (девять человек) осознают себя в данной проблемной ситуации, поскольку премию они получают по результатам коллективной работы, и выступают, как акторы: $A_1, A_2, ..., A_9$.

Среди них сразу выделился лидер (начальник цеха, который также сталкивался с транспортными затруднениями при движении), сыгравший роль модератора, под руководством которого акторы начали действовать.

Практически сразу они пришли к выводу, что искать решение, не привлекая других сотрудников, попадающих в ситуацию с транспортными затруднениями, было бы неправильно, поскольку, возможно, у них есть свое видение проблемы и варианты решения. Обращение к коллегам было размещено на доске объявлений. В результате команда акторов обогатилась еще тремя желающими изменений.

В результате сформировалась довольно большая группа акторов G, состоящая из 12 человек: $G = \{A_1, A_2, ..., A_{12}\}.$

Далее были сформулированы нормы и правила дальнейшей работы (нормативная интерсубъективность), такие как: проведение обсуждения в течение недели в сети (на сайте организации), участие всех желающих в обсуждении в сети, встреча один раз в неделю первоначально сформированной инициативной группы с проведением мозгового штурма по накопленной информации и пр.

Актор - модератор руководил процессом обсуждения в сети, распечатывал предложения других акторов, подготавливал необходимую информацию.

В результате первого обсуждения в сети и затем при очной встрече группой были сформулированы четыре варианта разрешения проблемной ситуации: d_1 ; d_2 ; d_3 ; d_4 .

Каждый актор предложил и поддержал один или несколько вариантов.

Через некоторое время четыре человека перестали оставлять свои комментарии в сети и приходить на обсуждения.

Очевидно, эта проблема оказалась для них не такой важной, как для остальных участников, или они нашли свой выход, не требующий совокупных усилий группы, которая сократилась до 8 человек: $G=\{A_1,A_2,...,A_8\}$.

Акторами были одобрены следующие, частично пересекающиеся варианты решений проблемной ситуации (табл. 1).

В результате сформировались множества одобряемых решений: $D_1 = \{ d_1 \}, D_2 = \{ d_2, d_3 \}, D_3 = \{ d_4 \}, D_4 = \{ d_2, d_3 \}, D_5 = \{ d_2, d_3 \}, D_6 = \{ d_4 \}, D_7 = \{ d_4 \}, D_8 = \{ d_1 \}.$

Как видно, единого решения, одобряемого всеми акторами, сразу предложено не было: $D_1 \cap D_2 \cap ... \cap D_8 = \emptyset$.

Обсуждения продолжились, и в ходе переговоров решения акторов стали меняться. Постепенно начало формироваться единое смысловое пространство, понятие которого было впервые предложено в [6], сформировалось однозначное осознание того, что проблема требует разрешения, единое видение проблемы, а множества одобряемых решений D_i уже не имели такого разброса (мнения начали сходиться).

Таблица 1. Варианты разрешения проблемной ситуации Table 1. Problem situation solving variants

		Акторы Actors							
		A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
ния Solutions	d_1								
	d_2								
	d_3								
Решения	d_4								

В результате был составлен сетевой график, выявляющий узкие места в производственных процессах, на основе которого разработано положение, определяющее порядок работы фирмы с учетом технологической зависимости и последовательности выполнения комплекса работ. Благодаря выделению критических (узких) мест, к составлению графика работы был применен индивидуальный подход.

Акторы пришли к консенсусу и было принято решение $d_{\text{итог}}$:

 $D_1 \cap D_2 \cap \ldots \cap D_9 \neq \emptyset$,

 $D_1 \cap D_2 \cap \ldots \cap D_{9} = d_{\text{WTOF}}$

Вывод. Предложенный алгоритм поиска выхода из проблемной ситуации группой акторов требует дальнейшего совершенствования, которое видится авторам в применении онтологического анализа, изучении когнитивной структуры восприятия проблемной ситуации каждым актором в отдельности, формализации в онтологической модели понимания проблемной ситуации, основанное на системе ценностей каждого актора, построении формальных онтологий проблемных ситуаций.

Онтологический инжинириг [21-22] позволит построить коммуникативную смысловую модель, интегрирующую взгляды всех акторов на проблемную ситуацию.

Библиографический список:

- 1. Виттих В.А. Принцип дополнительности в науке о процессах управления в обществе // Вестник СамГТУ. Серия «Технические науки». 2016. № 4 (52). С. 15-21.
- 2. Vittikh Vladimir A. Introduction to the Theory of Intersubjective. // Group Decision and Negotiation. January 2015. volume 24, issue 1. p.67–95.
- 3. Vittikh Vladimir A. Evergetics: science of intersubjective management processes in everyday life. // Int. J. Management Concepts and Philosophy. -2016. Vol. 9, No. 2.
- 4. Моисеева Т.В. Проблемы интерсубъективного управления инновационным развитием социотехнических объектов. // Вестник СамГТУ. Серия "Технические науки". 2017. № 3(55). С. 16-31.
- 5. Моисеева Т.В., Мятишкин Ю.В. Взаимодействие участников проблемной ситуации. // EKONOMICKÉ TRENDY. 2017. No3. C.38-42.
- 6. Виттих В.А., Моисеева Т.В. Интерсубъективное управление: от теории к практике. // Проблемы управления и моделирования в сложных системах: труды XVIII Междунар. конф. Самара: ООО «Офорт». 2016. С. 53 –
- 7. Моисеева Т.В., Поляева Н.Ю. Апробация теории интерсубъективного управления в техническом вузе. // Problems of modern education: materials of the VIII international scientific conference. September 10–11, 2017. Prague: Vědecko vydavatelské centrum «Sociosféra-CZ», 2017. p. 16-17.
- 8. Vittikh Vladimir A. Heterogeneous Actor and Everyday Life as Key Concepts of Evergetics. // Group Decision and

- Negotiation. November 2015. volume 24, issue 6. p.~949-956.
- 9. Смирнов С.В. Формальный поход к представлению смысла проблемной ситуации в процессах коллективного принятия решений. // Труды XII Всероссийского совещания по проблемам управления. 16-19 июня 2014 г., Москва, Россия. М.: ИПУ РАН. 2014. С. 6261-6270.
- 10. Виттих В.А. Онтологические модели ситуаций в процессах принятия коллегиальных решений. // Проблемы управления и моделирования в сложных системах: Труды XI Международной конференции. Самара: Самарский научный центр РАН. 2009. С. 405-410.
- 11. Гаврилова Т.А., Муромцев Д.И. Интеллектуальные технологии в менеджменте: инструменты и системы. СПб.: Изд-во «Высшая школа менеджмента», Изд. дом СПбГУ, 2008. 488 с.
- 12. Смирнов С.В. Онтологии как смысловые модели. // Онтология проектирования. 2013. №2. С. 12-19.
- 13. Никифоров В.Е. Анализ проблемных ситуаций и методы решения проблем. // Курс-конспект лекций и контрольные задания для магистрантов. Рига, 2008. 114c.
- 14. Alan Briskin, Sheryl Erickson, John Ott, Tom Callanan The Power of Collective Wisdom and the Trap of Collective Folly (Large Print 16pt). Oakland, California: Berrett-Koehler Publishers, 2014. 264 p.
- 15. Франкл В. Человек в поисках смысла. М.: Книга по требованию, 2012. 366 с.
- 16. Cialdini, Robert B. Pre-Suasion: A Revolutionary Way to Influence and Persuade. Simon & Schuster, 2016.

- 17. Eemeren, Frans H. Grootendorst R. Speech Acts in Argumentative Discussions. Dordrecht, Holland / Cunnaminson, USA, 1984.
- 18. Mohammed D., Lewinski M. Argumentation and Reasoned Action. // Proceedings of the 1st European Conference on Argumentation. Lisbon, 2015.
- 19. Гагарина Л.Г., Баин А.М. и др. Введение в инфокоммуникационне технологии. // Учебное пособие. Под ред. д.т.н., проф. Л.Г. Гагариной. М.: ИД ФОРУМ: НИЦ ИНФРА, 2013. 336с.
- 20. Виттих В.А., Горбунов Д.В., Моисеева Т.В., Смирнов С.В. Принципы управления процессом рождения инновационных идей. // Проблемы управления и

References

- 1. Vittikh V.A. Printsip dopolnitel'nosti v nauke o protsessakh upravleniya v obshchestve. Vestnik SamGTU. Seriya "Tekhnicheskie nauki". 2016;4(52):15-21. [Vittikh V.A. The principle of complementarity in the science of management processes in society. Vestnik of Samara State Technical University. Technical Sciences Series. 2016;4(52):15-21. (In Russ.)]
- 2. Vittikh V.A. Introduction to the Theory of Intersubjective. Group Decision and Negotiation. 2015;24(1):67–95.
- 3. Vittikh V.A. Evergetics: science of intersubjective management processes in everyday life. Int. J. Management Concepts and Philosophy. 2016;9(2).
- 4. Moiseeva T.V. Problemy intersub"ektivnogo upravleniya innovatsionnym razvitiem sotsiotekhnicheskikh ob"ektov. Vestnik SamGTU. Seriya "Tekhnicheskie nauki". 2017;3(55):16-31. [Moiseeva T.V. Problems of intersubjective management of innovative development of socio-technical objects. of Samara State Technical University. Technical Sciences Series. 2017;3(55):16-31. (In Russ.)]
- 5. Moiseeva T.V., Myatishkin Yu.V. Vzaimodeistvie uchastnikov problemnoi situatsii. Ekonomické trendy. 2017;3:38-42. [Moiseeva T.V., Myatishkin Yu.V. Interaction of participants in a problem situation. Ekonomické trendy. 2017;3:38-42. (In Russ.)]
- 6. Vittikh V.A., Moiseeva T.V. Intersub"ektivnoe upravlenie: ot teorii k praktike. Trudy XVIII Mezhdunar. konf. "Problemy upravleniya i modelirovaniya v slozhnykh sistemakh". Samara: OOO "Ofort"; 2016. S. 53 62. [Vittikh V.A., Moiseeva T.V. Intersubjective control: from theory to practice. Proceedings of the XVIIIth International Conference "Problems of control and modeling in complex systems". Samara: OOO "Ofort"; 2016. P. 53 62. (In Russ.)]
- 7. Moiseeva T.V., Polyaeva N.Yu. Aprobatsiya teorii intersub"ektivnogo upravleniya v tekhnicheskom vuze. Materials of the VIII international scientific conference "Problems of modern education". Prague: Vědecko vydavatelské centrum "Sociosféra-CZ"; 2017. P. 16-17. [Moiseeva T.V., Polyaeva N.Yu. Approbation of the theory of intersubjective management in a technical university. Materials of the VIII international scientific conference "Problems of modern education". Prague: Vědecko vydavatelské centrum "Sociosféra-CZ"; 2017. P. 16-17. (In Russ.)]
- 8. Vittikh V.A. Heterogeneous Actor and Everyday Life as Key Concepts of Evergetics. Group Decision and Negotiation. 2015;24(6):949-956.
- 9. Smirnov S.V. Formal'nyi pokhod k predstavleniyu smysla problemnoi situatsii v protsessakh kollektivnogo prinyatiya reshenii. Trudy XII Vserossiiskogo soveshchaniya po problemam upravleniya. M.: IPU RAN; 2014. S. 6261-6270. [Smirnov S.V. A formal approach to presenting the meaning of the problem situation in the processes of collective decision-making. Proceedings of the 12th All-Russian Meeting on Management. M.: IPU RAN; 2014. P. 6261-6270. (In Russ.)]

- моделирования в сложных системах: труды XV11 Междунар. конф. Самара: Изд-во СамНЦ РАН. 2015. C.202-215.
- 21. Виноградов И.Д., Смирнов С.В. Алгоритм объединения концептуальных схем на основе реконструкции их формального контекста. // Проблемы управления и моделирования в сложных системах: Труды III международной конф. Самара: СамНЦ РАН, 2001. С. 213-220.
- 22. Stumme G., Maedche A. FCA Merge: Bottom-Up Merging of ontologies. // Proc. 17th Int. Conf. on Artificial Intelligence IJCAI'01. Seattle, WA, USA, August 4-10, 2001. p. 225-230.
- 10. Vittikh V.A. Ontologicheskie modeli situatsii v protsessakh prinyatiya kollegial'nykh reshenii. Trudy XI Mezhdunarodnoi konferentsii "Problemy upravleniya i modelirovaniya v slozhnykh sistemakh". Samara: Samarskii nauchnyi tsentr RAN; 2009. S. 405-410. [Vittikh V.A. Ontological models of situations in the processes of making collegial decisions. Proceedings of the XI International Conference "Problems of Control and Modeling in Complex Systems". Samara: Samara Scientific Center of the Russian Academy of Sciences; 2009. P. 405-410. (In Russ.)]
- 11. Gavrilova T.A., Muromtsev D.I. Intellektual'nye tekhnologii v menedzhmente: instrumenty i sistemy. SPb.: Izdvo "Vysshaya shkola menedzhmenta", Izd. dom SPbGU; 2008. 488 s. [Gavrilova T.A., Muromtsev D.I. Intellectual technologies in management: tools and systems. SPb.: Izd-vo "Vysshaya shkola menedzhmenta", Izd. dom SPbGU; 2008. 488 p. (In Russ.)]
- 12. Smirnov S.V. Ontologii kak smyslovye modeli. Ontologiya proektirovaniya. 2013;2:12-19. [Smirnov S.V. Ontologies as semantic models. Ontology of design. 2013;2:12-19. (In Russ.)]
- 13. Nikiforov V.E. Analiz problemnykh situatsii i metody resheniya problem. Kurs-konspekt lektsii i kontrol'nye zadaniya dlya magistrantov. Riga; 2008. 114 s. [Nikiforov V.E. Analysis of problem situations and methods for solving problems. Course-lecture summary and control tasks for undergraduates. Riga; 2008. 114 p. (In Russ.)]
- 14. Briskin A., Erickson S., Ott J., Callanan T. The Power of Collective Wisdom and the Trap of Collective Folly (Large Print 16pt). Oakland, California: Berrett-Koehler Publishers; 2014. 264 p.
- 15. Frankl V. Chelovek v poiskakh smysla. M.: Kniga po trebovaniyu; 2012. 366 s. [Frankl V. Man in the search for meaning. M.: Kniga po trebovaniyu; 2012. 366 p. (in Russ.)]
- 16. Cialdini R.B. Pre-Suasion: A Revolutionary Way to Influence and Persuade. Simon & Schuster; 2016.
- 17. Eemeren F.H. Grootendorst R. Speech Acts in Argumentative Discussions. Dordrecht, Holland / Cunnaminson, USA; 1984.
- 18. Mohammed D., Lewinski M. Argumentation and Reasoned Action. Proceedings of the 1st European Conference on Argumentation. Lisbon; 2015.
- 19. Gagarina L.G., Bain A.M. i dr. Vvedenie v infokommunikatsionne tekhnologii. Uchebnoe posobie. Pod red. L.G. Gagarinoi. M.: ID FORUM: NITs INFRA; 2013. 336 s. [Gagarina L.G., Bain A.M.et al. Introduction in infocommunication technologies. Tutorial. L.G. Gagarina (Ed.). M.: ID FORUM: NITs INFRA; 2013. 336 p. (In Russ.)]
- 20. Vittikh V.A., Gorbunov D.V., Moiseeva T.V., Smirnov S.V. Printsipy upravleniya protsessom rozhdeniya innovatsionnykh idei. Trudy XVII Mezhdunar. konf "Problemy upravleniya i modelirovaniya v slozhnykh sistemakh". Samara: Izd-vo SamNTs RAN; 2015. S.202-215. [Vittikh V.A., Gorbunov D.V., Moiseeva T.V., Smirnov S.V. Principles of man-

aging the process of the birth of innovative ideas. Proceedings of the XVII Intern. conf "Problems of control and modeling in complex systems". Samara: Samara Scientific Center of the Russian Academy of Sciences; 2015. P.202-215. (In Russ.)] 21. Vinogradov I.D., Smirnov S.V. Algoritm ob "edineniya kontseptual'nykh skhem na osnove rekonstruktsii ikh formal'nogo konteksta. Trudy III mezhdunarodnoi konf "Problemy upravleniya i modelirovaniya v slozhnykh sistemakh". Samara: SamNTs RAN; 2001. S. 213-220. [Vinogradov I.D.,

Smirnov S.V. Algorithm of combining conceptual schemes based on the reconstruction of their formal context. Proceedings of the III Intern. conf "Problems of control and modeling in complex systems". Samara: Samara Scientific Center of the Russian Academy of Sciences; 2001. P. 213-220. (In Russ.)] 22. Stumme G., Maedche A. FCA Merge: Bottom-Up Merging of ontologies. Proc. 17th Int. Conf. on Artificial Intelligence - IJCAI'01. Seattle, WA, USA, August 4-10, 2001. P. 225-230.

Сведения об авторах:

Моисеева Татьяна Владимировна – кандидат экономических наук, доцент, ученый секретарь.

Поляева Наталья Юрьевна - студентка.

Information about the authors.

Tatyana V. Moiseeva - Cand. Sci.(Economics), Assoc. Prof., Science Secretary.

Natalya Yu. Polyaeva - Student.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 09.01.2018.

Принята в печать 27.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 09.01.2018.

Accepted for publication 27.02.2018.

Для цитирования: Юркова О.Н. Применение методов анализа данных для автоматизации формирования онтологии. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 172-180. DOI:10.21822/2073-6185-2018-45-1-172-180

For citation: Yurkova O.N. Application of data analysis methods for automation of ontology formation. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 172-180. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-172-180

ТЕХНИЧЕСКИЕ НАУКИ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК: 004

DOI: 10.21822/2073-6185-2018-45-1-172-180

ПРИМЕНЕНИЕ МЕТОДОВ АНАЛИЗА ДАННЫХ ДЛЯ АВТОМАТИЗАЦИИ ФОРМИРОВАНИЯ ОНТОЛОГИИ

Юркова О.Н.

Брянский государственный инженерно-технологический университет, 241037 Брянская обл., г. Брянск, пр. Станке Димитрова, 3, Россия, e-mail: yurkova_olga@mail.ru

Резюме: Цель. Целью данной работы является разработка методов автоматизированного анализа текста и извлечения из полнотекстовых документов релевантных данных, а также применение методов семантического анализа текста — использованию лингвистических онтологий как формализованных моделей представления предметной области. Использование в качестве основы для построения лингвистических онтологий электронных энциклопедий, в первую очередь Википедии, с тем, чтобы извлечь из них максимум семантической информации о понятиях, их словарном выражении, взаимосвязях, а также иерархии.

Метод. Предпосылкой появления новейших технологий, которые позволили бы ее решить это поиск решений на основе методов системного анализа, как самого текста, так и объекта исследования, которые должны быть решены в результате такой обработки. При создании современных систем искусственного интеллекта или их компонентов, разработчики и исследователи зачастую сталкиваются с необходимостью формализации определенной предметной области с целью автоматизации обработки фраз, словосочетаний и предложений, поступающих в систему на естественном языке. В настоящее время наиболее популярный подход к формальному описанию предметной области заключается в построении её онтологии. Результат. Описаны подходы по извлечению информации, представлена архитектура автоматизированной системы, а также приведены результаты ее применения. Вывод. Применены методы семантического анализа данных, использованы лингвистические онтологии как формализованные модели представления предметной области. В работе описаны подходы по извлечению информации из Википедии, представлена архитектура автоматизированной системы, а также приведены результаты ее применения.

Ключевые слова: автоматизированная система; онтология; предметная область; автоматизированное построение онтологии; Википедия; семантика

TECHNICAL SCIENCE COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT

APPLICATION OF DATA ANALYSIS METHODS FOR AUTOMATION OF ONTOLOGY FORMATION

Olga N. Yurkova

Bryansk State Engineering and Technology University, 3 Stanke Dimitrova Ave., Bryansk 241037, Russia, e-mail: yurkova_olga@mail.ru

Abstract Objectives. The aim of this work is to develop methods for automated text analysis and the retrieval of relevant data from full-text documents, as well as applying semantic text analysis methods for using linguistic ontologies as formalised models of subject area representation. Another aim is the use of electronic encyclopedias, primarily Wikipedia, as the basis for constructing the linguistic ontologies in order to derive maximum semantic information about their concepts, vocabulary expressions, interrelations and hierarchy. Methods. The search for solutions based on system analysis methods is based on the emergence of new technologies that for solving both the text itself and the object of research that is to be solved as a result of such processing. When creating contemporary artificial intelligence systems or their components, developers and researchers often face the need to formalise a certain subject area in order to automate the processing of phrases, word collocations and sentences entering the system in natural language form. Currently, the most popular approach to the formal description of a subject area is to construct an ontology. **Results.** Established approaches to the retrieval of information are described along with the architecture of the automated system and the results of their application. Conclusion. Semantic data analysis methods are applied with linguistic ontologies used as the formalised models of subject area representation. Approaches to retrieving information from Wikipedia are described along with the architecture of the automated system and results of its application.

Keywords: automated system, ontology, subject area, automated ontology construction, wikipedia, semantics

Введение. В настоящее время в связи с увеличения потока информации появилась необходимость поиска новых способов ее хранения, представления, формализации и систематизации, а также автоматической обработки.

Растет интерес к всеобъемлющим базам знаний, которые возможно использовать для различных практических целей. Как результат, на фоне вновь возникающих потребностей развиваются новые технологии, призванные решить заявленные проблемы.

Особую важность приобретает обеспечение эффективного использования данных с применением интеллектуальных средств их анализа и представления. Полезность знаний в выборе того или иного решения выше в том случае, когда эти знания систематизированы и формализованы.

При создании современных систем искусственного интеллекта или их компонентов разработчики и исследователи зачастую сталкиваются с необходимостью формализации определенной предметной области с целью автоматизации обработки фраз, словосочетаний и предложений, поступающих в систему на естественном языке. В настоящее время наиболее популярный подход к формальному описанию предметной области заключается в построении её онтологии.

Онтология представляет собой структурное описание предметной области, включающее словари, термины, отношения. Основные элементы (примитивы) онтологии — это персоны (примеры), типы данных (конкретные домены), аксиомы, концепции (понятия, классы). Обобщая множество сходных определений, с уверенностью можно сказать, что в настоящее время

под онтологией подразумевается семантическая структура, описывающая основные концепты предметной области, связывающие их отношения, а также аксиомы, описывающие правила вывода новых концептов [1].

Более подробно понятие онтологии сформулировано у Т.А. Гавриловой, и описано как точная спецификация некоторой предметной области, представляющая собой формальное и декларативное описание, которое включает словарь терминов предметной области и логические выражения, описывающие значения этих терминов, а также то, как они соотносятся между собой [2]. До недавних пор для решения задач анализа текста, в большинстве случаев, применялись и развивались статистические методы.

С появлением сетевых лексических ресурсов и с совершенствованием синтаксических анализаторов лингвистические методы привлекают все большее внимание специалистов благодаря высокому качеству результатов, которые обещают такие методы [3-5]. Поэтому целью данной работы является описание структуры ИС, позволяющей обнаруживать в текстовом корпусе релевантные концепты предметной области на основе использования лингвистических шаблонов, характерных для данной предметной области.

Основной принцип построения онтологий можно разбить на несколько независимых этапов, на каждом из которых решается одна определенная задача, результаты которой, в свою очередь, служат исходными данными для задачи следующего, как правило, более сложного уровня.

Опираясь на этот подход, можно выделить некоторую последовательность действий: извлечение из текста разбиения терминов на→термины-кандидаты присвоения→группы (кластеризация) →обобщающего концепта каждой группе →определение отношений между концептами расширения концептов. Для начальных этапов многочисленные статистические методы позволяют получать весьма качественные результаты (до 90% точности по сравнению с результатами работы экспертов [7]). Однако для построения таксономии понятий и обнаружения отношений необходима разработка лингвистических методов. В частности, одним из эффективных подходов для обнаружения группы синонимов и общего для них гиперонима является использование лингвистических шаблонов, предложенных еще М. Hearst [8]. Совершенствование данного подхода зависит от наличия общей теории описания и анализа конкретного языка.

В данном случае, автор разделяет идею Золотовой Г. А. о том, что синтаксический строй текста организуется «элементарными» единицами. В качестве такой единицы выдвинуто понятие синтаксемы. Синтаксемой по Золотовой Г.А. называется минимальная, неделимая семантико-синтаксическая единица русского языка, выступающая одновременно и как носитель элементарного смысла, и как конструктивный компонент с функциональностью, необходимой и достаточной для построения более сложных синтаксических конструкций.

Формально онтология описывается следующим образом [11]:

$$O = \{C, R, A\},\$$

где O – онтология, C – совокупность понятий предметной области, R – совокупность отношений между ними, A – набор аксиом.

Онтология обеспечивает словари для представления и обмена знаниями о некоторой предметной области и множество связей, установленных между терминами в этих словарях.

В основе онтологического анализа лежит описание системы в терминах сущностей, отношений между ними и преобразование сущностей, которое выполняется в процессе решения определенной задачи. Онтологический инжиниринг подразумевает глубокий структурный анализ предметной области. Основным преимуществом онтологического инжиниринга является целостный подход к автоматизации предприятия.

Формализованное представление понятийной структуры предметной области в онтологии делает возможной автоматическую обработку онтологической информации, что находит активное применение в современных поисковых системах [12], мультиагентных системах [13], системах интеграции данных, получаемых из гетерогенных источников [14] и в других задачах.

Онтологии предметных областей применяются в таких областях, как:

1. Построение семантически ориентированных поисковых систем и систем обра-

ботки естественно-языковых текстов. Примерами являются проект Exactus [15] и система Texterra [16].

- 2. Разработка интеллектуальных и экспертных систем[17].
- 3. Разработка автоматизированных систем мониторинга данных для социально-экономических систем [18].
- 4. Управление знаниями [9].
- 5. Построение специализированных научных информационных систем, позволяющих унифицировать терминологию, используемую специалистами в рамках определенной предметной области [20].
- 6. Системный анализ предметной области.
- 7. Создание электронных обучающих систем, использующих онтологическое структурирование элементов знаний и учебных объектов [14].

Среди основных современных направлений, в которых ведется исследовательская работа по созданию средств и технологий автоматизации формирования онтологий предметных областей, можно выделить следующие.

- 1. Автоматизированное построение онтологии на основе анализа и мониторинга содержания специальных web-ресурсов. В первую очередь речь идет о ресурсах, разработанных в рамках проекта SymanticWeb, которые включают описанные в XMLподобных форматах (XML, XML Schema, RDF, RDF Schema, OWL, HTMLmicrodata) метаданные, содержащие дополнительные сведения о взаимосвязи используемых на ресурсах понятий. Используя такую семантическую разметку web-страниц, можно автоматизировать построение соответствующих онтологий.
- 2. Автоматизированный синтез онтологии на основе анализа массива текстов предметной области. В этом подходе процесс построения онтологии разбит на несколько независимых этапов, на каждом из которых решается одна определенная задача, результаты которой, в свою очередь, служат исходными данными для задачи следующего, как правило, более сложного уровня [18].
- 3. Автоматизированное выделение онтологии предметной области из универсальных онтологий (например, электронных энциклопедий). Так, в работе [19] описан положительный опыт по автоматизации построения онтологии предметной области на основе структуры категорий Википедии, а сам подход на данный момент является перспективным и востребованным.

То, чего действительно не хватает для полноценной интеллектуальной системы, так это систематизированного репертуара лексико-синтаксических единиц языка, несущих в себе однозначно трактуемую семантику и одновременно выполняющих роль «элементарных единиц сборки» высказываний (текстов). Пересечение такого репертуара «архе-функций», несомых синтаксической формой и репертуара слов-носителей категориальных референций, дает проекцию однозначно трактуемой роли выполняемой данным понятием. Подобный систематизирующий труд, как было сказано выше, выполнен в значительной степени Золотовой Г.А. [8] и ждет достойной технической реализации.

Постановка задачи. Наиболее перспективным направлением автору видится разработка алгоритмов и программной системы, которая бы позволяла строить лингвистические онтологии заданной предметной области на основе анализа и мониторинга данных, получаемых из различных источников. На начальном этапе разработки такой системы в качестве источника данных можно ограничиться Википедией, а после успешного апробирования алгоритмов на ней можно постепенно дополнять список источников.

Методы исследования. Для обработки страниц Википедии потребуется разработка специального модуля — парсеравики-страниц для извлечения необходимой информации. Причем данный модуль будет ориентирован на анализ русскоязычной версии Википедии, и его разработка является достаточно трудоемкой задачей. Поэтому на этапе исследования в целях проверки возможности эффективного извлечения онтологии заданной предметной области, разумно воспользоваться уже имеющимися общедоступными хранилищами извлеченной из Вики-

педии, например DBpedia, YAGO или Wikidata. В качестве источника для импорта данных в рамках собственного проекта было решено использовать именно DBpedia.

В основе Википедии лежит так называемый Вики-движок – комплекс программных средств для преобразования Вики-разметки в код, предназначенный для отображения в браузере. Одним из самых распространенных движков является MediaWiki, на его основе и работает Википедия. Для него существуют специальные дополнения, называемые расширениями, позволяющие получить определенную функциональность.

Так, расширение Semantic MediaWiki дает возможность добавлять семантическую информацию за счет расширения разметки, а также предлагает средства для работы с этой информацией. Для проведения работ технического характера в Wiki-системах используют боты — специальные программы для выполнения заданного набора операций. Они являются клиентскими приложениями, поэтому не требуют внесения изменений на стороне сервера В Википедии боты используются для таких задач, как переименование категорий и статей, расстановка интервики-ссылок, исправление ссылок, удаление спама и т.п.

Для реализации ботов используются различные языки программирования, а также существуют разные библиотеки для облегчения их написания. Одной из наиболее развитых библиотек является Python WikipediaBot Framework. Она использует MediaWiki API (специальный интерфейс прикладного программирования) для взаимодействия с MediaWiki-системой – авторизации, получения данных и внесения изменений.

Онтология из Википедии извлекается в следующем порядке. Сначала извлекаются все классы, при этом каждому классу соответствует одна категория Wiki, а структура вложенности категорий Wiki определяет иерархию классов. Затем извлекаются все страницы как экземпляры соответствующих классов. Для пустых страниц, на которые в Wiki имеются ссылки, заводится специальный служебный класс «Несуществующие страницы». После этого просматриваются все ссылки на каждой странице. Для начала определяется, является ли ссылка обычной или семантической. Если ссылка обычная, то для соответствующего экземпляра класса в ОWL-онтологии заводится объектное свойство «Ссылается на» (так как ссылка обычная, а не семантическая, то у нее нет своего собственного имени, и данное имя выбрано для всех таких ссылок) со значением в виде экземпляра, имя которого совпадает с именем страницы, на которую указывает ссылка. Если ссылка семантическая, то она имеет структуру, и для нее сначала определяется тип ее свойства. Если свойство имеет тип «Страница» или его тип не указан, то в ОWL-онтологии заводится объектное свойство с соответствующими именем (название свойства) и значением (значение свойства). Следует заметить, что по умолчанию свойство ссылки имеет тип «Страница».

Следует отметить, что Wiki-система, из которой извлекается онтология, не обязательно должна функционировать с расширением Semantic MediaWiki. Однако в случае использования Википедии без этого расширения извлекаемая онтология будет гораздо беднее, так как в ней не будет присутствовать специальная семантическая информация. В частности, нельзя будет извлечь атрибуты, разнообразие отношений также будет невелико. Правда, путем индивидуальной настройки на конкретную Wiki-систему объем извлекаемой из нее информации можно увеличить.

В рамках работы основной акцент сделаем на обработку следующих наборов данных.

- 1. Ссылки на страницах статей (файл page_links_ru). К ним относятся гиперссылки, содержащиеся непосредственно в текстах статей. Данный набор данных самый большой (в ходе разбора этого набора данных было выделено порядка 33,68 млн. ссылок и 5,39 млн. понятий для русскоязычной DBpedia).
- 2. Ссылки на категории, к которым относится понятие, описываемое в статье (файлы article_categories_ru и skos_categories_ru). Для большинства статей Википедия в специальном блоке перечисляются категории, к которой относится описываемое понятие. При этом категории могут содержать подкатегории и служат инструментом для объединения статей одной тематики. Однако структура категорий Википедии сетевая, а не строго иерархическая, что затрудняет классификацию понятий,

а также создает дополнительные трудности для выделения онтологии предметной области, т.к. нельзя ограничиваться только категориями статьи [20].

- 3. Ссылки на дополнительные свойства понятия, описываемого в статье, в специальных инфобокс-секциях (файл infobox_properties_ru). Обычно эта секция располагается в правом верхнем углу статьи и в ней содержатся основные факты или статистические данные о предмете статьи. При этом зачастую статьи со схожей проблематикой содержат в этом поле одинаковые свойства [20].
- 4. Страницы-перенаправления (файл redirects_ru). Данный набор данных можно рассматривать как основу для определения синонимов.

Итак, существуют подходы для извлечения таксономии из MediaWiki-систем без семантических расширений (например, в проектах YAGO и DBpedia, упомянутых выше), есть стандартные средства для экспорта семантической информации в расширении Semantic MediaWiki, но нет автоматизированных программных систем, объединяющих в себе и то, и другое. И именно в этом заключается новизна данной работы.

Общая архитектура разрабатываемой автоматизированной программной системы, решающей задачу извлечения онтологий предметных областей из внешних источников, представлена на рис. 1.

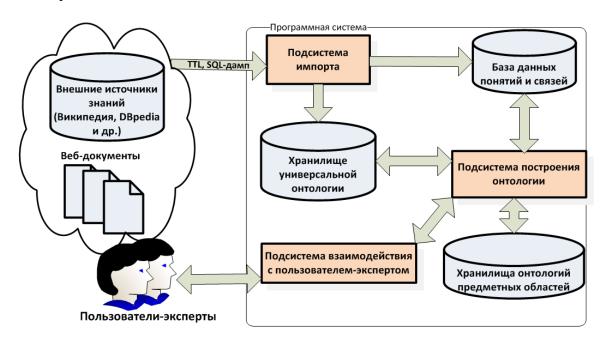


Рис. 1. Архитектура программной системы автоматизированного построения онтологий предметных областей

Fig. 1. The architecture of the software system for the automated construction of ontologies of subject domains

В программной системе автор выделяет 3 модуля и 3 вида баз данных.

- 1. Подсистема импорта предназначена для импорта данных из внешних источников знаний, представленных в электронном виде, во внутренние базы данных программной системы для дальнейшей обработки.
- 2. База данных понятий и связей содержит основную информацию о списке понятий и связях между ними (с указанием типа связи), полученных в ходе импорта.
- 3. Подсистема построения онтологии предназначена для извлечения из импортированных данных понятий предметной области и построения на их основе лингвистической онтологии предметной области с соответствующей внутренней структурой.
- 4. Подсистема взаимодействия с пользователем-экспертом предназначена для интерактивного взаимодействия с экспертами на этапах извлечения онтологии соответствующей предметной области.

- 5. Хранилище универсальной онтологии содержит онтологию, полученную на всем массиве входных данных, включающую множество предметных областей. Для оптимизации общей производительности оно частично заполняется уже на этапе импорта. В дальнейшем его дополняет подсистема построения онтологии.
- 6. Хранилища онтологий предметных областей предназначены для сохранения онтологий конкретных предметных областей, формируются подсистемой построения онтологии. Они намного меньше по объему, чем хранилище универсальной онтологии, и могут быть использованы для эффективной обработки запросов к онтологии. Структура этого хранилища соответствует структуре хранилища универсальной онтологии.

Обсуждение результатов. Разработанная программная система была проверена на предметной области «Информационные технологии». В качестве исходных понятий были взяты следующие наиболее общие понятия, соответствующие одноименным категориям Википедии предметной области информационных технологий: «Информационные технологии», «Программное обеспечение», «Компьютерные науки» и «Информатика».

В ходе исследования для разных вариантов пороговых значений были получены соответствующие варианты онтологий предметной области. Результаты исследований представлены в табл. 1.

Степень соответствия полученной онтологии предметной области и множества понятий, включенных в него, оценивалась экспертным путем авторами работы и градуировалась по 10-балльной шкале (1 – минимальное соответствие, 10 – максимальное соответствие).

В ходе этой процедуры эксперту случайным образом выдавалось 100 понятий, и для каждого из них он оценивал, соотносится ли оно с предметной областью или нет. Чем больше понятий соответствовало предметной области, тем выше степень соответствия.

Таблица 1. Результаты работы разработанного алгоритма по выделению предметной области «Информационные технологии»

Table 1. The results of the developed algorithm for the selection of the subject area «Information Technology»

№ эксперимента Experiment No.	Количество понятий в предметной области The number of concepts in domain	Степень соответствия Degree of conformity
1	82053	3
2	52780	4
3	20822	6
4	125732	1
5	91282	2
6	32445	4
7	75878	3
8	43370	5
9	14708	8
10	110752	1
11	65590	3
12	18666	6

Вывод. По результатам экспериментов можно сделать вывод, что автоматизированная система по автоматическому извлечению онтологии предметной области на основе данных, полученных из DBPedia, показала свою работоспособность.

Предлагаемый подход автоматизированного построения онтологии предметной области сочетает в себе быстроту статистических методов и точность лингвистического подхода с позиций синтаксем (или лингвистических шаблонов).

Процесс построения онтологии состоит из нескольких последовательных этапов.

В данной работе предложен подход к автоматизированному построению (расширению) базовой онтологии на основе синтаксем русского языка. Поскольку каждая синтаксема описывается конечным детерминированным множеством признаков, такой подход является не только возможным, но и предпочтительным, поскольку он обеспечивает однозначное определение свойств концептов создаваемой онтологии.

Библиографический список:

- 1. Аверченков В.И. Мониторинг и системный анализ информации в сети Интернет: монография / Аверченков, В.И., Рощин, С.М. //Брянск: БГТУ, 2006. 160 с.
- 2. Барсегян А.А. Технологии анализа данных. Data Mining, Visual Mining, Text Mining, OLAP / Барсегян А.А., Куприянов М.С., Степаненко В.В., Холод И.И // СПб.: БХВ-Петербург, 2007.—384 с.: ил.
- 3. Гаврилова Т. А. Онтологический подход к управлению знаниями при разработке корпоративных информационных систем / Т.А. Гаврилова // «Новости искусственного интеллекта». 2003. №2. С. 24-30
- 4. Копелиович Д.И. Принципы построения автоматизированных систем мониторинга социально-экономических объектов / Копелиович Д.И., Юркова О.Н.//Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика, 2015- N 1 C. 98-
- 5. Копелиович Д.И. Функциональное моделирование процесса мониторинга данных/Копелиович Д.И., Рыженков Д.А.//Мониторинг. Наука и технологии. 2016. № 1. С. 49-53
- 6. Кравцов Д.В. Автоматизированная система для построения онтологий предметных областей / Кравцов Д.В., Коростелёв Д.А., Юркова О.Н.// МОНИТОРИНГ. Наука и Технологии, 2017. № 1 (30). С. 46-50
- 7. Найханова Л.В. Основные аспекты построения онтологий верхнего уровня и предметной области // В сборнике научных статей "Интернет-порталы: содержание и технологии". Выпуск 3. / Редкол.: А.Н. Тихонов (пред.); ФГУ ГНИИ ИТТ "Информатика". М.: Просвещение, 2005. С. 452-479
- 8. Лапшин В.А. Онтологии в компьютерных системах/ В.А. Лапшин. М.: Научный мир. 2010.- 222 с.
- 9. Теслинова Е.А. Разработка онтологии системы управления знаниями организации с использованием методологии концептуального проектирования / Е.А. Теслинова// Успехи современного естествознания. 2006. N2 9. С. 96-98
- 10. Евгенев Γ .Б. Интеллектуальные системы проектирования / Г.Б. Евгенев. М., Изд-во МГТУ им. Н.Э. Баумана, 2009. 334 с.

References

- 1. Averchenkov V.I., Roshchin C.M. Monitoring i sistemnyi analiz informatsii v seti Internet. Bryansk: BGTU; 2006. 160 s. [Averchenkov V.I., Roshchin C.M. Monitoring and system analysis of information on the Internet. Bryansk: BGTU; 2006. 160 p. (In Russ.)]
- 2. Barsegyan A.A., Kupriyanov M.S., Stepanenko V.V., Kholod I.I. Tekhnologii analiza dannykh. Data Mining, Visual Mining, Text Mining, OLAP. SPb.: BKhV-Peterburg; 2007. 384 s. [Barsegyan A.A., Kupriyanov M.S., Stepanenko V.V., Kholod I.I. Technologies of data analysis. Data Mining, Visual Mining, Text Mining, OLAP. SPb.: BKhV-Peterburg; 2007. 384 p. (In Russ.)]
- 3. Gavrilova T.A. Ontologicheskii podkhod k upravleniyu znaniyami pri razrabotke korporativnykh informatsionnykh sistem. Novosti iskusstvennogo intellekta. 2003;2:24-30. [Gav-

- 11. Gruber T. A translation approach to portable ontologies / T. Gruber // Knowledge Acquisition. 1993. Vol. 5. P. 199-220
- 12. Studer, R. Knowledge Engineering: Principles and methods / R. Studer, R. Benjamins, D. Fensel // Data and knowledge engineering. -1998. Vol. 25. -P. 161-197.
- 13. Yildiz B., Miksch S. Ontology-Driven Information Systems: Challenges and Requirements / B.Yildiz, S.Miksch // International Conference on Semantic Web and Digital Libraries. Indian Statistical Institute Platinum Jubilee Conference Series. –2007. P. 35-44.
- 14. Мирошников В.В. Онтологическая модель системы управления знаниями в области качества / В.В.Мирошников, Д.И.Булатицкий // Вестн. БГТУ. -2009. № 4.- С. 100-106.
- 15. Аверченков В.И. Формализация описания предметной области «Обеспечение технологичности конструкций изделий в интегрированных САПР» на основе онтологии / В.И.Аверченков, В.А.Шкаберин // Справочник. Инженерный журнал. Брянск. 2009. № 10. –С. 32-38.
- 16. Смирнов С.В. Онтологический анализ предметных областей моделирования / С.В.Смирнов// Известия Самарского научного центра РАН. 2001. Т. 3.№ 1.— С.62-70.
- 17. Антонов И.В. Формирование онтологических моделей предметной области для электронных обучающих систем / И.В.Антонов, М.В.Воронов// Информационные технологии в обеспечении нового качества высшего образования. Сборник научных статей. Кн. 2. М.: Исследовательский центр проблем качества подготовки специалистов. 2010. С 48–55
- 18. Buitelaar P., Cimiano P., Magnini B. Ontology Learning from Text: Methods //Evaluation and applications. IOS Press. 2005.
- 19. Korshunov, A. A Category-Driven Approach to Deriving Domain Specific Subset of Wikipedia / A.Korshunov, D.Turdakov, J.Jeong, M.Lee, C.Moon // SYRCoDIS. 2011. –P.43-53.
- 20. Варламов М.И. Расчет семантической близости концептов на основе кратчайших путей в графе ссылок Википедии / М.И.Варламов, А.В.Коршунов// Машинное обучение и анализ данных. 2014. Т.1, №8. С. 1107—1125
- rilova T.A. Ontological approach to knowledge management in the development of corporate information systems. Novosti iskusstvennogo intellekta. 2003;2:24-30. (In Russ.)]
- 4. Kopeliovich D.I., Yurkova O.N. Printsipy postroeniya avtomatizirovannykh sistem monitoringa sotsial'no-ekonomicheskikh ob"ektov. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika i informatika. 2015;1:98-104. [Kopeliovich D.I., Yurkova O.N. Principles of constructing automated monitoring systems for socio-economic objects. Bulletin of the Astrakhan State Technical University. Series: Management, Computer Engineering, Computer Science. 2015;1:98-104. (In Russ.)]
- 5. Kopeliovich D.I., Ryzhenkov D.A. Funktsional'noe modelirovanie protsessa monitoringa dannykh. Monitoring. Nauka i tekhnologii. 2016;1:49-53. [Kopeliovich D.I., Ryzhenkov D.A.

Functional modeling of the data monitoring process.. Monitoring. Nauka i tekhnologii. 2016;1:49-53. (In Russ.)]

- 6. Kravtsov D.V., Korostelev D.A., Yurkova O.N. Avtomatizirovannaya sistema dlya postroeniya ontologii predmetnykh oblastei. Monitoring. Nauka i Tekhnologii, 2017;1(30):46-50. [Kravtsov D.V., Korostelev D.A., Yurkova O.N. Automated system for constructing ontologies of subject areas. Monitoring. Nauka i Tekhnologii, 2017;1(30):46-50. (In Russ.)]
- 7. Naikhanova L.V. Osnovnye aspekty postroeniya ontologii verkhnego urovnya i predmetnoi oblasti. Sbornik nauchnykh statei "Internet-portaly: soderzhanie i tekhnologii". FGU GNII ITT "Informatika". M.: Prosveshchenie. 2005;3:452-479. [Naikhanova L.V. The main aspects of constructing ontologies of the top level and subject domain. Collection of scientific articles "Internet portals: content and technology". FGU GNII ITT "Informatika". M.: Prosveshchenie. 2005;3:452-479. (In Russ.)]
- 8. Lapshin V.A. Ontologii v komp'yuternykh sistemakh. M.: Nauchnyi mir; 2010. 222 s. [Lapshin V.A. Ontologies in computer systems. M.: Nauchnyi mir; 2010. 222 p. (In Russ.)]
- 9. Teslinova E.A. Razrabotka ontologii sistemy upravleniya znaniyami organizatsii s ispol'zovaniem metodologii kontseptual'nogo proektirovaniya. Uspekhi sovremennogo estestvoznaniya. 2006;9:96-98. [Teslinova E.A. Development of the ontology of the organisation's knowledge management system using the conceptual design methodology. Advances in current natural sciences. 2006;9:96-98. [In Russ.]
- 10. Evgenev G.B. Intellektual'nye sistemy proektirovaniya. M.: Izd-vo MGTU im. N.E. Baumana; 2009. 334 s. [Evgenev G.B. Intelligent design systems. M.: Izd-vo MGTU im. N.E. Baumana; 2009. 334 p. (In Russ.)]
- 11. Gruber T. A translation approach to portable ontologies. Knowledge Acquisition. 1993;5:199-220.
- 12. Studer R., Benjamins R., Fensel D. Knowledge Engineering: Principles and methods. Data and knowledge engineering. 1998:25:161-197
- 13. Yildiz V., Miksch S. Ontology-Driven Information Systems: Challenges and Requirements. International Conference on Semantic Web and Digital Libraries. Indian Statistical Institute Platinum Jubilee Conference Series. 2007. P. 35-44.
- 14. Miroshnikov V.V., Bulatitskii D.I. Ontologicheskaya model' sistemy upravleniya znaniyami v oblasti kachestva. Vestnik

- BGTU. 2009;4:100-106. [Miroshnikov V.V., Bulatitskii D.I. Ontological model of the knowledge management system in the field of quality. Vestnik BGTU. 2009;4:100-106. (In Russ.)]
- 15. Averchenkov V.I., Shkaberin V.A. Formalizatsiya opisaniya predmetnoi oblasti "Obespechenie tekhnologichnosti konstruktsii izdelii v integrirovannykh SAPR" na osnove ontologii. Spravochnik. Inzhenernyi zhurnal. 2009;10:32-38. [Averchenkov V.I., Shkaberin V.A. Formalisation of the description of the "Ensuring the manufacturability of product designs in integrated CAD systems" subject area on the basis of ontology. Handbook. Engineering Journal. 2009;10:32-38. (In Russ.)]
- 16. Smirnov S.V. Ontologicheskii analiz predmetnykh oblastei modelirovaniya. Izvestiya Samarskogo nauchnogo tsentra RAN. 2001;3(1):62-70. [Smirnov S.V. Ontological analysis of modeling subject areas. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2001;3(1):62-70. (In Russ.)] 17. Antonov I.V., Voronov M.V. Formirovanie ontologicheskikh modelei predmetnoi oblasti dlya elektronnykh obuchayushchikh sistem. Informatsionnye tekhnologii v obespechenii novogo kachestva vysshego obrazovaniya. Sbornik nauchnykh statei. Kn. 2. M.: Issledovatel'skii tsentr problem kachestva podgotovki spetsialistov. 2010. S. 48-55. [Antonov I.V., Voronov M.V. Formation of ontological models of the subject area for electronic learning systems. Information technology in ensuring a new quality of higher education. Collection of scientific articles. Book 2. M.: Issledovatel'skii tsentr problem kachestva podgotovki spetsialistov. 2010. S. 48-55. (In Russ.)]
- 18. Buitelaar P., Cimiano P., Magnini B. Ontology Learning from Text: Methods. Evaluation and applications. IOS Press. 2005.
- 19. Korshunov A.A., Turdakov D., Jeong J., Lee M., Moon C. Category-Driven Approach to Deriving Domain Specific Subset of Wikipedia. SYRCoDIS. 2011. P.43-53.
- 20. Varlamov M.I., Korshunov A.V. Raschet semanticheskoi blizosti kontseptov na osnove kratchaishikh putei v grafe ssylok Vikipedii. Mashinnoe obuchenie i analiz dannykh. 2014;1(8):1107–1125. [Varlamov M.I., Korshunov A.V. Calculation of semantic proximity of concepts based on shortest paths in the Wikipedia link graph. Machine Learning and Data Analysis. 2014;1(8):1107–1125. (In Russ.)]

Сведения об авторах:

Юркова Ольга Николаевна – кандидат экономических наук, доцент, кафедра информационных технологий.

Information about the author.

Olga N. Yurkova - Cand. Sci.(Economics), Assoc. Prof., Department of Information Technologies

Конфликт интересов

Автор заявляют об отсутствии конфликта интересов.

Поступила в редакцию 14.12.2017.

Принята в печать 29.01.2018.

Conflict of interest.

The author declare no conflict of interest.

Received 14.12.2017.

Accepted for publication 29.01.2018.

Для цитирования: Алибеков А.К. Оценка размыва у свайных опор сооружений, пресекающих водотоки, с учетом показателей надежности и неоднородности грунтов основания. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 181-192. DOI:10.21822/2073-6185-2018-45-1-181-192 For citation: Alibekov A.K. Evaluation of scouring at pile-supported structures crossing watercourses according to reliability and inhomogeneity indicators of grounding foundations. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 181-192. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-181-192

ТЕХНИЧЕСКИЕ НАУКИ СТРОИТЕЛЬСТВО И АРХИТЕКТУРА

УДК: 627.132:532.543

DOI: 10.21822/2073-6185-2018-45-1-181-192

ОЦЕНКА РАЗМЫВА У СВАЙНЫХ ОПОР СООРУЖЕНИЙ, ПРЕСЕКАЮЩИХ ВОДОТОКИ, С УЧЕТОМ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ И НЕОДНОРОДНОСТИ ГРУНТОВ ОСНОВАНИЯ

Алибеков А.К.

Дагестанский государственный технический университет, 367026 г. Махачкала, пр. И.Шамиля, 70, Россия, e-mail: ali.dgtu@rambler.ru

Резюме. Цель. Задача состояла в получении моделей для прогноза параметров воронки местного размыва водным потоком русла у опор на свайных фундаментах с учетом надежности и неоднородности грунта основания. Метод. В работе использованы методы математического планирования эксперимента, теории подобия и размерностей; произведена корректная обработка результатов опытов. Результат. Установлены определяющие исследуемое явление факторы, подробно анализированы и обобщены существующие подходы и способы проведенных исследований. Для возможности постановки опытов в лабораторных условиях и переноса результатов в натурные условия с помощью методов теории подобия и размерностей получено критериальное уравнение, описывающее явление местного размыва. Размерность многомерной задачи снижена за счет учета явных связей между безразмерными факторами. Деформируемость грунтов основания учтена с помощью кинематического подобия потоков. Из большого количества планов эксперимента обоснованно выбран факторный план эксперимента. Таким способом полностью охвачено факторное пространство при условии обеспечения более точного прогноза параметров воронки размыва. Интервалы и число уровней варьирования факторов определены путем анализа размеров типовых и реальных проектов опор с учетом рекомендаций и требований, предъявляемых к свайным опорам при их проектировании, учтены размеры гидравлического лотка для проведения опытов. В результате обработки результатов опытов получены искомые зависимости для случаев отсутствия и поступления наносов в воронку размыва. Проверка адекватности полученных моделей произведена на основе независимых лабораторных опытов и натурных данных по рекам Бразос и Волга. Неоднородность грунтов ложа русла учитывается с помощью диаметра частиц отмостки. Для повышения надежности прогноза местного размыва рекомендуется в полученных зависимостях учитывать установленные верхние границы доверительных интервалов искомых функций. Вывод. Предложена методика определения глубины и плановых параметров воронки размыва русла, сложенного несвязными грунтами, у свайных опор сооружений, пересекающих водотоки, с заданной степенью достоверности.

Ключевые слова: водотоки, местный размыв, свайные опоры, однородные и неоднородные грунты, надежность

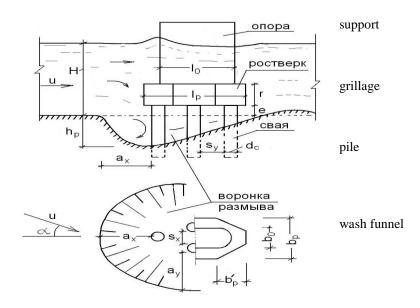
TECHNICAL SCIENCE BUILDING AND ARCHITECTURE

EVALUATION OF SCOURING AT PILE-SUPPORTED STRUCTURES CROSSING WATERCOURSES ACCORDING TO RELIABILITY AND INHOMOGENEITY INDICATORS OF GROUNDING FOUNDATIONS

Ali K. Alibekov

Daghestan State Technical University, 70 I. Shamilya Ave., Makhachkala, 367026, Russia, e-mail: ali.dgtu@rambler.ru

Abstract Objectives. The aim was to obtain models for predicting local scouring funnel parameters caused by the water flow at the bed by pile foundation supports taking into account the reliability and heterogeneity of the foundation ground. Methods. Mathematical experiment planning methods informed by the theory of similarity and dimensions were used in the work; appropriate processing of the experimental results was carried out. Results. Factors determining the investigated phenomenon were determined. Existing approaches and methods used in already conducted studies were analysed in detail and summarised. For the possibility of setting up the experiments under laboratory conditions and transferring results to field conditions using the methods of the theory of similarity and dimensions, a criterion equation describing the phenomenon of local scouring was obtained. The dimensionality of the multidimensional problem is reduced by taking into account the explicit relationships between the dimensionless factors. The deformability of the foundation grounds is accounted for by the kinematic similarity of the flows. The factorial design of the experiment was justified on the basis of a large number of experimental plans. In this way, the factor space is completely covered, providing a more accurate prediction of the scouring funnel parameters. The intervals and the number of levels of factor variation are determined by analysing the sizes of typical and realistic support designs, taking into account the recommendations and requirements for designing piling pillars; the dimensions of the hydraulic tray for conducting the experiments were also taken into account. As a result of the processing of experimental data, the required dependencies were obtained for both the absence and input of deposits into the scouring funnel. The adequacy of the obtained models was checked on the basis of independent laboratory experiments and full-scale data on the Brazos and Volga rivers. The heterogeneity of the channel bed grounds is accounted for by the diameter of the pavement particles. To improve the reliability of the local scouring forecast, it is recommended that the obtained dependencies take into account the upper limits of the confidence intervals of the required functions. Conclusion. A technique is proposed for determining the depth and planned parameters of a channel scouring funnel, composed of disjointed grounds near pile-supported structures crossing watercourses with a specified degree of reliability.


Keywords: watercourses, local scouring, pile supports, homogeneous and heterogeneous grounds, reliability

Введение. Надежность работы сооружений, пресекающих различные водотоки, в преобладающей степени зависит от глубины заложения их фундаментов, которая зависит, в частности, и от достоверного прогноза величины местного размыва русла.

Так, глубина воронки местного размыва у опор моста через р.Волга из г.Саратов в г.Энгельс достигла 7 м [8]. Дальнейший подмыв опор был остановлен путем отсыпки камня в воронку размыва. На сегодня прогноз местного размыва базируется на экспериментальных исследованиях [2, 13, 16-18, 20 и др.], хотя в [14] сделана попытка прогноза местного размыва у опор моста через р.Танана на Аляске на основе 3D-моделирования.

Постановка задачи. Задача заключалась в получении моделей для прогноза параметров воронки местного размыва водным потоком русла у опор на свайных фундаментах с учетом надежности и неоднородности грунта основания.

Методы исследования. Объект исследования представлен на рис.1.

Puc. 1. Схема опоры на свайном фундаменте Fig. 1. Scheme of support on a pile foundation

Отсутствие аналитического решения поставленной задачи объясняется сложной геометрической формой опоры на сваях и подвижным деформируемым руслом. Кинематика потока в процессе взаимодействия потока с опорой становится сильно турбулентной, зависящей в том числе от количества свай, конфигурации и просвета между ними.

Согласно [5, 8, 10-11, 15 и др.] параметры воронки размыва зависят от множества факторов (рис.1): глубины потока H, средней скорости потока u, средневзвешенного диаметра частиц, как правило, несвязного однородного грунта d, неразмывающей скорости потока u_0 , ширины b_0 , длины l_0 и плановой формы Φ_0 опоры, высоты положения верха плиты ростверка или обреза фундамента массивной опоры относительно уровня общего размыва русла e+r, угла набегания потока на опору α , длины, ширины, толщины и плановой форма плиты ростверка l_p , b_p , r, Φ_p , параметров, характеризующих куст свай (соответственно плановая форма отдельной сваи f_c , диаметр d_c , расстояния в свету между сваями s_x и s_y , форма расположения куста свай в плане Φ_c , количество рядов свай вдоль и поперек продольной оси опоры n_y и n_x), вязкости v и плотности воды ρ и др. Итого более 20 факторов.

Функциональная зависимость максимального параметра воронки y (глубины $h_{\rm p}$ или плановых размеров $a_{\rm x}$ и $a_{\rm v}$)

$$y = f(H, u, d, u_0, b_0, l_0, \Phi_0, e, \alpha, l_p, b_p, r, \Phi_p, d_c, s_x, s_y, \Phi_c, n_y, n_x$$
 и др.). (1)

Если варьировать 20 факторов на минимально возможных двух уровнях, то при полнофакторном эксперименте получается более миллиона опытов: $N = 2^{20} = 1048576$.

При учете 7 факторов на трех уровнях варьирования $N = 3^7 = 2187$ опытов.

Имеем ситуацию: 1) такое число опытов практически нереализуемо, имея в виду еще изготовление большого числа моделей опор и продолжительность одного опыта 10-12 часов, 2) без полного охвата области изменения факторов построенные на опытных данных модели будут неадекватными даже в принятом диапазоне изменения факторов.

Остановимся на отмеченном подробно: в [16] проведено всего 26 опытов, в [17] – 67, в [18] – 46, в [20] - 105, в [10, 19 и др.] приведены зависимости, полученные на основе совсем малого числа опытов. Можно отметить и количество факторов: в [15] указано 10, в [16] отмечены 13, а в опытах варьировались 5, в [18] – 11, в [19] – 5. Аналогичная картина в [9, 13 и др.].

К чему могут привести расчеты по формулам, полученным на основе малого числа опытов и без учета части факторов, покажем на примере [2]. Глубина заложения свайных опор первого в нашей стране моста за полярным кругом через Кольский залив около г. Мурманск, сдан-

ного в эксплуатацию в 2005 году, принята 40 м. Это при глубине потока до 10 м и при скоростях до 3 м/с.

Такая сомнительно большая глубина заложения определялась и глубиной местного размыва, рассчитанная по методике, полученной на неполном исследовании многофакторного пространства (1). Специальная серия опытов с опорами этого моста показала возможность достижения глубины местного размыва от 9 до 11 м (с запасом). Если учесть, что в одну такую опору входило 32 сваи, а опор большое количество, то можно представить объем возможной экономии средств и времени строительства объекта. Подобные практические примеры однозначно показывают также и актуальность поставленной задачи.

Для преодоления указанных выше трудностей часть исследователей сложную опору на сваях расчленили на составляющие элементы и их исследовали по отдельности [3, 10, 13, 17 и др.]. Это означает представление многомерной функции (1) в виде произведения нескольких функций. При этом одна условно принимается за базовую функцию, остальные типа коэффициентами:

$$y = f(x_1, x_2, x_3, ..., x_b, ..., x_m, ..., x_n) = f_0(x_1, x_2, x_3)k_1k_2k_3,$$
 (2)

где $x_1, ..., x_n$ – факторы,

 $f_0(x_1, x_2, x_3)$ — базовая функция (зависимость для определения параметра воронки размыва у одиночной круглой цилиндрической опоры),

 $k_1 = f_1(x_4, ..., x_l), \quad k_2 = f_2(x_{l+1}, ..., x_m), \quad k_3 = f_3(x_{m+1}, ..., x_n)$ — коэффициенты (формы опоры, «косины» и т.п.).

Далее при экспериментальном поиске формулы, например, для коэффициента k_2 , варьировались только x_{l+1} , ..., x_m при постоянных значениях остальных факторов. Это позволяет вроде уменьшить число опытов. Однако при этом ничего не говорится о том, сохранятся ли полученные закономерности при новых значениях прежних постоянных факторов. Как и следовало ожидать, специально поставленная серия опытов не подтвердила возможность такого допущения.

Наиболее подробный анализ работ отечественных и зарубежных исследователей позволяет отметить:

- не всегда указаны пределы применения предлагаемых зависимостей и не обоснованы пределы изменения определяющих явление факторов,
- при проведении модельных лабораторных исследований не учтены требования теории подобия и размерностей,
- для случая многомерного явления на основе однофакторного эксперимента проведено слишком мало опытов, в результате не охвачена область определения искомой функции,
- не обосновано допущение исключения взаимного влияния элементов опоры сложной конструкции,
- предлагаемые зависимости не проверены с помощью независимых опытов или натурных данных.

Для решения поставленной задачи и с целью хотя бы частичного уменьшения размерности задачи предварительно были использованы явные связи между определяющими исследуемое явление параметрами [5-7].

Так, анализ конструкций большого числа опор показал, что число свай n_x и n_y , однозначно определяются факторами l_p , b_p , d_p , d

имеем обтекаемую форму плиты ростверка (рис. 1), при $b_p' = 0$ прямоугольную. Плановая форма ростверка в свою очередь определяет конфигурацию расположения свай в плане и поэтому фактор Φ_c можно исключить из рассмотрения. Плановую форму отдельной сваи f_c также можно опустить, учитывая постоянство этого фактора в опытах (большинство опор возводят на сваях круглой плановой формы).

При моделировании явления на гидравлических моделях в качестве основного критерия, учитывающего деформируемость русла, выбрано условие кинематического подобия [7]:

$$\frac{u}{u_0}$$
 = idem.

Выражая геометрическое подобие симплексами, характеризующими геометрию опоры и потока, с помощью методов теории подобия и размерностей получено критериальное уравнение, положенное в основу экспериментальных исследований:

$$\frac{h_p}{d_c}, \frac{a_x}{d_c}, \frac{a_y}{d_c} = f\left(\frac{u}{u_0}, \frac{b_0}{H}, \frac{l_0}{b_0}, \frac{e}{H}, \frac{s_x}{b_0}, \frac{s_y}{b_0}, \frac{r}{b_0}, \frac{d_c}{b_0}, \frac{b_p - b_0}{s_y + d_c}, \frac{l_p - l_0}{s_x + d_c}, \frac{b_p'}{b_0}, \Phi_0, \alpha\right)$$
(3)

Одним из способов решения многофакторных сложных задач представляется применение методов теории математического планирования эксперимента, когда практически приемлемым числом опытных точек охватывается вся область определения искомой функции [1]. А конкретные точки обследования факторного пространства определяются принятым планом эксперимента, то есть здесь требуется обосновать принятие одного плана из более чем 10 тыс., приведенных в каталоге планов [12].

Обобщение известных положений теории планирования эксперимента и ее непосредственное практическое применение показало, что для однозначного и корректного выбора плана эксперимента в случае поиска модели явления необходимо и достаточно предварительно ответить на следующие вопросы [1]: определение числа факторов; установление вида будущей модели явления; выбор интервалов и числа уровней варьирования каждого фактора; выбор критериев оптимальности плана; определение желаемого или возможного количества опытов (минимальное количество опытов соответствует критерию насыщенности). Сюда же следует отнести предварительную проверку выполнимости требований активного эксперимента к отдельному фактору и к совокупности факторов.

Предлагаемая модель явления местного размыва и число уровней варьирования факторов первоначально установлены на основе априорной информации по местному размыву у различных типов опор, а затем уточнены с помощью предварительной серии опытов. Однозначно было установлено, что для случаев отсутствия и наличия поступления наносов в воронку размыва нужно строить отдельные модели. При выборе числа уровней варьирования отдельного фактора учитывались: ширина интервала варьирования, его значимость и вид функциональной связи (линейный или нелинейный) с параметрами воронки размыва.

Интервалы варьирования факторов, характеризующих геометрию опоры на свайных фундаментах, выявлены путем анализа размеров типовых и реальных проектов опор, разработанных Ленгипротранс и Ленгипротрансмост. Учтены также рекомендации и требования, предъявляемые к опорам таких конструкций при их проектировании, и размеры гидравлического лотка, где необходимо было провести экспериментальные исследования [6, 11].

Для исследования параметров воронки размыва приняты следующие интервалы и число уровней варьирования безразмерных комплексов, частично измененных по форме представления с целью удобства получения корректного вида модели:

- два уровня:

$$\frac{b_p - b_0}{s_y + d_c} = 0.8 \dots 1.6; \quad \frac{l_p - l_0}{s_x + d_c} = 0.6 \dots 1.4; \quad \frac{r}{b_0} = 0.5 \dots 1.0; \quad \frac{b_p'}{b_0} = 0 \dots 0.5; \quad \frac{s_x}{b_0} = 0.15 \dots 0.6;$$

- три уровня:

$$\frac{e}{H}$$
 = -0,1...0,6; $\frac{d_c}{b_0}$ = 0,3...0,69; $\frac{b_0}{H}$ = 0,2(2)...0,55;

- четыре уровня:

$$\frac{l_0}{b_0}$$
 = 1,0...4,0; $\frac{s_y}{b_0}$ = 0...0,8; α = 0...350; $\frac{u}{u_0}$ = 0,55...0,95; $\alpha = 0$...1,8.

Фактор Φ_0 , характеризующий плановое очертание лобовой части опоры, был отнесен к категории качественных с тремя уровнями варьирования (цифрами - словесно): 0 — лобовая часть опоры заостренная с углом при вершине 90° (рисунок 2, д), 1 — полукруглая (рис. 2, а, б), 2 — прямоугольная (рис. 2, в, г).

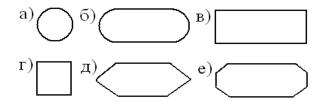


Рис. 2. Плановые формы элементов опоры:
а) круглая б) овальная, в) прямоугольная, г) квадратная,
д) заостренная, е) заостренная с притуплением
Fig. 2. Planned forms of support elements: a) round b) oval, c) rectangular, d) square,
e) pointed, e) pointed with blunting

Таким способом с помощью факторов Φ_0 и l_0/b_0 охвачены пять типов опор: круглая, овальная, квадратная, прямоугольная, заостренная. Значения уровней крупности частиц грунта $d=0.21;\ 0.47;\ 0.69$ и 1.49 мм.

При выборе критериев оптимальности плана эксперимента основное внимание было обращено на получение искомых зависимостей, дающих меньшие расхождения при сравнении с результатами независимых опытов или с натурными данными, не учтенными при построении этих зависимостей (Q- и G-критерии оптимальности). Учитывая трудоемкость изготовления большого числа моделей опор на свайных фундаментах, к плану эксперимента было предъявлено также требование насыщенности.

Проверка на адекватность зависимостей для определения параметров воронки размыва по результатам предварительной серии опытов показала, что в качестве факторов в искомые зависимости нужно ввести логарифмы натуральных критериев (некоторые в несколько видоизмененном виде) из уравнения (3). Кроме того, удовлетворение требований к отдельному фактору и к совокупности факторов (однозначность, совместимость, независимость и др.) определило форму представления безразмерных комплексов, а также их варьирование в опытах путем изменения как числителя, так и знаменателя.

По результатам априорной информации и предварительной серии опытов для проведения модельных исследований выбран факторный план эксперимента в 32 опытах [12], который позволяет получить зависимость вида:

$$y = \theta_0 + \zeta(\Phi_0) + \sum_{i=1}^a \theta_i x_i + \sum_{j=1}^b \theta_{jj} x_j^2 + \sum_{k=1}^c \theta_{kkk} x_k^3, \tag{4}$$

где y — отклик (в конечном итоге относительный параметр воронки размыва h_p/d_c , или a_v/d_c , или a_v/d_c),

 $\varsigma(\Phi_0)$ – функция, учитывающая влияние на отклик качественного фактора Φ_0 ,

x – количественные факторы (поддающиеся измерению),

a – общее число количественных факторов из (3), a = 12,

b – число количественных факторов с числом уровней варьирования больше двух, b = 7,

c – число количественных факторов с 4-мя уровнями варьирования, c = 4,

 θ – параметры, определяемые по результатам опытов.

Для принятого факторного плана эксперимента значения уровней варьирования факторов приняты на концах интервалов и в точках, которые являются корнями производных соот-

ветствующих полиномов Лежандра.

При изготовлении моделей опор за основу были приняты широко применяемые на практике конструкции. Всего было изготовлено 74 модели, из них 7 — для проведения независимых опытов, предназначенных лишь для проверки приемлемости искомых зависимостей.

Число рядов свай-оболочек в лобовой части опоры n_x изменялось от 1 до 4, а в продольном направлении n_y — от 2 до 9 (на практике встречаются случаи, когда n_y значительно больше 9, однако на величину местного размыва дальнейшее увеличение рядов свай n_y не влияет). Куст свай в плане образовывал прямоугольную и обтекаемую формы в соответствии с формой ростверка. Состав и условия проведения опытов полностью определялись принятым планом эксперимента. Проведены две серии экспериментов для случаев поступления наносов в воронку размыва ($u/u_0 \ge 1,0$) и отсутствия поступления наносов ($u/u_0 < 1,0$).

Каждая основная серия включала по 32 опыта с двукратным повтором каждого. Для получения зависимостей проведено 128 опытов без учета независимых опытов и более 70 опытов предварительной серии.

Экспериментальные исследования проведены в гидравлическом лотке шириной 0,61 м и длиной 10,8 м. Основная серия из 64 опытов проведена с привлечением методов математического планирования эксперимента [12]. При этом основное внимание было обращено, в частности, на получение расчетных зависимостей, позволяющих определять параметр воронки местного размыва у с большей точностью.

Известно, что истинный параметр воронки размыва

$$y = \hat{y} \pm \Delta y,\tag{5}$$

где \hat{y} – расчетное значение параметра размыва,

 Δy – половина ширины доверительного интервала.

Условие (5) означает, что параметр размыва по формуле \hat{y} при сравнении с действительной величиной y, наблюдаемой в опытах или в натуре, оценивается по результатам опытов с определенной (заданной) доверительной вероятностью p [1].

Отсюда вытекает: чем меньше величина Δy (при необходимой доверительной вероятности p), тем точнее (более надежно) можно прогнозировать параметры воронки местного размыва.

Количественными оценками показателя надежности служат [1, 12]:

- 1) ширина доверительного интервала точность показателя надежности;
- 2) доверительная вероятность достоверность показателя надежности.

Дополнительно следует иметь в виду и тот факт, что при различных значениях определяющих факторов расхождения параметров воронки размыва, найденных по расчетным формулам, при сравнении с натурными данными или с лабораторными независимыми данными, скорее всего, получатся разными.

В этой связи помимо уменьшения величины Δy желательно дополнительно выдвигать условие постоянства Δy в области изменения факторов. На этой основе при выборе конкретного плана эксперимента из более 10 тыс. различных планов был избран факторный план эксперимента, удовлетворяющий Q- и G- критериям оптимальности [12].

Обсуждение результатов. В результате обработки результатов опытов на ЭВМ для определения параметров воронки местного размыва русла, сложенного из однородных несвязных грунтов, получены следующие расчетные зависимости [5]:

при $u/u_0 \ge 1,0$:

$$h_{\rm p}/d_{\rm c} = k_{\rm t}(z_1 \pm \Delta z_1)^2, \ a_{\rm x}/d_{\rm c} = k_{\rm t}(z_2 \pm \Delta z_2)^2, \ a_{\rm y}/d_{\rm c} = k_{\rm t}(z_3 \pm \Delta z_3)^2,$$
 (6)

при $u/u_0 < 1,0$:

$$h_{\rm p}/d_{\rm c} = k_{\rm t}(z_4 \pm \Delta z_4)^2, \ a_{\rm x}/d_{\rm c} = k_{\rm t}(z_5 \pm \Delta z_5)^2, \ a_{\rm y}/d_{\rm c} = k_{\rm t}(z_6 \pm \Delta z_6)^2,$$
 (7)

где Δz_j (j = 1, 2, ..., 6) – доверительные интервалы, соответствующие доверительной вероятности p = 0.95 (табл. 1);

Таблица 1. Доверительные интервалы параметров воронки размыва Table 1. Confidence intervals for the parameters of the wash funnel

Относительный параметр	случай					
воронки размыва	$u/u_0 \ge 1,0$:	<i>u/u</i> ₀ <1,0:				
$h_{ m p}/d_{ m c}$	$\Delta z_1 = 0,228$	$\Delta z_4 = 0,174$				
$a_{\rm x}/d_{ m c}$	$\Delta z_2 = 0.231$	$\Delta z_5 = 0.211$				
$a_{ m y}/d_{ m c}$	$\Delta z_3 = 0.240$	$\Delta z_6 = 0.248$				

 $\Delta z_3 = 0,240$ $\Delta z_6 = 0,248$ k_t — коэффициент, учитывающий развитие параметров воронки размыва во времени t (час):

$$k_{t} = \begin{cases} 0, \text{ при } t = 0, \\ 1,0, \text{ при } t > 9 \text{ часов}, \end{cases}$$

$$z_{j} = 10^{-3} \sum_{i=1}^{22} b_{ji} x_{i}; i = 1, 2, ..., 22,$$

$$(8)$$

 b_{ii} – коэффициенты регрессии (табл. 2),

 x_i – фиктивный фактор (функция от фактического фактора, табл. 2).

Таблица 2. Факторы и коэффициенты регрессии Table 2. Factors and coefficients of regression

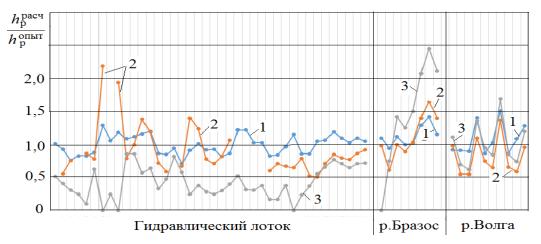
Ф	Коэффициенты регрессии Coefficients of regression									
Факторы Factors	b_{1i}	b_{2i}	b_{3i}	b_{4i}	b_{5i}	b_{6i}				
1	2	3	4	5	6	7				
$x_1 = 1,0$	750,9	403,0	2461,0	2173,1	2464,9	21200				
$x_2 = \ln(1 + r/b_0)$	406,7	689,1	0	0	0	0				
$x_3 = \ln\left(1 + \frac{b_p - b_0}{s_y + d_c}\right)$	204,2	392,0	436,5	315,3	326,71	0				
$x_4 = \ln\left(1 + \frac{l_p - l_0}{s_x + d_c}\right)$	205,7	0	458,9	203,9	0	270,3				
$x_5 = \ln(1 + s_x/b_0)$	-228,7	-310,5	0	0	0	0				
$x_6 = \ln(1 + b_0/H)$	-114,0	0	2922,2	2106,5	2642,7	1998,8				
$x_7 = \ln\left(\frac{H}{H+e}\right)$	556,0	762,9	769,0	429,5	718,0	434,6				
$x_8 = \ln(d_c/b_0)$	-597,6	-551,9	-863,7	453,5	-694,8	-909,2				
$x_9 = \ln\left(1 + \alpha^o \pi / 180^o\right)$	567,6	1650,5	1117,0	1110,7	0	2580,4				
$x_{10} = \ln(1 + s_y/b_0)$	3665,0	3901,2	1141,6	652,9	0	0				
$x_{11} = \ln(1 + l_0/b_0)$	210,1	3596,6	218,9	611,6	570,4	719,2				

	продолжение таблицы 2 Continuation of Table 2										
1	2	3	4	5	6	7					
$x_{13} = \ln\left(1 + b_p^{\prime}/b_0\right)$	0	0	0	0	-461,21	-453,6					
$x_{14} = x_6^2$	0	0	1390,3	1002,2	1257,3	951,0					
$x_{15} = x_9^2$	0	-6923,6	0	-4659,0	0	-10824					
$x_{16} = x_{10}^2$	-12038	-13886	-1942,1	-1110,7	0	0					
$x_{17} = x_{11}^2$	0	-5189	0	-882,3	-882,9	-1038,0					
$x_{18} = x_{12}^2$	6282,4	0	9774,8	-9012,3	-27833	-25878					
$x_{19} = x_9^3$	0	9681,3	0	6514,7	0	15136,0					
$x_{20} = x_{10}^3$	10670,9	13062	0	0	0	0					
$x_{21} = x_{11}^3$	0	2495,3	0	424,3	395,7	499,0					
$x_{22} = x_{12}^3$	-7125,5	0	-11086,5	-9255,7	-24619,7	-23198,0					

Подобно интерпретации пределов доверительного интервала, рекомендации для практического применения предлагаемых зависимостей в случае однородных грунтов основания (6) и (7) заключаются в следующем. Если нужно определить относительные параметры воронки размыва при определенных значениях факторов, то вероятность того, что этот параметр будет находиться в интервале $[(z_i - \Delta z_i)^2; (z_i + \Delta z_i)^2]$ равна 95%.

Отсюда вытекает:

- 1) на стадии проектирования в (6) и (7) Δz_j (j = 1, 2, ..., 6) нужно взять со знаком «плюс», то есть принимать величину параметра воронки размыва с возможным запасом;
- 2) если в расчетных зависимостях принять $\Delta z_j = 0$, то получим результат, имеющий привычный смысл: «расчетное значение по формуле» $(h_p/d_c)_{\text{расч}}$.
 - 3) при $k_t = 1,0$ имеем стабилизировавшуюся во времени воронку размыва.


Практически представляется интересным сопоставление значений глубины размыва с учетом и без учета доверительного интервала (при $k_t = 1,0$):

$$k_{1} = \frac{h_{p}/d_{c}}{(h_{p}/d_{c})_{pac^{q}}} = \frac{(z_{1} \pm z_{1})^{2}}{z_{1}^{2}} = 1 \pm \frac{2\Delta z_{1}}{z_{1}} + \frac{\Delta z_{1}^{2}}{z_{1}^{2}}$$
(9)

По результатам проведенных опытов $k_1 = \pm (1,02 \dots 1,28)$. Из (9) видно, что с увеличением z_1 (относительной глубины размыва $h_{\rm p}/d_{\rm c}$) увеличивается точность предсказания (точность показателя надежности): $k_1 \to 1,0$.

Для проверки полученных зависимостей были проведены независимые (неучтенные при получении формул (6) и (7)) опыты и привлечены натурными данные по рекам Бразос (США) и Волга [3, 8]. Результаты сравнения представлены на рис.3, откуда видна большая точность по зависимостям (6) и (7) без учета доверительных интервалов.

Отметим также, при построении расчетных зависимостей в [3] и [10] натурные данные были включены, что должно было автоматически обеспечить большую точность. Кроме того, с целью большей надежности зависимости (6) и (7) предлагаются с доверительными интервалами. По имеющимся 58 данным, представленным на рис. 3, лишь одна точка не попала в доверительный интервал, что соответствует погрешности 1,7% (предлагаемые доверительные интервалы допускают 5%-й погрешности). Таким образом, рис. 3 подтверждает приемлемость предлагаемой методики, полученной с использованием современных методов исследования.

Puc. 3. Сравнение с независимыми лабораторными и натурными данными: 1 – автор, 2 – [3], 3 – [10] Fig. 3. Comparison with independent laboratory and field data: 1 - author, 2 - [3], 3 - [10]

В случае неоднородных несвязных грунтах в процессе размыва происходит изменение гранулометрического состава поверхностного слоя грунта, в результате чего образуется естественная отмостка из более крупных частиц и параметры воронки местного размыва оказываются меньшими. По результатам опытов в составе окончательно сформированного поверхностного слоя наряду с крупными частицами встречаются и мелкие, что объясняется механической и гидродинамической защитой мелких частиц крупными частицами [4].

В зависимости от начальных гидравлических условий минимальный диаметр частиц отмостки может колебаться зависимости от величины средневзвешенного $d_{\rm cp}$ до максимального диаметра частиц исходной смеси. Окончательный состав отмостки зависит от толщины переработанного потоком грунта, с другой стороны, глубина размыва регулируется степенью укрупнения состава грунта. Средний диаметр частиц отмостки [4]

$$D_{\text{OTM}} = d_{\text{cp}} + \frac{h(1 - k_0)(1 - P_{d_{\text{cp}}})}{1 + h(0.95 - P_{d_{\text{cp}}}) / d_{95}},$$
(10)

где h — толщина размываемого слоя,

 $k_0 = d_{cp} / d_{95}$ – коэффициент однородности грунта,

 d_{95} – диаметр частиц, меньше которых в составе грунта содержится 95% (по весу),

 $P_{d_{\rm op}}$ – ордината интегральной гранулометрической кривой, соответствующая средневзвешенному диаметру частиц $d_{\rm cp}$.

Вывод. Расчет параметров воронки местного размыва русла, сложенного из неоднородных несвязных грунтов, предлагается вести методом подбора в следующей последовательности:

- а) исходя из d_{cp} находят неразмывающую скорость потока по одной из известных методик u_0 , а затем по (6) и (7) определяются h_p , a_x , a_y ;
 - б) принимая $h = 0.33 h_{\rm p}$ по (10) находят $D_{\rm отм}$;
- в) считая грунт однородным со средним диаметром частиц $d=D_{\text{отм}}$, надо находить новые значения $u_0,\,h_{\text{p}},\,a_{\text{x}}$ и a_{y} ;
- г) пункты б) и в) повторяем до тех, пока значения параметров воронки местного размыва на данном шаге не будут совпадать их значениями на предыдущем шаге с необходимой (заданной) точностью.

Рассмотрим некоторые результаты расчетов по определению параметров воронки местного размыва в случаях однородных и неоднородных несвязных грунтов русла. Исходными данными являются: $d_{\rm cp}=0{,}00047$ м; $v=0{,}000001$ м 2 /с – коэффициент кинематической вязкости; $\rho=1000$ кг/м 3 – плотность воды; $\rho_{\rm rp}=2650$ кг/м 3 – плотность грунта (приведенные параметры

необходимы для определения неразмывающей скорости потока u_0 по [7]); $P_{d_{cp}}$ =0,59; d_{95} =0,00124 м; H = 7,6 м; u = 0,9 м/с; r = 2 м – толщина плиты ростверка; d_c = 1,5 м – диаметр свай; S_x = 1,2 м – расстояние в свету между сваями в лобовой части опоры; S_y = 1,5 м – расстояние в свету между сваями в продольном направлении; e = 1,3 м; α = 20°; b_p = 1 м – величина среза углов плиты ростверка; l_0 = 7,5 м – длина опоры; l_p = 10,5 м – длина плиты ростверка.

Глубина воронки для однородных грунтов в действительности может находиться в интервале от $h_p^{\text{min}} = 5,99$ м (Δz_1 - 0,228) до $h_p^{\text{max}} = 9,03$ м (Δz_1 + 0,228). Расчетное значение глубины воронки $h_p = 7,43$ м ($\Delta z_1 = 0$). Коэффициент надежности $k_H = h_p^{\text{max}}/h_p = 9,03/7,43 = 1,22$. На стадии проектирования рекомендуется принять $h_p^{\text{max}} = 9,03$ м, соответствующая доверительной вероятности (или достоверность показателя надежности) p = 0,95.

В случае неоднородных грунтов при $k_0 = 0,379$ глубина воронки размыва меньше (при одинаковых значениях остальных факторов) по сравнению с однородными несвязными грунтами и соответственно составляют: $h_p^{\min} = 4,86$ м; $h_p = 5,85$ м; $h_p^{\max} = 6,92$ м, то есть учет явления образования отмостки снижает отметку заложения фундамента опоры на 2,11 м, что существенно может влиять на стоимость сооружения, поскольку одна опора может включать до 30 свай, а всего опор может быть несколько в зависимости от ширины преодолеваемой водной преграды. Кроме учета неоднородности грунта и показателя надежности, существенное отличие предлагаемой методики от результатов исследований других авторов заключается в том, что она получена путем исследования всей области изменения определяющих факторов, что удалось осуществить путем использования методов математического планирования эксперимента. Применение методов теории подобия и размерностей облегчило распространение результатов модельных лабораторных результатов на натурные условия.

Библиографический список:

- 1. Алибеков А.К., Алибеков Г.А. Основы теории планирования эксперимента и практика ее применения. Махачкала: ФГБОУ ВО «ДГТУ», 2017. -175 с.
- 2. Алибеков А.К., Идрисова С.Г. Местный размыва русла у мостовых опор: Сб.науч.тр.междунар.науч.-практической конференции «Актуальные проблемы и перспективы развития дорожно-транспортного комплекса, (5-6 апреля 2017) Махачкала: Махачкалинский филиал МАДИ, -2017. С.91-94.
- 3. Журавлев М.М. Местный размыв у опор мостов. М.: Транспорт, 1984. 113 с.
- 4. Магомедова А.В. Эрозионные процессы в руслах рек и каналов. М.: Изд-во ВЗПИ, 1990. 203 с.
- 5. Михалев М.А., Алибеков А.К. Выбор оптимального типа опоры и оценка величины местного размыва//Природообустройство, №5, 2011. -C.46-50
- 6. Михалев М.А. О моделировании местного размыва русла за водосбросными плотинами //Инженерно-строительный журнал, №2, 2013, С. 67-74.
- 7. Михалев М.А. Физическое моделирование гидравлических явлений. СПб: Изд-во Политехнического ун-та, 2010. 443 с.
- 8. Николаев Е.И. Местный размыв у столбчатых опор мостов с учетом угла набегания потока на опоры (косое течение): Дис. канд. техн. наук. Саратов, 1982. 225 с.
- 9. Пуркин, В.И. Проектирование мостовых переходов: учебное пособие / В.И. Пуркин, А.С. Холин. 2-е изд., перераб. и доп. М.: МАДИ, 2014. 60 с.
- 10. СП 32-102-95 Сооружения мостовых переходов и подтопляемых насыпей. Методы расчета местных размывов. М.: Корпорация «Транстрой», 1996. -79 с.
- 11. СП 24.13330.2011 Свайные фундаменты. Актуализированная редакция СНиП 2.02.03- 85 / Мин-во

- регионального развития Российской Федерации. М., 2011. 74 с.
- 12. Таблицы планов эксперимента: Для факторных и полиномиальных моделей/ Под ред. Налимова В.В. М.: Металлургия, 1982.-752 с.
- 13. Amini A., Melville B.W, Ali T.M. Local scour at piled bridge piers including an examination of the superposition method //Canadian Journal of Civil Engineering, 41 (5), 2014, pp. 461-471
- 14. Esmaeili T., Dehghani A. A., Zahiri A. R., Suzuki K. 3D Numerical Simulation of Scouring Around Bridge Piers (Case Study: Bridge 524 crosses the Tanana River) //World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering Vol:3, No:10, 2009. pp. 422-426.
- 15. Evaluating Scour at Bridges // Hydraulic Engineering Circular No. 18, Fifth Edition, U.S. Department of Transportation Federal Highway Administration, 2012. -318~p.
- 16. Hesham F., Ibrahim H. E., Reducing local scour at bridge piers using an upstream subsidiary triangular pillar. Arab J Geosci (2016) 9: 598. pp.1-8.
- 17. Moreno M., Birjukova O., Grimaldi C., Gaudio R., Cardoso A. Experimental study on local scouring at pile-supported piers// Acta Geophysica, June 2017, Volume 65, <u>Issue 3</u>, pp. 411–421.
- 18. Mostafa Y. E., Agamy A.F.//International Journal of Engineering Science and Technology (IJEST), Vol. 3 No. 11, 2011. pp. 8160-8178.
- 19. Mubeen B., Salman B., Scour Reduction around Bridge Piers: A Review. International Journal of Engineering Inventions, 2013, Volume 2, Issue 7, pp. 07-15.
- 20. Wang H., Tang H.W., Xiao J.F., Wang Y., Jiang Sh. Clearwater local scouring around three piers in a tandem arrangement//Science China Technological Sciences June 2016, Volume 59, Issue 6, pp. 888–896.

References:

- 1. Alibekov A.K., Alibekov G.A. Osnovy teorii planirovaniya eksperimenta i praktika ee primeneniya. Makhachkala: FGBOU VO "DGTU"; 2017. 175 s. [Alibekov A.K., Alibekov G.A. Fundamentals of the theory of experiment planning and practice of its application. Makhachkala: FGBOU VD "DGTU"; 2017. 175 p. (In Russ.)]
- 2. Alibekov A.K., Idrisova S.G. Mestnyi razmyv rusla u mostovykh opor. Sb.nauch.tr.mezhdunar.nauch.-prakticheskoi konferentsii "Aktual'nye problemy i perspektivy razvitiya dorozhnotransportnogo kompleksa". Makhachkala: Makhachkalinskii filial MADI; 2017. S.91-94. [Alibekov A.K., Idrisova S.G. Local scour of the bed at the bridge supports. Proceedings of the International scientific-practical conference "Relevant problems and prospects for the development of the road and transport complex". Makhachkala; 2017. P.91-94. (In Russ.)]
- 3. Zhuravlev M.M. Mestnyi razmyv u opor mostov. M.: Transport; 1984. 113 s. [Zhuravlev M.M. Local scour at the bridge supports. M.: Transport; 1984. 113 p. (In Russ.)]
- 4. Magomedova A.V. Erozionnye protsessy v ruslakh rek i kanalov. M.: Izd-vo VZPI; 1990. 203 s. [Magomedova A.V. Erosion processes in the channels of rivers and canals. M.: Izd-vo VZPI; 1990. 203 p. (In Russ.)]
- 5. Mikhalev M.A., Alibekov A.K. Vybor optimal'nogo tipa opory i otsenka velichiny mestnogo razmyva. Prirodoobustroistvo. 2011;5:46-50. [Mikhalev M.A., Alibekov A.K. Choosing the optimal type of support and estimating the magnitude of local scour. Prirodoobustroistvo. 2011;5:46-50. (In Russ.)]
- 6. Mikhalev M.A. O modelirovanii mestnogo razmyva rusla za vodosbrosnymi plotinami. Inzhenerno-stroitel'nyi zhurnal. 2013;2:67-74. [Mikhalev M.A. On the modeling of local scour of the channel behind spillway dams. Magazine of Civil Engineering. 2013;2:67-74. (In Russ.)]
- 7. Mikhalev M.A. Fizicheskoe modelirovanie gidravlicheskikh yavlenii. SPb: Izd-vo Politekhnicheskogo un-ta; 2010. 443 s. [Mikhalev M.A. Physical modeling of hydraulic phenomena. SPb: Izd-vo Politekhnicheskogo un-ta; 2010. 443 p. (In Russ.)]
- 8. Nikolaev E.I. Mestnyi razmyv u stolbchatykh opor mostov s uchetom ugla nabeganiya potoka na opory (kosoe techenie): Dis. kand. tekhn. nauk. Saratov; 1982. 225 s. [Nikolaev E.I. Local scour at the pillar supports of bridges taking into account the angle of flow on the supports (oblique flow). Candidate of Technical Sciences Thesis; 1982. 225 p. (In Russ.)]
- 9. Purkin V.I., Kholin A.S. Proektirovanie mostovykh perekhodov: uchebnoe posobie. 2-e izd. M.: MADI; 2014. 60 s.

- [Purkin V.I., Kholin A.S. Designing of bridge passages: a tutorial. 2nd ed. M.: MADI; 2014. 60 p. (In Russ.)]
- 10. SP 32-102-95 Sooruzheniya mostovykh perekhodov i podtoplyaemykh nasypei. Metody rascheta mestnykh razmyvov. M.: Korporatsiya "Transtroi"; 1996. 79 s. [SP 32-102-95 Constructions of bridge crossings and submerged embankments. Methods for calculating local scour. M.: Korporatsiya "Transtroi"; 1996. 79 p. (In Russ.)]
- 11. SP 24.13330.2011 Svainye fundamenty. Aktualizirovannaya redaktsiya SNiP 2.02.03- 85. Min-vo regional'nogo razvitiya Rossiiskoi Federatsii. M.; 2011. 74 s. [SP 24.13330.2011 Pile foundations. Updated version of SNiP 2.02.03- 85. Ministry of Regional Development of the Russian Federation. M.; 2011. 74 p. (In Russ.)]
- 12. Tablitsy planov eksperimenta: Dlya faktornykh i polinomial'nykh modelei. Pod red. V.V Nalimova. M.: Metallurgiya; 1982. 752 s. [Tables of experiment plans: For factorial and polynomial models. V.V. Nalimov (Ed.). M.: Metallurgiya; 1982. 752 p. (in Russ.)]
- 13. Amini A., Melville B.W, Ali T.M. Local scour at piled bridge piers including an examination of the superposition method. Canadian Journal of Civil Engineering 2014;41(5):461-471.
- 14. Esmaeili T., Dehghani A.A., Zahiri A.R., Suzuki K. 3D Numerical Simulation of Scouring Around Bridge Piers (Case Study: Bridge 524 crosses the Tanana River). World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering. 2009;3(10):422-426.
- 15. Evaluating Scour at Bridges. Hydraulic Engineering Circular No. 18, Fifth Edition, U.S. Department of Transportation Federal Highway Administration; 2012. 318 p.
- 16. Hesham F., Ibrahim H. E. Reducing local scour at bridge piers using an upstream subsidiary triangular pillar. Arab J Geosci. 2016;9(598):1-8.
- 17. Moreno M., Birjukova O., Grimaldi C., Gaudio R., Cardoso A. Experimental study on local scouring at pile-supported piers. Acta Geophysica. 2017;65(3):411–421.
- 18. Mostafa Y.E., Agamy A.F. International Journal of Engineering Science and Technology (IJEST). 2011;3(11):8160-8178.
- 19. Mubeen B., Salman B. Scour Reduction around Bridge Piers: A Review. International Journal of Engineering Inventions. 2013;2(7):07-15.
- 20. Wang H., Tang H.W., Xiao J.F., Wang Y., Jiang Sh. Clearwater local scouring around three piers in a tandem arrangement. Science China Technological Sciences. 2016;59(6):888–896.

Сведения об авторе:

Алибеков Али Казибекович – кандидат технических наук, доцент, кафедра бурения нефтяных и газовых скважин. Information about the author.

Ali K. Alibekov - Cand. Sci. (Technical), Assoc. Prof., Department of drilling oil and gas wells..

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Поступила в редакцию 02.12.2017.

Принята в печать 24.01.2018.

Conflict of interest.

The author declare no conflict of interest.

Received 02.12.2017.

Accepted for publication 24.01.2018.

Для цитирования: Гамидов Т.С. Проблемы синтеза монументальной скульптуры в ансамблях города Махачкалы. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 193-203. DOI:10.21822/2073-6185-2018-45-1-193-203

For citation: Gamidov T.S. Problems of monumental sculpture synthesis in ensembles of the city of Makhachkala. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 193-203. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-193-203

ТЕХНИЧЕСКИЕ НАУКИ СТРОИТЕЛЬСТВО И АРХИТЕКТУРА

УДК: 72.04

DOI: 10.21822/2073-6185-2018-45-1-193-203

ПРОБЛЕМЫ СИНТЕЗА МОНУМЕНТАЛЬНОЙ СКУЛЬПТУРЫ В АНСАМБЛЯХ ГОРОДА МАХАЧКАЛЫ

Гамидов Т.С.

Дагестанский государственный технический университет, 367026 г. Махачкала, пр. И.Шамиля, 70, Россия, e-mail: gamidow.timur@yandex.ru

Резюме: Цель. Главной целью исследования является изучение проблемы синтеза монументальной скульптуры в архитектурных ансамблях города Махачкалы. Термин «проблемы синтеза» включает в себя целый ряд ключевых правил и закономерностей, от правильного решения которых зависит гармоничное включение памятника в окружающую среду. Метод. Исследование памятников монументального искусства опирается на методико-теоретические изыскания советских искусствоведов и исследователей архитектуры, основанные на широком круге требований при строительстве памятников в условиях городской среды. В методы исследования входит также духовно-эстетический, формально-стилистический и идейносодержательный аспекты анализа произведений монументального искусства. Результат. Проанализированы наиболее известные скульптурные памятники города Махачкалы, возведение которых, требовало от авторов грамотного решения художественно-эстетических и пространственно-композиционных задач, обеспечивавшие качество восприятия монументов в непосредственной связи с архитектурной планировкой города. Исследованы различные, исторически сложившиеся ситуации конкретных местностей г. Махачкалы: дорожные развилки, островные участки кольцевых дорог, парки, скверы, аллеи, создающих благоприятные или неблагоприятные условия для установки скульптурных памятников. Основные положения, приводимые в данной статье, могут быть использованы в качестве критерий оценивания и анализа произведений монументального искусства. Могут применяться и в роли методических указаний при разработке планов строительства как новых, так и реконструкции старых памятников столицы. Вывод. В городской застройке Махачкалы, где хаотично усиливается плотность жилых массивов, негармонично вписываются монументы в кольцевых дорогах и скверах, требует особого, творчески осмысленного подхода к проблемам синтеза архитектуры и пластических искусств, от которого зависит и гармоничный облик городских ансамблей, и комфортная среда обитания в нём для человека. Выбор типа монумента и его идейно-смысловой канвы для конкретной местности, решения композиционно-пространственных задач, установления масштаба и пределов ближнего и дальнего точек обзора, направления освещения, цвета, фактуры, индивидуально предусмотренные для каждого отдельного памятника, составляет основную необходимость творческого подхода дагестанских скульпторов и архитекторов, работающих над благоустройством нашей столицы.

Ключевые слова: скульптура, монумент, планировка, застройка, пластика, синтез, масштаб

TECHNICAL SCIENCE BUILDING AND ARCHITECTURE

PROBLEMS OF MONUMENTAL SCULPTURE SYNTHESIS IN ENSEMBLES OF THE CITY OF MAKHACHKALA

Timur S. Gamidov

Daghestan State Technical University, 70 I. Shamilya Ave., Makhachkala, 367026, Russia, e-mail: gamidow.timur@yandex.ru

Abstract Objectives. The main objective was to study the problem of synthesising monumental sculpture in architectural ensembles of the city of Makhachkala. The term "problems of synthesis" includes a number of key rules and patterns, from the correct solution of which depends the harmonious inclusion of monuments in the environment. Methods. The study of monumental art installations is based on the methodological and theoretical studies of Soviet art historians and architectural researchers, based on a wide range of requirements for the installation of monuments in an urban environment. The research methods also include the spiritual and aesthetic, formal-stylistic and ideological-content aspects of the analysis of works of monumental art. Results. The most famous sculptural monuments of the city of Makhachkala were analysed, the positioning of which required the authors to solve art-aesthetic and spatial-compositional problems intelligently, ensuring positive perception of the monuments in connection with the architectural layout of the city. Various historical situations of specific locations of Makhachkala were explored (road forks, island sections of ring roads, parks, squares, alleys, etc.), which create favourable or unfavourable conditions for the installation of sculptural monuments. The main provisions given in this article can be used as a criterion for evaluating and analysing works of monumental art as well as to provide methodical guidelines in planning development for both the construction of new and the reconstruction of old monuments of the capital. Conclusion. The urban development of Makhachkala, involving high density residential areas and a profusion of monuments in the ring roads and squares, requires a special, creatively sensitive approach to problems of synthesis of architecture and plastic arts, on which both the harmonious appearance of urban ensembles and a comfortable living environment depends. The choice of the monument type and its ideological and semantic canvas for a specific locality, the solution of composition-spatial problems, the establishment of scale and limits of near and far points of view, the direction of lighting, colour, texture, individually provided for each individual monument, comprise the main imperatives underpinning the creative approach of Dagestan sculptors and architects working on the improvement of our capital city.

Keywords: sculpture, monument, planning, building, plastic, synthesis, scale

Введение. Монументальное искусство, в данном случае монументальная и монументально-декоративная скульптура играет важнейшую роль в организации и планировки городских ансамблей. «Взаимодействие архитектуры и скульптуры составляет одну из интереснейших проблем истории искусства. Основанное на глубоких идейно-художественных и композиционных связях, оно всегда было плодотворным и не только рождало высокие образцы синтеза изобразительного искусства и архитектуры, но и во многом способствовало новым художественным завоеваниям в каждом из искусств» [12.С. 3.].

Главное предназначение монументального искусства, воплощавшееся в различных видах искусства: мозаики, фрески, монументальной и монументально-декоративной скульптуры, состоит в усилении эмоционально-эстетического и духовно-идеологического звучания пространственной среды, способствующей максимальному раскрытию общественного назначения архитектуры.

В свою очередь, архитектура, предлагает условия для существования и выявления специфических средств выразительности монументальным видам искусств. Таким образом, архи-

тектура, являясь своего рода материальной базой для синтеза искусств, объединяет вокруг себя другие виды творчества, взаимодействие и взаимосвязь которых, обуславливают основу формирования городских ансамблей. Высокоорганизованные архитектурные ансамбли города, благотворно влияют на духовное развитие человека, на его здоровье и комфортное пребывание в окружающем его пространстве. Искусство архитектуры, отражает общий уровень культурного и интеллектуального развития жизни страны.

Постановка проблемы городской среды и связанные с ней процессы взаимодействия и взаимообогащения архитектуры и пластических искусств, служили предметом изучения для многих отечественных (и зарубежных) искусствоведов и исследователей архитектуры [2,5,13,14,17-19, 21-25, 27].

Взаимодополняемость различных видов искусств, выражается в понятии синтез. Органично сплетаясь друг с другом (например; живопись, декоративное искусство, скульптура, архитектура), каждый вид искусства, обладая определённой самостоятельностью в форме и содержании, становятся неразрывной частью целого.

Проблемам синтеза различных видов искусств, также посвящаются труды многих отечественных и зарубежных авторов [3-9, 11, 20, 23, 26]. Наиболее глубокими исследованиями, как в плане методико-теоретического, так и культурно-эстетического содержания в изучении проблем синтеза монументальной скульптуры в городской среде, можно назвать работы советских ученых: В.А. Артамонова, М.К. Кругловой, И.В. Иванова [1, 12, 16]. Опираясь преимущественно на труды этих ученых, автор данной статьи проводит анализ памятников монументальной скульптуры г. Махачкалы, не получивших прежде должного освящения в дагестанском искусствоведении.

Махачкала за последние десятилетия сильно поменяла свой облик. Приток денежных средств в частное предпринимательство привел к бурному строительству торговопромышленных зданий, которые буквально вклиниваются в заманчивые для бизнесстроительства центральные территории города, загруженного плотной застройкой и обильным транспортным движением. Стихийная застройка не только не благоприятствует условиям строительства городских памятников, но и заметно мешает строительству новых, и композиционнохудожественному восприятию уже существующих.

Примеры некоторых монументальных памятников, построенных в последние десятилетия в г. Махачкала, демонстрируют свою неспособность отвечать эстетическим требованиям времени в условиях активной индустриализации городской планировки и застройки.

Во многих случаях причиной тому является отсутствие взаимосогласия между заказчиком и исполнителем. В таких ситуациях, заказчик зачастую предъявляет требования к исполнителю, несоответствующие уровню высоких образцов художественного произведения. Взгляды заказчика и автора-исполнителя расходятся, что часто бывает по вине некомпетентности первого в понимании всех тонкостей в сфере искусства.

Неумение доверять профессионалу, хотя бы по некоторым принципиальным вопросам, добавляет трудности для мастера в создании работы, порой ставит под сомнение реализацию контракта. Желая не потерять свой кровный заработок, скульптору, иной раз приходится уступать неуклонному заказчику в ущерб своим творческим убеждениям, а вследствие этого снижать уровень создаваемой продукции. Во всяком случае, не углубляясь в этот сложный и весьма тонкий вопрос искусствоведческой науки, необходимо помнить, что именно творец: скульптор, живописец, архитектор (актёр, музыкант и т.д.), способствует развитию эстетической культуры общества, формированию у потребителя высоких вкусов и художественных предпочтений. Благодаря творениям художника, возникают образцовые произведения искусства самого широкого спектра стилеобразований и индивидуальных форм, в свою очередь способствующих не только воспитанию этических и художественно-эстетических качеств человека, но и привлечению внимания обширного круга заказчиков и почитателей.

Другая проблемная сторона связана с теснотой пространства жилых массивов, отсутствием специально отведённых зон и площадей для установки монументов, чтов совокупности усложняет их строительство в затеснённом городе. Поэтому некоторые памятники в городских

ансамблях г. Махачкала воздвигаются без учёта художественно-эстетических закономерностей зрительного восприятия, в связи с чем, даже прекрасно исполненные монументы при их установке теряют качество своего воздействия.

Погрешности подобного рода зачастую обусловлены отсутствием идейно-смысловой привязки памятника к конкретной местности его возведения. Многому она лишается и от непродуманного характера композиционно-пространственной планировки в неразрывной связи с архитектурной застройкой. Однако в городе ни мало достойных памятников, являющихся образцовыми произведениями высокого уровня. Исследованию выше отмеченных проблем посвящена данная статья на примере известных памятников г. Махачкалы.

Постановка задачи. Главная задача исследования посвящена выявлению как качественных, так и некачественных сторон в восприятии памятников монументальной скульптуры г. Махачкалы, критериями оценивания которых служат данные художественно-эстетических и визуальных закономерностей в системе взаимодействия монументальной пластики в синтезе с архитектурной средой.

Монументы, постоянно находящиеся в поле зрения горожан, сохраняют в их памяти великие события прошлого и героев своей страны; способствуют формированию нравственных качеств, воспитанию патриотических чувств и эстетического вкуса. В том, как решается скульптурная форма в привязке к конкретной местности зависит качество её восприятия. «Выбор места для строительства памятника, посвящённого тому или иному историческому лицу или событию, является очень важной художественной задачей, так как архитектурная обстановка, в которой размещается памятник, влияет на композицию монумента, начиная с размеров скульптуры и её пьедестала и кончая трактовкой позы, жеста, костюма и всего того, что в совокупности с самим портретом составляет художественный образ изваяния [16.C.27]».

Разнообразие монументов, является одним из главных условий, необходимых для создания художественно полноценных скульптурных убранств в структуре городских ансамблей. «В одних случаях монументальное изваяние может обретать доминирующее положение по отношению к архитектурному фону, в других находится с ней в известном равновесии, а в третьих играть некоторую подчинённую роль, т. е. явиться украшением или дополнением архитектурной среды [16.С.36]».

С учетом данных положений, особое значение приобретают вопросы, связанные с изучением скульптурных монументов на территории г. Махачкала (также как и других городов и населённых пунктов Республики Дагестан). Вопросы эти непременно должны касаться таких важных методико-теоретических проблем, как проблемы исследования монументов в их связи с характером планировки и благоустройства прилегающей городской территории, установления масштабов памятника по отношению к окружающей среде, обусловленные закономерностями зрительного восприятия.

Необходимо также учитывать и природно-географические факторы, естественное освещение, цвет, фактуру, организацию транспортного движения и др. Дагестанские мастера скульптуры разных лет, по-разному подходили к решению данных проблем, достигая как качественно высоких результатов, так и допуская некоторые просчёты.

Методы исследования имеют комплексный характер и опираются на формальностилистический, историко-культурологический, художественно-эстетический и визуальнопространственный способы анализа памятников монументального искусства.

В качестве материалов исследования используются памятники скульпторов: Памятник герою Социалистического труда И. Насрутдинову. Бронза. 2000 г. (Гимбатов Г.Ш.), Памятник Герою Советского Союза Ахмедхану Султану. Бронза, гранит. 2001 г. (Гейбатов Г.Н.), Памятник защитнику Отечества. Бронза, гранит. 2006 г. (Шахмарданов Ш.Ш.), Памятник Ирчи Казаку. Бронза, гранит. 2008 г. (Сайгидов А-Г.М.), Памятник борцам за Советскую власть. Бронза, гранит. 1980 г. (Гейбатов Г.Н.).

Наглядными примерами возведения скульптурного монумента в сложной архитектурнопланировочной ситуации на кольцевых участках магистральных дорог, служат произведения дагестанских скульпторов Г.Н. Гейбатова, Ш.Ш.Шахмарданова и Г.Ш. Гимбатова. По мнению авторитетных исследователей архитектуры (М.Г. Круглова, В.А. Артамонов), установка портретной скульптуры в таком месте является не вполне желательным.

Негативные последствия при несоблюдении композиционно-планировочных и идейнохудожественных требований к возведению монументов, отразились на памятнике Г. Ш. Гимбатова, посвящённому Герою Социалистического труда И. Насрутдинову (2000), установленному на перекрёстке улицы Булача и проспекта Петра І. Бронзовая скульптура, представляет с собой полуфигурное изображение выдающегося колхозника, окружённого по пояс колосьями пшеницы (рис. 1.).

Рис. 1.Гимбатов Г.Ш. Памятник Герою Социалистического труда И. Насрутдинову. Бронза. 2000. Fig. 1. G.Sh. Gimbatov Monument to the Hero of Socialist Labor I. Nasrutdinov. Bronze. 2000

Своей лицевой стороной он обращен вглубь проспекта Петра I. Скульптурный монумент на таких участках нуждается в круговом осмотре, где его каждая сторона составляетбеспрерывную цепь равнозначных по качеству восприятия пластических масс.

Данная же скульптура при своём статичном расположении имеет ярко выраженную лицевую сторону и явно требует поддержки фона. Вид со спины или профиля воспроизводит скованное и монотонное по пластике впечатление, подобно массивному каменному изваянию. Слабо рассчитан масштаб монумента в соотношении с прилегающей застройкой. Его размеры очень малы для поддержки прилегающей территории, он буквально теряется в массивах жилой застройки при обзоре с дальних расстояний. Рассмотрение с близких дистанций в пределах островного участка, в центре которого расположен монумент, не предоставляется возможным ввиду отрезанности этой площадки беспрерывным транспортным движением.

Таким образом, даже наиболее благоприятная для обзора лицевая сторона ограничивается возможностями его восприятия в деталях, а на дальних подступах, как уже было сказано, теряется и чёткость обзора.

Поскольку тип портретного монумента рассчитан на то, чтобы его могли осматривать в спокойных условиях, как с близкого, так и отдалённого расстояния, необходимо создавать для этого благоприятные пространственно-композиционные условия. То есть установить пределы комфортного осмотра с близких дистанций, чтоб зритель при желании мог спокойно подходить, или удаляться от монумента.

Не совсем благоприятно направление монумента по отношению к сторонам света. В первой половине дня солнце освещает с тыльной стороны, это затеняет главную лицевую часть, препятствующей пешеходам оптимальный его обзор, идущие по направлению от проспекта Петра I к проспекту Насрутдинова. Кроме того, идейно тематическая канва, отражающеая идеи аграрии и сельскохозяйственного труда, что особенно сильно выразилось в натуралистично пе-

реданной форме колосьев пшеницы, резко контрастирует и даже противоречит с современным обликом окружающих зданий, особенно где используются новейшие технологии (стекло, металл).

Все указанные просчёты, имеющие отношение к типу монумента, месту его установки, условиями близкого и дальнего обзора, масштабу, направлениям сторон света и идейносодержательной стороне, не лучшим образом сказываются на качестве восприятия данного памятника. Наличие в скульптурном произведении только объёмно-пластических достоинств без учёта названных критериев не достаточны для создания более высокого уровня благоустройства окружающей среды, а вследствие этого снижается и сила его эмоционального воздействия на зрителя.

В данном месте при таких условиях более приемлемым представляется возведение архитектурного или же декоративно-символического монумента, позволяющего воспринимать его выразительным силуэтом на дальних расстояниях и с разных точек кольцевого пространства, а детали скульптурного убранства, в виде рельефов, декоративных вставок в композиции памятника, могли бы служить предметами близкого осмотра.

Такая же ситуация композиционной планировки наблюдается вокруг бюстового памятника дважды Герою Советского Союза, лётчику Ахмедхану Султану, установленному в 2001 г. на пересечении улиц генерала Омарова и проспекта Гамидова в исполнении скульптора Г.Н. Гейбатова. В отличие от описанного выше памятника, динамичный поворот в изображении головы Ахмедхана Султана делает оптимальным его обзор не только с фасадной и с тыльной стороны, а также в промежутках между этими точками (рис. 2).

О возможностях кругового осмотра данного памятника, сохраняющей богатое восприятие пластики со всех точек зрения, упоминает и искусствовед Гейбатова-Шолохова З.А. в своей монографии о творчестве Гейбатова Г.Н. [10. С.20]. Диагональное положение лица по отношению к линии плеч, сохраняет разнообразное сочетание во взаимодействии плоскостей фаса, анфаса и профиля при каждом смене места осмотра. Это значит, если форма лица открывается зрителю в профиль, то плечи обозреваются в анфасном положении, а если плечи оказались в профильном ракурсе, то лицо смотрится в фас.

Таким образом, богаче и выразительней воспринимаются пластические переходы. Приём намеренного заострения плеча, обретшей стреловидную форму, символически напоминает носовую часть самолёта, воздействует раскрытию идейно-содержательной концепции портрета. Автор памятника придаёт образу героя энергичный взгляд, направленный на заострённую часть плеча, что усиливает впечатление динамики и стремительного полёта

Рис. 2. Гейбатов Г.Н. Памятнник Герою Советского Союза Ахмедхану Султану. Бронза, гранит. 2001 г. Fig. 2. G.N. Geybatov. Memorial of Hero of the Soviet Union Ahmedkhan Sultan. Bronze, granite. 2001

Лаконичная и в то же время подчёркнутая пластика в выражении формы глаз, мимики

лица, убедительно передаёт характер импульсивного и отважного человека- качествами которыми он был наделён по своей натуре из воспоминаний боевых товарищей лётчика. Отображение подобного рода высоких черт характера средствами монументального искусства, непременно воздействует на воспитание патриотических чувств и эмоций зрителя, воспринимающего их в условиях городской среды.

При всех своих художественных достоинствах, система окружающей планировки монумента с кольцевым транспортным движением создаёт ряд трудностей для комфортного условия его осмотра, что влияет и на полноту художественного восприятия.

Памятник Ахмедхану Султану оказался отрезанным беспрерывным транспортным потоком. Прилегающие к кольцевому участку тротуары составляют предельные расстояния оптимальной видимости портрета. С этих точек лицо портретируемого часто оказывается на фоне высотных зданий, мешающих восприятию силуэта, а приближение к дистанции чёткой видимости в радиусе островного участка, где расположен монумент, ограничивается автомобильным движением. Стремление перейти дорогу, чтобы попасть на эту часть территории возможно ценой больших усилий и риском возникновения дорожных происшествий.

Однако именно по периметру островного участка располагаются ближние пределы видимости, позволяющие в чёткости воспринимать детали портрета, характер его эмоциональной выразительности и остроты силуэта, раскрывающейся исключительно на фоне неба. Постамент прямоугольной формы, расположен на искусственной возвышенности в виде небольшого холма в центральном поле, что даёт возможность необходимой высоты монумента. Приставленные у основания постамента архитектурно-символические детали в виде нарастающих к верху объёмов, напоминают формы крыльев, органично включающихся в идейно-художественный строй композиции.

Третий монумент, возведённый на островном участке кольцевой дороги, оказался в более выгодных условиях круговой видимости, а вследствие этого, существенно увеличилось и качество его художественного воздействия. Речь идёт о конном монументе, посвящённом защитникам отечества (2006), выполненного художником Ш.Ш. Шахмардановым. Он расположен на пересечении улиц Булача, Степного поселка и новой каспийской автотрассы. Бронзовый памятник, первоначально задуманный как образ героя из лезгинского эпоса «Шарвили», приобретает характер всенародного звучания.

В победоносном порыве с мечом в руке представлен образ воина верхом на коне (рис. 3).

Рис. З.Шахмарданов Ш. Ш. Памятник «Защитник отечества». Бронза, гранит. 2006 г. Fig. 3. Sh.Sh. Shakhmardanov Monument to the defender of the fatherland. Bronze, granite. 2006.

Облачённый в национальные доспехи и с чертами характерного типажа, он обретает значение глубокой самобытности. Композицию наполняют элементы аллегорий, содержащие идейный замысел произведения: меч—символ победы и высшей справедливости, образ сдыхающего чудовища под ногами вздыбленного коня—символ поверженного врага.

Каждая точка по кольцевому движению открывает перед зрителем неожиданно яркие запоминающиеся виды монумента, что расширяет глубину его пластического и идейно-

содержательного воздействия. В пределах островной площадки зритель хорошо воспринимает детали, образующей на поверхности монумента богатую светотеневую игру. Выступающие силуэты деталей (волнительный жест руки, порхающий на ветру плащ, грива и хвост коня), выразительно читаются на фоне неба, вызывая у зрителя чувство драматизма и особой духовной наполненности. К сожалению идущие ввысь постройки с прилегающих территорий начинают закрывать силуэт памятника с интересных его точек зрения, открывающиеся на фоне неба.

Наглядным примером, усложняющим строительство монументов в густо застроенных центральных территориях Махачкалы, служит памятник Ирчи Казаку в исполнении скульптора А.-Г.М. Сайгидова, установленного на перекрёстке проспекта Ярагского и улицы Ирчи Казака (рис. 4).

Рис. 4.Сайгидов А.-Г.М. Памятник Ирчи Казаку. Бронза, гранит. 2008 г. Fig. 4. A.-G.M. Saygidov Monument to Irchy Cossack. Bronze, granite. 2008

Обзор памятника со стороны улицы Ирчи Казака затрудняется плотным автомобильным движением, закрывающим большую часть монумента. По тому же направлению скульптурный памятник неудачно обозревается на фоне многоэтажного жилого дома, облицованного рекламными щитами от модных бутиков и магазинов. Этим самым возникает диссонанс между идейно-смысловой стороной памятника и чуждо воспринимающейся по отношению к нему в качестве фона объекта коммерческой индустрии. Наиболее комфортная и композиционно продуманная точка осмотра приходитсясо стороны проспекта Ярагского, когда зритель приближается в одну линию с монументом. При такой точке видения, образ поэта, сидящего на пеньке с музыкальным инструментом, раскрывается на фоне древесных насаждений, усиливающих настроение покоя и духовной углублённости.

Среди удачных вариантов строительства памятников монументальной скульптуры, построенных в советскую эпоху, можно отнести многофигурную композицию борцов революции скульптора Г.Н. Гейбатова (рис. 5).

Рис. 5. Гейбатов Г.Н. Памятник борцам за Советскую власть. Бронза, гранит. 1980 г. Fig. 5. G.N.Geybatov Monument to the Fighters for Soviet Power. Bronze, granite. 1980

Идейный замысел этой композиции воплощает драматический сюжет из жизни борцов революционного подполья во главе с У. Буйнакским [15. С.286]. Глубоким психологизмом проникнуты лица портретируемых.

Художник сумел передать в образах портретируемых и выражение твёрдой воли, и решимость характера в принятии своей гибели в борьбе за новую жизнь. Образы фигур не вызывают к себе чувство сострадания или жалости, от них веет стойкостью, силой духа. Композиция из шести фигур выстроена полукругом, соотнесена таким образом, что даёт возможность зрителю обходить и осматривать монумент со всех сторон. В таком случае перед зрителем разворачивается цепь равноценных по своей выразительности точек обзора. Подобный контекст имеет свою особую логику эстетического воспрития, складывающегося в пространственно временном измерении по принципу последовательно меняющихся кадров, призванных расширить спектр образно-пластических впечатлений. Лаконичная трактовка объёмов, придающая пластике фигур особый монументальный вид, позволяет сохранять внимание на силуэтах, на жестах и мимике лица, заключающей в себе главный идейно-художественный замысел композиции.

Монумент борцам революции Г.Н. Гейбатова органично включается в планировку сквера и прилегающую застройку, в реализации которой принимали участие архитекторы Г.А. Захаров и А.Г. Захаров. Площадь с монументом, выступающие перпендикулярно к улице Дахадаева, удачно разграничена пределами дальних и ближних расстояний осмотра. Решение создать низкий постамент оправдывается тем, что фигуры вливаются в окружающую среду, возникает более тесное взаимодействие со зрителем. Вертикальный ритм изображённых фигур, обозреваемый с дальних расстояний, находит удачное сочетание с аркатурным поясом здания Дома дружбы, служащий одновременно и светлым фоном для тёмной бронзы. Рядоположность зеленых насаждений и окружающая их лесопарковая зона также активно включается в организацию пространства монумента, дополняющей глубину его эмоционального восприятия и служащей средством декоративного убранства.

Обсуждение результатов. Ряд описанных выше монументов составляет неполную часть национального достояния памятников культуры. Однако среди представленных памятников наглядно обнаруживаются проблемные стороны композиционно-пространственного, архитектурно-планировочного и идейно-содержательного плана, от грамотного решения которых, зависит синтез монументальной пластики с окружающей средой.

Сила эмоционального и духовного воздействия монументов на зрителя не только определяется умением красиво вылепить форму, передать объём, раскрыть характерный типаж или выразительный жест. Во многом она зависит от выбора места, планировки окружающей их среды, соответствия масштабов с окружающей средой и застройкой, установления пределов близких и дальних расстояний для осмотра, характером решения фактуры, колорита и т.д. Город Махачкала активно застраивается, уплотняются также её центральные части, что создаёт невыгодное положение для комфортного обзора существующих монументальных скульптур и строительства новых.

В сложившихся ситуациях необходимо исходить из конкретного случая, определять приоритеты на нестандартные творческие решения. Более оптимальными вариантами в возведении скульптурных памятников на центральных, теснящихся районах города, представляется малогабаритная и парковая скульптура, а также декоративные рельефы и настенные фрески, входящие в убранство архитектурных сооружений. Монумент тем самым органичнее войдёт в окружающую среду и ближе станет взаимодействовать со зрителем.

Так монумент С.М. Кирову в сквере, расположеному параллельно проспекту Г. Гамидова, смотрится укрупнённым, подавляющим своей высотой по отношению к прилегающему вокруг него пространству. Чрезмерно высоким сделан и постамент монумента.

Зритель, подошедший к памятнику по недостаточно широкому скверу, упирается на габаритный постамент прямоугольной формы, тогда как сама скульптура при близком расстоянии даёт сильный ракурс, т.е. воспринимается с нижней точки зрения, что сильно искажает пропорции человеческой фигуры. На дальних же подступах, например, с противоположной стороны проспекта, обзор монумента возможен только по пешеходному тротуару, где также от обилия передвигающихся людей, зритель не может в спокойном положении созерцать образ исторического героя.

Этому препятствует также интенсивное движение автомобилей, закрывающих вид монумента. Сказанное, лишний раз подтверждает необходимость грамотной, хорошо продуманной планировки местности для возведения монумента, создания удачных точек его обзора с расчётом на длительность восприятия, организацию фона, подходящего к цвету и фактуре монумента, установления его масштабов, соразмерного к прилегающей территории.

Вывод. Проведенный анализ памятников монументальной пластики Махачкалы дает ясность в понимании практической и теоретической значимости материалов исследования, которые могут быть использованы в качестве методических указаний при дальнейшей разработке планов строительства памятников в городской среде. Тема исследования отражает общую картину развития монументального искусства столицы Дагестана и фиксирует связанные с ним историко-теоретические и культурно-эстетические проблемы в условиях современного города.

Раскрываемая тема исследования непременно послужит импульсом для будущих исследователей в дальнейшем изучении вопросов синтеза архитектуры и монументального искусства не только в г. Махачкала, но и по отношению других городов и населённых пунктов Дагестана.

Библиографический список:

- 1. Артамонов В.А. Город и монумент. М. 1974. С. 224.
- 2. Аркин Д. Е. Образы архитектуры и образы скульптуры / Д. Е. Архин. М.: Искусство, 1990. 399 с.
- 3. Аникина Н. Синтез искусства и архитектуры. Воспоминания о будущем // Декоратив. искусство. 2006. № 4. С. 90-96.
- 4. Damaz P. F Art in Latin American architecture, N. Y., 1963
- 5. Базазьянц С. Б. Художник, пространство, среда. Монументальное искусство и его роль в формировании духовно-материального окружения человека. Художник и город. М.: Советский Художник. 1983, с. 231-232.
- 6. BildkunstundBaukunst, B., 1970.
- 7. Володина Т. И. Модерн : проблемы синтезаискусств // Художественные модели мироздания. Кн. $1.-\mathrm{M.}, 1997.-\mathrm{C.}\ 261-276.$
- 8. Взаимодействие и синтез искусств / АН СССР; Науч. совет по истории мир. культ.; Комиссия комплексного изуч. худ-готворч.; [редкол.: Д. Д. Благой [и др.]. Л. : Наука, 1978. 269 с.
- 9. Вопросы синтеза искусств. Материалы первого творческого совещания архитекторов, скульпторов и живописцев М.: ОГИЗ-ИЗОГИЗ, 1936. 148 с.
- 10. Гейбатова-Шолохова З.А. Гейбатов Г.Н..Скульптура. Махачкала. 2008. 80 с.
- 11. Damaz P. F., Art in European architecture, New York: Reinhold, c $1956 \, \mathrm{xii}$, $228 \, \mathrm{p}$.
- 12. Иванова И.В. Скульптура и город. М. 1975.160 с.
- 13. Иванова И. В. Проблемы взаимодействия архитектуры с другими видами искусств: сб. ст. / И. В. Иванова; ВНИИ теории архитектуры и градостроительства. М.: ВНИИТАГ, 1990.
- 14. Иконников А.В. Искусство, среда, время: эстетическая организация городской среды. М.: Сов.художник, 1985. –

334 c

- 15. Искусство Дагестана в XX столетии. Махачкала 2012. 505 с.
- 16. Круглова М.Г. Монументы в архитектуре городов. М. 1952. 123 с.
- 17. Посохин М.В. Архитектура и монументальное искусство / ж. Архитектура СССР №10/ 1980 г.
- 18. Полякова Н. Скульптура и пространство. Проблема соотношения объема и пространственной среды/ Н. Полякова. М.: Советский художник, 1982. 200 с.
- 19. Рубаненко Б.Р. Образная организация пространства нового города / ж. Искусство № 1/1983 г.
- 20. Мурина Е.Б. Проблемы синтеза пространственных искусств: (Очерки теории) / Е. Б. Мурина. М. : Искусство, 1982. 192 с.
- 21. Страутманис И. А. Искусство в архитектурной среде / И. А. Страутманис. Рига: Лиесма,1982. 103 с.
- 22. Maertens H. Der OptischeMaasstabdieTheorie and Praxis des asthetichenSehens in den bildendenKunsten. Belin,1884.
- 23. Schubert Otto. Gesetz der Baukunst B. 1-Veb E. A. Seemann. Verlag. Leipzig? 1954.
- 24. Скульптура в городе. Сб.статей / сост. Е. В.Романенко. М.: Советский художник, 1990. 384 с.
- 25. Турчин В.С. Монументы и города. Взаимосвязь художественных форм монументов и городской среды/ В.С. Турчин. М.: Сов. Художник, 1982. 159 с. 26. Хазанова В. Некоторые вопросы синтеза искусств в советской архитектуре первых послереволюционных лет // Вопросы современной архитектуры. Сб. 2. Синтез искусств в архитектуре. М.: Гос. издательство литературы по строительству, архитектуре и строительным материалам, 1963. С. 97-157.
- 27. Швидковский О. А. Гармония взаимодействия. Архитектура и монументальное искусство / О. А. Швидковский. М.:Стройиздат,1984. 280 с.

References:

1. Artamonov V.A. Gorod i monument. M. 1974. 224 s. [Artamonov V.A. City and monument. M. 1974. 224 p. (In Russ.)] 2. Arkin D.E. Obrazy arkhitektury i obrazy skul'ptury. M.: Iskusstvo; 1990. 399 s. [Arkin D.E. Images of architecture and images of sculpture. M.: Iskusstvo; 1990. 399 p. (In Russ.)]

3. Anikina N. Sintez iskusstva i arkhitektury. Vospominaniya o budushchem. Dekorativ. iskusstvo. 2006;4:90-96. [Anikina N

Synthesis of art and architecture. Memories of the future. Decorative art. 2006;4:90-96. (In Russ.)]

4. Damaz P.F. Art in Latin American architecture. N. Y.; 1963. 5. Bazaz'yants S.B. Khudozhnik, prostranstvo, sreda. Monumental'noe iskusstvo i ego rol' v formirovanii dukhovnomaterial'nogo okruzheniya cheloveka. Khudozhnik i gorod. M.: Sovetskii Khudozhnik; 1983. C. 231-232. [Bazaz'yants S.B. Artist, space, environment. Monumental art and its role in the

formation of the spiritual and material environment of man. Artist and city. M.: Sovetskii Khudozhnik; 1983. C. 231-232. (In Russ.)]

- 6. Bildkunst und Baukunst. B.; 1970.
- 7. Volodina T.I. Modern: problemy sinteza iskusstv. Khudozhestvennye modeli mirozdaniya. Kn. 1. M.; 1997. S. 261-276. [Volodina T.I. Modern: problems of synthesis of arts. Artistic models of the universe. Book 1. M.; 1997. P. 261-276. (In Russ.)]
- 8. Vzaimodeistvie i sintez iskusstv. AN SSSR. Nauch. sovet po istorii mir. kul't.; Komissiya kompleksnogo izuch. khud-go tvorch.; [redkol.: D.D. Blagoi [i dr.]. L.: Nauka; 1978. 269 s. [Interaction and synthesis of arts. AN SSSR. Scientific. advice on the history of the world culture; Commission for Comprehensive Study the artistic creativity [D.D. Blagoi et al (Eds.)]. L.: Nauka; 1978. 269 p. (In Russ.)]
- 9. Voprosy sinteza iskusstv. Materialy pervogo tvorcheskogo soveshchaniya arkhitektorov, skul'ptorov i zhivopistsev M.: OGIZ-IZOGIZ; 1936. 148 s. [Questions of synthesis of arts. Materials of the first creative meeting of architects, sculptors and artists. M.: OGIZ-IZOGIZ; 1936. 148 p. (In Russ.)]
- 10.Geibatova-Sholokhova Z.A., Geibatov G.N. Skul'ptura. Makhachkala. 2008. 80 s. [Geibatova-Sholokhova Z.A., Geibatov G.N. Sculpture. Makhachkala. 2008. 80 p. (In Russ.)] 11. Damaz P.F. Art in European architecture. New York: Reinhold; 1956. 228 p.
- 12. Ivanova I.V. Skul'ptura i gorod. M.; 1975. 160 s. [Ivanova I.V. Sculpture and city. M.; 1975. 160 p. (In Russ.)]
- 13. Ivanova I.V. Problemy vzaimodeistviya arkhitektury s drugimi vidami iskusstv: sb. st. VNII teorii arkhitektury i gradostroitel'stva. M.:VNIITAG; 1990. [Ivanova I.V. Problems of interaction of architecture with other arts: Work collection of All-Russian Research Institute of Architecture and Urban Development. M.:VNIITAG; 1990. (In Russ.)]
- 14. Ikonnikov A.V. Iskusstvo, sreda, vremya: esteticheskaya organizatsiya gorodskoi sredy. M.: Sov. khudozhnik; 1985. 334 s. [Ikonnikov A.V. Art, environment, time: the aesthetic organisation of the urban environment. M.: Sov. khudozhnik; 1985. 334 p. (In Russ.)]
- 15. Iskusstvo Daghestana v XX stoletii. Makhachkala; 2012. 505 s. The art of Daghestan in the twentieth century. Makhachkala; 2012. 505 p. (In Russ.)]
- 16. Kruglova M.G. Monumenty v arkhitekture gorodov. M.; 1952. 123 s. [Kruglova M.G. Monuments in the architecture of cities. M.; 1952. 123 p. (In Russ.)]
- 17. Posokhin M.V. Arkhitektura i monumental'noe iskusstvo. Arkhitektura SSSR. 1980;10. [Posokhin M.V. Architecture and

- monumental art. Architecture of the USSR. 1980;10. (In Russ.)]
- 18. Polyakova N. Skul'ptura i prostranstvo. Problema sootnosheniya ob"ema i prostranstvennoi sredy. M.: Sovetskii khudozhnik; 1982. 200 s. [Polyakova N. Sculpture and space. The problem of the ratio of volume and spatial environment. M.: Sovetskii khudozhnik; 1982. 200 p. (In Russ.)]
- 19. Rubanenko B.R. Obraznaya organizatsiya prostranstva novogo goroda. Iskusstvo. 1983;1. [Rubanenko B.R An imaginative organisation of the space of a new city. Iskusstvo. 1983;1. (In Russ.)]
- 20. Murina E.B. Problemy sinteza prostranstvennykh iskusstv: (Ocherki teorii). M.: Iskusstvo; 1982. 192 s. [Murina E.B. Problems of the synthesis of spatial arts: (Essays on theory). M.: Iskusstvo; 1982. 192 p. (In Russ.)]
- 21. Strautmanis I.A. Iskusstvo v arkhitekturnoi srede. Riga: Liesma;1982. 103 s. [Strautmanis I.A. Art in an architectural environment. Riga: Liesma;1982. 103 p. (In Russ.)]
- 22. Maertens H. Der Optische Maasstab die Theorie and Praxis des asthetichen Sehens in den bildenden Kunsten. Belin;1884. 23. Schubert O. Gesetz der Baukunst B. 1-Veb E. A. Seemann. Verlag. Leipzig; 1954.
- 24. Skul'ptura v gorode. Pod red. E.V. Romanenko. Sb. statei. M.: Sovetskii khudozhnik. 1990. 384 s. [Sculpture in the city. E.V. Romanenko (Ed.). M.: Sovetskii khudozhnik. 1990. 384 p. (In Russ.)]
- 25. Turchin B.C. Monumenty i goroda. Vzaimosvyaz' khudozhestvennykh form monumentov i gorodskoi sredy. M.: Sov. Khudozhnik; 1982. 159 s. [Turchin B.C. Monuments and cities. Interrelation of artistic forms of monuments and urban environment. M.: Sov. Khudozhnik; 1982. 159 s. (In Russ.)]
- 26. Khazanova V. Nekotorye voprosy sinteza iskusstv v sovetskoi arkhitekture pervykh poslerevolyutsionnykh let. Voprosy sovremennoi arkhitektury. Sb. 2. Sintez iskusstv v arkhitekture. M.: Gos. izdatel'stvo literatury po stroitel'stvu, arkhitekture i stroitel'nym materialam; 1963. S. 97-157. [Khazanova V. Some questions of synthesis of arts in the Soviet architecture of the first post-revolutionary years. Issues of modern architectureBook 2. Synthesis of arts in architecture. M.: Gos. izdatel'stvo literatury po stroitel'stvu, arkhitekture i stroitel'nym materialam; 1963. P. 97-157. (In Russ.)]
- 27. Shvidkovskii vzaimodeistviya. O.A. Garmoniya Arkhitektura i monumental'noe iskusstvo. M.: Stroiizdat; 1984. 280 s. [Shvidkovskii O.A. Harmony of interaction. Architecture and monumental art. M.: Stroiizdat; 1984. 280 p. (In Russ.)]

Сведения об авторах:

Гамидов Тимур Саидович - старший преподаватель, кандидат искусствоведения, кафедра «Рисунок и живопись».

Information about the author.

Timur S. Gamidov- Senior Lecturer, Cand. Sci. (History of Arts), Department of Drawing and Painting.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 12.01.2018.

Принята в печать 10.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 12.01.2018.

Accepted for publication 10.02.2018.

Для цитирования: Мутазаев С-А.Ю., Омаров А.О., Саламанова М.Ш. Высокопрочные бетоны на основе использования вторичных техногенных ресурсов. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 204-213. DOI:10.21822/2073-6185-2018-45-1-204-213

For citation: Murtazayev S-A.Y., Omarov A.O., Salamanova M.Sh. High-strength concrete based on the use of secondary technogenic resources. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 204-213. (in Russ.) DOI:10.21822/2073-6185-2018-45-1-204-213

ТЕХНИЧЕСКИЕ НАУКИ СТРОИТЕЛЬСТВО И АРХИТЕКТУРА

УДК: 691.32

DOI: 10.21822/2073-6185-2018-45-1-204-213

ВЫСОКОПРОЧНЫЕ БЕТОНЫ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ВТОРИЧНЫХ ТЕХНОГЕННЫХ РЕСУРСОВ

Муртазаев C-A.Ю. 1 , Омаров A.О 3 ., Саламанова М.Ш. 2

1-2 Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова,

¹⁻²364905, г. Грозный, пр-кт им. Х.А. Исаева, 100, Россия,

³Дагестанский государственный технический университет,

367026 г. Махачкала, пр. И.Шамиля, 70, Россия,

¹e-mail: s.murtazaev@mail.ru, ²e-mail: madina_salamanova@mail.ru,

³e-mail:o.arif@mail.ru

Резюме. Цель. Вторичные сырьевые ресурсы являются ценным материалом, который аккумулирует в себе ранее осуществленные инвестиционные и энергетические затраты, к тому же этот продукт не требует средств на разработку карьера и переработку сырья, что в большинстве случаев оказывается намного дешевле, чем освоение природных ископаемых. Разработка новых эффективных композитов на основе вторичных ресурсов для высотного строительства является актуальной проблемой. Методы. В основу получения высокопрочных бетонов положены современные технологические приемы, способствующие улучшению технических и физико-механических свойств при комплексном применении техногенного сырья и эффективных химических добавок. Результаты. В данной работе приведены перспективы использования техногенного сырья ТЭЦ г. Грозного и отходов дробления горных пород. Изучена природная и техногенная сырьевая база Чеченской Республики и получены рецептуры зольных иементов и составы высокопрочных бетонов классов по прочности на сжатие В60 с комплексным использованием природного и техногенного сырья для внедрения в строительство высотных комплексов. Вывод. Использование зольного цемента и суперпластификатора Полипласт благоприятно сказывается на процессах формирования структуры и поровом пространстве цементного камня, расход добавки 1,6 % является наиболее оптимальным. Комплексное использование вторичных ресурсов позволило получить водостойкий и высокопрочный композит, обладающий существенно лучшими физико-механическими показателями в сравнении с традиционными бетонами. Разработанные рецептуры зольных вяжущих и бетонов на основе тонкодисперсных зольных микросфер и обогащенных искусственных заполнителей способствовали утилизации вторичного сырья и улучшению экологической обстановки в регионе.

Ключевые слова: техногенное сырье, зольное вяжущее, золошлаковые смеси, отходы дробления горных пород, суперпластификатор, зольные микросферы, высокопрочный бетон, фракционированный заполнитель

TECHNICAL SCIENCE BUILDING AND ARCHITECTURE

HIGH-STRENGTH CONCRETE BASED ON THE USE OF SECONDARY TECHNOGENIC RESOURCES

Side-Alvi Y. Murtazaev¹, Arif O.Omarov³, Madina Sh. Salamanova²

¹⁻²M.D.Millionshtchikov Grozny State Oil Technical University Academician,

100 H.A. Isayev Ave., Grozny 364905, Russia,

³Daghestan State Technical University,

70 I. Shamilya Ave., Makhachkala 367026, Russia,

¹e-mail: s.murtazaev@mail.ru, ²e-mail: madina_salamanova@mail.ru,

³e-mail:o.arif@mail.ru

Abstract Objectives. Secondary raw materials comprise a valuable means of offsetting previously realised investment and energy costs; moreover, due to not requiring funds for quarrying and processing of raw materials, their use is typically more cost-effective than the development of primary natural resources. The development of new efficient composites based on secondary resources for high-rise construction is a relevant issue. Methods. The production of high-strength concrete is based on modern technological methods that improve the technical and physical-mechanical properties in the integrated use of technogenic raw materials and effective chemical additives. Results. In this paper, prospects for the use of technogenic raw materials generated by the CHP plant of the city of Grozny in combination with rock crushing waste are described. The natural and technogenic raw material base of the Chechen Republic has been studied and the formulations of ash cements and compositions of high-strength concrete V60 classes for compressive strength with complex use of natural and technogenic raw materials for introduction into the construction of high-rise complexes were obtained. Conclusion. The use of fly ash and Polyplast superplasticiser has a favourable effect on formation processes of the structure and porous space of cement stone with an optimal additive proportion of 1.6%. The complex use of secondary resources made it possible to obtain a waterproof and high-strength composite having significantly better physical and mechanical properties than traditional concrete. The developed formulations of ash binders and concretes based on fine-dispersed ash microspheres and enriched artificial aggregates promoted recycling of secondary raw materials and improvement of the ecological situation in the region.

Keywords: technogenic raw materials, ash binder, ash and slag mixtures, rock crushing waste, superplasticiser, fly ash microspheres, high-strength concrete, fractionated aggregate

Введение. Гигантски возрастающее из года в год промышленное производство в нашей стране и за рубежом влечет за собой накопление огромных объемов техногенных отходов, а их ликвидация и хранение давно уже экономически и экологически невыгодно.

Поэтому ресурсосберегающие технологии приобретают особое значение, а сам термин «техногенные отходы» считается условным, так как они становятся ценным и можно сказать дефицитным сырьем, представляющим значительный практический интерес в производстве строительных материалов, позволяющий до 40% удовлетворять потребности в сырье [1,2,16-21].

Проведенные в этом направлении научно-теоретические исследования [3-5, 8-9], доказывают, что использование шламовых, шлаковых, зольных отходов горно-обогатительных комбинатов и нефтепереработки и т.д. дает возможность получать не только традиционные, но и новые эффективные строительные материалы, обладающие широким спектром улучшенных технических показателей.


Особенно большое количество вторичных техногенных отходов в виде золы и шлаков, а также их смесей образуется при сжигании твердых сортов топлива. В зависимости от происхождения топлива количество образуемых отходов составляет: в каменных углях – до 40%, в

бурых углях – до 15%, антраците и топливном торфе – до 30%, горючих сланцах – до 60% [1-2,10].

Область использования золошлакового сырья в производстве строительных материалов имеет весьма широкий диапазон: дорожное строительство, производство композиционных вяжущих, микронаполнителей, различных видов бетонов, заполнителей и т.д.

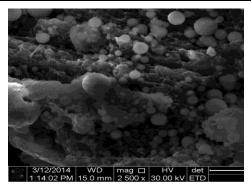
Постановка задачи. В Чеченской Республике с середины прошлого столетия и до наших лет функционируют ТЭЦ и за многие годы их эксплуатации накоплены тысячи тонн золошлаковых отходов, к тому же интенсивно продвигается строительство новой более мощной ТЭЦ и эксплуатация ее повлечет образование новых объемов отходов, которые и так уже занимают огромные сотни гектары территории, и загрязняют экологическую обстановку в регионе (рис. 1).

Поэтому разработка мероприятий по использованию этого техногенного сырья будет актуальна во все времена.

Puc. 1. Золошлаковые отходы г. Грозного Fig. 1. Ash-and-slag wastes of Grozny

Методы исследования. В данной работе же приводятся результаты по исследованию свойств золы-уноса ТЭЦ г. Грозного и разработке зольных вяжущих и высококачественных бетонов на их основе.

Для проведения экспериментальных исследований в качестве основного вяжущего применялся портландцемент ГУП «Чеченцемент» ЦЕМ I 42,5 H, основные свойства исследуемого цемента приведены в табл. 1, химический анализ в % по массе: $SiO_2=17,45$; $Al_2O_3=3.88$; $Fe_2O_3=3,72$; MgO=1,12; CaO=71,56; $SO_3=0,76$; $TiO_2=0,33$; $K_2O=1,07$; $Na_2O=0,11$.


Таблица 1. Основные свойства цемента
Table 1. Basic properties of cement

Tuble It buble properties of coment								
Завод- изготовитель и марка Manufacturer and brand	Удельная поверхность, м²/кг Specific surface, m2 / kg	ΗΓ, %	Плотность, кг/м ³ Density, kg/m3	Сроки схва час - Setting hour -	мин. time,	Активность, МПа, 28сут Activity, MPa, 28day		
38 H3FOT Manuf	Удел поверх м ² /кг S surf m2			начало Start	конец	сжатие compres sion	изгиб bend	
Чеченцемент ЦЕМ I42,5 H Chechen Ce- ment CEM I42.5 H	330	25	3100	2-15	3-40	52,6	6,2	

Для получения зольного цемента были исследованы золошлаковые отходы ТЭЦ, установлено, что они удовлетворяют требованиям ГОСТ 25818-91 «Золы-уноса тепловых электростанций для бетонов. Технические условия» и основным компонентом их являются зольные микросферы.

Изучение зольных микросфер сканирующим электронным микроскопом (рис. 2) показало, что они представляют собой мелкодисперсные частицы серого цвета, сферической формы и блестящей гладкой поверхности, так же обнаружены неровности различной структуры и размеров, установлены закрытые пористые оболочкиотдельных микросфер.

Химический анализ зольных микросфер в% по массе: MgO = 1,49; Al₂O₃ = 23,89; SiO₂ = 62,88; K₂O = 0,48; CaO = 1,7; Fe₂O₃ = 7,95; TiO₂ = 0,11; SO₃ = 0,06; ппп= 0,9.

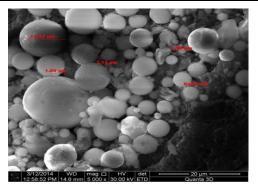
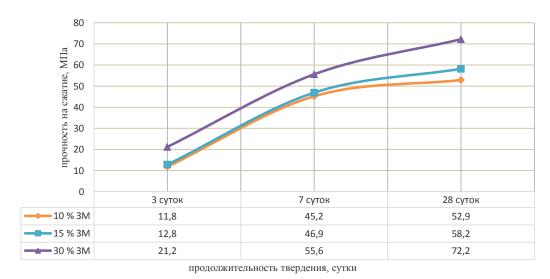


Рис. 2. Микрофотография зольных микросфер золошлаковых отходов ТЭЦ г. Грозного Fig. 2. Microphotography of ash microspheres of ash and slag wastes of the thermal power station in Grozny

Обсуждение результатов. Анализ проведенных исследований показал, что модуль основности золы K является важным показателем, определяющим процессы структурообразования и формирования прочности цементного камня, и представляет собой отношение суммы содержания оксидов алюминия и железа к содержанию оксида кремния [12-13]:


$$K = \frac{Al_2 O_3 + Fe_2 O_2}{SiO_2} \tag{1}$$

Для получения вяжущих с улучшенными свойствами предпочтительны золы, имеющие коэффициент K меньше 0,8, для исследуемой золы он составляет 0,5. Данный показатель свидетельствует о наличии стекловидных алюмосиликатных фаз активизирующих процесс гидратации зольного стекла в щелочной среде [1-2].

Далее были разработаны рецептуры зольных вяжущих, но перед их приготовлением золу ТЭЦ подвергали механоактивации в течение 40 минут.

Процесс тонкого измельчения в мельнице способствует разрушению стекловидной фазы оболочки вокруг зольных микросфер и вскрывает активные центры кристаллизации на поверхностях, способных к пуццоланической реакции, а также обеспечивает более высокую степень гомогенизации всех компонентов получаемого цемента. Удельная поверхность составила $S_{yg} = 920 \text{ m}^2/\text{kr}$.

Степень насыщения вяжущего тонкодисперсным порошком золы определялась экспериментальным путем, и наиболее оптимальным оказалось соотношение 30 % зольные микросферы (3M) и 70 % портландцемент (ПЦ). Активность полученного зольного вяжущего составила 72 МПа, на рис. 3 показана кинетика набора прочности разработанных цементов.

Puc. 3. Кинетика набора прочности зольных вяжущих Fig. 3. Kinetics of the strength of ash binders

Результаты исследования свойств полученного зольного цемента приведены в табл. 2.

Таблица 2. Физико-механические свойства зольного цемента (30 % 3M и 70 % ПЦ) Table 2. Physical and Mechanical Properties of Ash Cement (30% 3M and 70% PC)

Характеристики	Требования (ГОСТ 31108-2003)	Фактически
CharacteristicsПрочность в возрасте 28 суток, МпаStrength at the age of 28 days, MPa	Requirements (GOST 31108-2003)	Actually
- изгиб - Bending	не нормируется Not standardized	8,7
- сжатие- - Compression	не менее 42,5 not less than 42,5	72,0
Прочность в возрасте 3 суток, Мпа Strength at the age of 3 days, MPa		
- изгиб - Bending	не нормируется Not standardized	4,55
- сжатие - Compression	не менее 20,0 not less than 20,0	21,0
Удельная поверхность, м ² /кг Specific surface, m ² / kg	не нормируется Not standardized	520
Содержание оксида серы (VI) SO ₃ , % The content of sulfur oxide (VI) SO3,%	не более 4,0 not more than 4,0	3,5
Нормальная густота цементного теста, % Normal density of cement paste,%	не нормируется Not standardized	26,0
Сроки схватывания (час:мин) Setting time (hour: min)		
- начало Start - конец End	не ранее 60 мин не нормируется Not standardized	2:50 4:10
Равномерность изменения объема (расширение), мм Uniformity of volume change (expansion), mm	не более 10,0 not more than 10,0	1,5
Удельная эффективная активность естественных радионуклидов, Бк/кг Specific effective activity of natural radionuclides, Bq/kg	не более 370 not more than 370	73

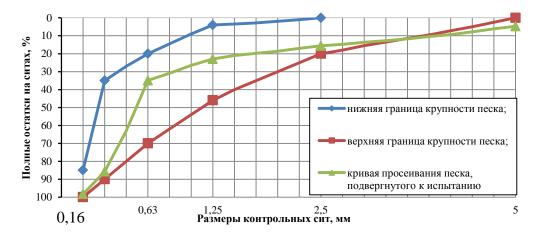
Изученные свойства полученного зольного вяжущего подтвердили эффективность разработанного цемента, и на следующем этапе проектировались высокопрочные бетоны с его использованием.

Из-за отсутствия в регионе качественных крупных песков, в работе применялись фракционированные мелкие заполнители, полученные смешиванием мелкого песка Червленского месторождения $M_{\kappa p}=1,7$ и отсевов дробления горных пород Аргунского карьера $M_{\kappa p}=3,2$ в соотношении 1:1. (соотношение определялось экспериментальным путем).

По приблизительным статистическим данным на комбинатах нерудных стройматериалов региона образуется и скапливается до 350 тыс.м³ в год отходов в виде каменной дисперсной пыли, крошки, отсевов камнедробления (рис. 4) [1-2,14-16].

Данные продукты отличаются остроугольной формой и рельефной поверхностью частиц, а зерновой состав отходов камнедробления представлен преимущественно фракциями 2,5-1,25 мм и частичками менее 0,16 мм, что обеспечивает более качественное сцепление в зоне контакта искусственных песков с цементной составляющей и положительно влияет на прочность бетона.

А если учитывать экономическую сторону, то стоимость заполнителя из отходов дробления, значительно ниже (до 6-10 раз), чем природных песков, и их применение снижает себестоимость 1 $\rm m^3$ бетонов на 10 %[1, 5-7].


Puc. 4. Отходы камнедробления Аргунского месторождения (ЧР) Fig. 4. Wastes of stone crushing of the Argun deposit (CR)

Основные свойства фракционированного заполнителя приведены в табл.3, на рис. 5 по-казана кривая просеивания полученных песков.

Таблица 3 Основные физико-механические характеристики фракционированного мелкого заполнителя

Table 3. Basic physical and mechanical characteristics of the fractionated fine filler characteristics

Размер сит, мм Sieve size, mm	5	2,5	1,25	0,63	0,315	0,14	Oстаток на дне сит The remainder at the bottom of the sieves
Частные остатки, % Private balances,%	4,7	10,9	7,3	12.0	50,8	12,6	1.7
Полные остатки, % Total balances,%	4,7	15,6	22,9	34,9	85,7	98,3	1,7
Модуль крупности The size module					2,621		
Содержание пылевидных и глинистых частиц, % Content of pulverized and clay particles,%					2,4		
Истинная плотность зерен, г/см ³ The true density of grains, g / cm ³					2,56		
Средняя насыпная плот- ность, г/см ³ Average bulk density, g / cm ³					1,528		
Пустотность песка, % The emptiness of sand,%					99,94		

Puc. 5. Кривая просеивания фракционированного песка Fig. 5. Sieving sand fraction curve

Физико-механические свойства крупного заполнителя приведены в табл. 4.

Таблица 4.Основные свойства крупного заполнителя Table 4. Basic properties of coarse aggregate

Щебень Алагирск	сого месторождения фракции 5-20 мм	•		8				
Crushed stone of A	Alagir deposit of fraction 5-20 mm							
Наименование по	казателя Indicator name	Значение показателя Indicator value						
Зерновой	Размер сит, мм Sieve size, mm	12,5	10	7,5	5	<5		
состав щебня	Частные остатки, %	0,0	9,2	38,6	42,5	9,3		
Grain	Private balances,%							
crushed stone	Полные остатки, %	0,0	9,2	47,8	90,3	99,6		
composition	Total balances,%							
Определение про	чности щебня			M1200				
Determination of c	rushed stone strength							
	евидных и глинистых частиц, %	0,8						
	zed and clay particles,%							
Истинная плотно		2700						
True density of gra								
Насыпная плотно		1450						
Bulk density, kg / 1								
Содержание дроб		85,2						
Content of crushed	grains,%							
	ержания зерен пластинчатой (лещад-	- 12,2						
ной) и игловатой								
	grain content of lamellar (bream) and							
needle-shaped form	•							
Пустотность щеб	ня, %			44,9				
Voidness of crushe	ed stone,%							

Таблица 5. Составы и свойства высокопрочных бетонов Table 5. Compositions and properties of high-strength concretes

	Table 5. Compositions and properties of night-strength concretes										
Nº	Расход, кг на 1м ³ Consumption, kg per 1m ³						сть бетона, of concrete,	ние, % tion,%	Коэф. размягчения κ_{p}	Прочность на сжатие в возрасте, сут., МПа Compression	
	зц	Ф3	Щ 5-10 мм	IЦ 10-20 мм	В	В/Ц	Плотно кт/м³ Density kg / m³	Водопоглощение, % Water absorption,%	Coefficient. softening C_r	strengt	h at the ys, MPa
Pacx	Расход добавки Полипласт, 1,3% Consumption of the additive Polyplast, 1,3%										
1	460	870	617	265	170	0,37	2320	7,1	0,77	20,8	41,1
2	480	870	600	252	178	0,37	2350	6,5	0,83	22,5	63,4
3	500	840	610	262	185	0,37	2390	6,3	0,81	25,1	64,2
4	520	860	600	270	192	0,37	2380	6,1	0,85	29,7	65,0
5	520	810	600	300	192	0,37	2400	5,2	0,88	40,9	66,8
Pacx	од добавк	и Полипл	аст, 1,6% С	onsumption of	the additiv	e Polyplas	t, 1,6%			I	1
6	460	870	617	265	161	0,35	2310	6,1	0,78	22,1	42,3
7	480	870	600	252	168	0,35	2330	5,8	0,84	25,6	66,2
8	500	840	610	262	175	0,35	2370	5,5	0,83	26,8	64,7
9	520	860	600	270	182	0,35	2360	5,3	0,87	30,1	67,3
10	520	810	600	300	182	0,35	2380	4,1	0,89	43,6	70,7
Конт	грольный	образец	Control samp	le	I	1	l .			I	1
11	500	840	610	262	285	0,57	2410	9,5	0,63	16,3	40,2

Примечание: 3Ц — зольный цемент (30 % — зольные микросферы ТЭЦ; 70 % — ПЦ); Φ 3 — фракционированный мелкий заполнитель; Щ — щебень фракций 5-10 мм и 10-20 мм; B — вода

Ну и последний компонент, применяемый для получения бетонов с высокими эксплуатационными характеристиками – это суперпластификатор от российских производителей Полипласт СП-1 на основе поликарбоксилатных эфиров, добавка вводилась с водой затворения в

различных дозировках, но марка бетонной смеси по подвижности оставалась постоянной П4 [4, 6, 13].

Из исследованных компонентов была получена бетонная смесь с осадкой конуса от 16 до 20 см, что соответствует марке по подвижности П4. Из бетонной смеси каждого состава формовалось 6 образцов-кубов с ребром 10 см, которые набирали прочность в камере выдер-

живания с относительной властью 90 % при температуре 20 \pm **2** 0 С и в определенные сроки подвергались испытанию.

В табл.5 приведены экспериментальные составы исследуемых бетонов и результаты испытаний.

Вывод. Таким образом, использование золы ТЭЦ в количестве 30 % от массы портландцемента не значительно влияет на первые сроки твердения, но на 28 сутки и более поздние сроки прочность равномерно увеличивается.

Использование зольного цемента и суперпластификатора Полипласт благоприятно сказывается на процессах формирования структуры и поровом пространстве цементного камня, расход добавки 1,6 % является наиболее оптимальным.

Комплексное использование вторичных ресурсов позволило получить водостойкий и высокопрочный композит, обладающий существенно лучшими физико-механическими показателями в сравнении с традиционными бетонами.

Библиографический список:

- 1. Дворкин Л.И. Строительные материалы из отходов промышленности / Л.И. Дворкин, И. А. Пашков. Киев: Выща шк., 1989.-210 с.
- 2. Муртазаев С-А.Ю. Саламанова М.Ш. Высокопрочные бетоны с использованием фракционированных заполнителей из отходов переработки горных пород // Журнал «Устойчивое развитие горных территорий». 2015.—№ 1(23), С.23-28.
- 3. Hillemeier B., Buchenau G., Herr, R., Huttl R., Klubendorf St., Schubert K.: Spezialbetone, Betonkalender, Ernst & Sohn, 2006. -№1. C.534-549.
- 4. Каприелов С.С. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. II / С.С. Каприелов [и др.] // Строительные материалы. 2008. N23. C.9-13.
- 5. Бисултанов Р.Г, Муртазаев С-А.Ю., Саламанова М.Ш. /Цементы низкой водопотребности на основе активной минеральной добавки различного происхождения// Вестник Дагестанского государственного технического университета. Технические науки.— 2016. №1(40).— С.98-
- 6. Муртазаев С-А.Ю., Саламанова М.Ш., Бисултанов Р.Г, Муртазаева Т.С-А. / Высококачественные модифицированные бетоны с использованием вяжущего на основе реакционно-активного минерального компонента// Строительные материалы.— 2016.— № 8.— C.74-80.
- 7. Лесовик В.С. Техногенный метасаматоз в строительном материаловедении / В.С. Лесовик // Международный сборник научных трудов «Строительные материалы 4С: состав. структура. состояние. свойства.» Новосибирск. 2015. с. 26-30.
- 8. Агеева М.С., Шаповалов С.М., Боцман А.Н., Ищенко А.В. К вопросу использования промышленных отходов в производстве вяжущих веществ // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 9. С. 58-62.
- 9. Garg N. Pozzolanic reactivity of an interstratified illite/smectite (70/30) clay / N. Garg, J. Skibsted // Cement and Concrete Research. -2016. N 99. 91. 91. 91. 91.
- 10. Zhang S. Effect of dolomite powders on the hydration and strength properties of cement mortars / S. Zhang, D. Lu, Z. Xu // Proc. XIV International Congress on the Chemistry of

- cement. Beijing, China 13-16.11.2015. 320 p.
- 11. Nocun-Wczelik W. Hydration of Portland cement with Dolomite / Nocun- W. Wczelik, M. Szybilski, E. Zugaj // Proc. XIV International Congress on the Chemistry of cement. Beijing, China 13-16.11.2015. 320 p.
- 12. Tironi A. Hydration of ternary cements elaborated with limestone filler and calcined kaolinitic clay / A. Tironi, A.N. Scian, E.F. Irassar // Proc. XIV International Congress on the Chemistry of cement. Beijing, China, 2015. 320 p.
- 13. Лукутцова Н.П., Постникова О.А., Николаенко А.Н., Мацаенко А.А., Тужикова М.Ю. Повышение экологической безопасности декоративного мелкозернистого бетона на основе использования техногенного глауконитового песка //Строительство и реконструкция. 2014. № 1 (51). С. 79-84.
- 14. Jeknavorian A., Roberts L., Jardine L. Et al. "Condensed PolyacrilicAcid-Aminated Polyether Polymers as Superplasticizers for concrete." Proceedings Fifth CANMET//ACI Int. Conference. Rome, Italy, 1997, SP 173-4.
 15. Ohta A., Sugiyama T., Tanaka Y. "Fluidizing Mechanism and application of Polycarboxylate-Based Superplasticizers." Proceedings Fifth CANMET//ACI Int. Conference. Rome, Italy, 1997, SP 173-19.
- 16. Dosho, Y. Development of a Sustainable Concrete Waste Recycling System «Application of Recycled Aggregate Concrete Produced by Aggregate Replacing Method» // Journal of Advanced Concrete Technology. Japan Concrete Institute. Scientific paper. 2007. Vol. 5. №1. P.27-42.
- 17. Yanagibashi, K. A new recycling process for coarse aggregate to be used concrete structure. / K. Yanagibashi, T. Yonezawa, T. Iwashimizu, D. Tsuji, K. Arakawa, M. Yamada. Environment-Conscious Materials and Systems for Sustainable Development. Proceedings of RILEM International Symposium. Tokyo. 2004. P.137-143.

 18. Батраков, В.Г., Модификаторы бетона новые
- 18. Батраков, В.Г., Модификаторы бетона новые возможности // Мате¬риалы I Всероссийской конференции по бетону и железобетону. М., 2001. С. 184-197.
- 19. Комохов, П.Г. Шангина, Н.Н. Модифицированный цементный бетон, его структура и свойства // Цемент. 2002. №1-2. С. 43-46.
- 20. Монолитное строительство на территории России: история внедрения и перспективы развития. Сайт ООО «НПО «АНТАРЕС трейд». Санкт-Петербург, 2015. URL:

http://antares-

stroy.ru/encyclopedia/monolitnoe_stroitelstvo_na_territorii_ros

21. Баженов, Ю.М., Демьянова, В.С., Калашников, В.И.

References

- 1. Dvorkin L.I., Pashkov I.A. Stroitel'nye materialy iz otkhodov promyshlennosti. Kiev: Vyshcha shk.; 1989. 210 s. [Dvorkin L.I., Pashkov I.A. Building materials from industrial waste. Kiev: Vyshcha shk.; 1989. 210 p. (in Russ.)]
- 2. Murtazaev S-A.Yu. Salamanova M.Sh. Vysokoprochnye betony s ispol'zovaniem fraktsionirovannykh zapolnitelei iz otkhodov pererabotki gornykh porod. Ustoichivoe razvitie gornykh territorii. 2015;1(23):23-28. [Murtazaev S-A.Yu. Salamanova M.Sh. High-strength concrete with fractionated aggregates from rock processing waste. Sustainable Development of Mountain Territories. 2015;1(23):23-28. (in Russ.)]
- 3. Hillemeier B., Buchenau G., Herr R., Huttl R., Klubendorf St., Schubert K. Spezialbetone. Betonkalender. Ernst & Sohn; 2006:1:534-549.
- 4. Kaprielov S.S. Modifitsirovannye vysokoprochnye betony klassov V80 i V90 v monolitnykh konstruktsiyakh. Ch. II. Stroitel'nye materialy. 2008;3:9-13. [Kaprielov S.S. Modified high-strength concretes of classes B80 and B90 in monolithic structures. Part II. Stroitel'nye materialy. 2008;3:9-13. (in Russ.)]
- 5. Bisultanov R.G, Murtazaev S-A.Yu., Salamanova M.Sh. Tsementy nizkoi vodopotrebnosti na osnove aktivnoi mineral'noi dobavki razlichnogo proiskhozhdeniya. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2016;1(40):98-107. [Bisultanov R.G, Murtazaev S-A.Yu., Salamanova M.Sh. Cements of low water demand on the basis of active mineral additives of different origin. Herald of Daghestan State Technical University. Technical Sciences. 2016;1(40):98-107. (in Russ.)]
- 6. Murtazaev S-A.Yu., Salamanova M.Sh., Bisultanov R.G, Murtazaeva T.S-A. Vysokokachestvennye modifitsirovannye betony s ispol'zovaniem vyazhushchego na osnove reaktsion-no-aktivnogo mineral'nogo komponenta. Stroitel'nye materialy. 2016;8:74-80. [Murtazaev S-A.Yu., Salamanova M.Sh., Bisultanov R.G, Murtazaeva T.S-A. High-quality modified concrete with the use of a binder based on a reactive mineral component. Stroitel'nye materialy. 2016;8:74-80. (in Russ.)]
- 7.Lesovik V.S. Tekhnogennyi metasamatoz v stroitel'nom materialovedenii. Mezhdunarodnyi sbornik nauchnykh trudov "Stroitel'nye materialy 4S: sostav. struktura. sostoyanie. svoistva". Novosibirsk; 2015. C. 26-30. [Lesovik V.S. Technogenic metasomatism in building materials science. International collection of scientific papers "Building Materials 4S: Composition. Structure. State. Properties". Novosibirsk; 2015. C. 26-30. (in Russ.)]
- 8. Ageeva M.S., Shapovalov S.M., Botsman A.N., Ishchenko A.V. K voprosu ispol'zovaniya promyshlennykh otkhodov v proizvodstve vyazhushchikh veshchestv. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2016;9:58-62. [Ageeva M.S., Shapovalov S.M., Botsman A.N., Ishchenko A.V. On the use of industrial waste in the production of binders. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2016;9:58-62. (in Russ.)]
- 9. Garg N., Skibsted J. Pozzolanic reactivity of an interstratified illite/smectite (70/30) clay. Cement and Concrete Research. 2016;79:101-111.
- 10. Zhang S., Lu D., Xu Z. Effect of dolomite powders on the hydration and strength properties of cement mortars. Proc. XIV International Congress on the Chemistry of cement. Beijing, China 13-16.11.2015. 320 p.

Модифицированные высококачественные бетоны / Научное издание. - М.: Издательство Ассоциации строительных вузов, 2006. - 368 с.

- 11. Nocun-Wczelik W., Szybilski M., Zugaj E. Hydration of Portland cement with Dolomite. Proc. XIV International Congress on the Chemistry of cement. Beijing, China 13-16.11.2015. 320 p.
- 12. Tironi A. Scian A.N., Irassar E.F. Hydration of ternary cements elaborated with limestone filler and calcined kaolinitic clay. Proc. XIV International Congress on the Chemistry of cement. Beijing, China. 2015. 320 p.
- 13. Lukuttsova N.P., Postnikova O.A., Nikolaenko A.N., Matsaenko A.A., Tuzhikova M.Yu. Povyshenie ekologicheskoi bezopasnosti dekorativnogo melkozernistogo betona na osnove ispol'zovaniya tekhnogennogo glaukonitovogo peska. Stroitel'stvo i rekonstruktsiya. 2014;1(51):79-84. [Lukuttsova N.P., Postnikova O.A., Nikolaenko A.N., Matsaenko A.A., Tuzhikova M.Yu. Increase of ecological safety of decorative fine-grained concrete on the basis of the use of technogenic glauconite sand. Stroitel'stvo i rekonstruktsiya. 2014;1(51):79-84. (in Russ.)]
- 14. Jeknavorian A., Roberts L., Jardine L. et al. Condensed Polyacrilic Acid-Aminated Polyether Polymers as Superplasticizers for concrete. Proceedings of the Fifth CANMET. ACI Int. Conference. Rome, Italy. 1997. SP 173-4.
- 15.Ohta A., Sugiyama T., Tanaka Y. Fluidizing Mechanism and application of Polycarboxylate-Based Superplasticizers. Proceedings of the Fifth CANMET. ACI Int. Conference. Rome, Italy, 1997. SP 173-19.
- 16. Dosho Y. Development of a Sustainable Concrete Waste Recycling System. Journal of Advanced Concrete Technology. Japan Concrete Institute. Scientific paper. 2007;5(1):27-42.
- 17. Yanagibashi K., Yonezawa T., Iwashimizu D., Tsuji K., Arakawa M. Yamada T. A new recycling process for coarse aggregate to be used concrete structure. Environment-Conscious Materials and Systems for Sustainable Development. Proceedings of RILEM International Symposium. Tokyo. 2004. R.137-143.
- 18. Batrakov V.G. Modifikatory betona: novye vozmozhnosti. Materialy I Vserossiiskoi konferentsii po betonu i zhelezobetonu. M.; 2001. S. 184-197. [Batrakov V.G. Modifiers of concrete: new possibilities. Materials of the 1st All-Russian Conference on Concrete and Reinforced Concrete. M.; 2001. P. 184-197. (in Russ.)]
- 19. Komokhov P.G., Shangina N.N. Modifitsirovannyi tsementnyi beton, ego struktura i svoistva. Tsement. 2002;1-2:43-46. [Komokhov P.G., Shangina N.N. Modified cement concrete, its structure and properties. Cement. 2002;1-2:43-46. (in Russ.)]
- 20. Monolitnoe stroitel'stvo na territorii Rossii: istoriya vnedreniya i perspektivy razvitiya. Sait OOO "NPO "ANTARES treid". Sankt-Peterburg, 2015. URL: http://antaresstroy.ru/encyclopedia/monolitnoe_stroitelstvo_na_territorii_ros sii/ [Monolithic construction on the territory of Russia: the history of implementation and prospects for development. Website of OOO "NPO "ANTARES treid". Saint-Petersburg, 2015. URL: http://antaresstroy.ru/encyclopedia/monolitnoe_stroitelstvo_na_territorii_ros sii/ (in Russ.)]
- 21. Bazhenov Yu.M., Dem'yanova B.C., Kalashnikov V.I. Modifitsirovannye vysokokachestvennye betony. M.: Izdatel'stvo Assotsiatsii stroitel'nykh vuzov; 2006. 368 s. [Bazhenov Yu.M., Dem'yanova B.C., Kalashnikov V.I. Modified high-quality concrete. M.: Publishing house of the Association of Construction Universities; 2006. 368 p. (in Russ.)]

Сведения об авторах:

Муртазаев Сайд-Альви Юсупович – доктор технических наук, профессор, кафедра технологии строительного производства.

Омаров Ариф Омарович – кандидат экономических наук, доцент, заведующий кафедрой строительных материалов и инженерных сетей.

Саламанова Мадина Шахидовна – кандидат технических наук, доцент, кафедра технологии строительного производства.

Information about the authors.

Side-Alvi Y. Murtazaev – Dr. Sci. (Technical), Prof., Department of Technology of Building production.

Arif O.Omarov - Cand. Sci. (Technical), Assoc. Prof., Head of the Department of Building Materials and Utilities.

Madina S. Salamanova – Cand. Sci. (Economics), Assoc. Prof., Department of Technology of Building production.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов. **Поступила в редакцию** 15.01.2018.

Принята в печать 16.02.2018.

Conflict of interest.

The authors declare no conflict of interest. **Received** 15.01.2018. **Accepted for publication** 16.02.2018.

Для цитирования: Абдуллаева Т.К., Алиева П.А. Роль коммуникационных сетей в организации материальнотехнического обеспечения строительных предприятий. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 214-222. DOI:10.21822/2073-6185-2018-45-1-214-222

For citation: Abdullaeva T.K., Aliyeva P.A. The role of communication networks in the organization of material and technical support for construction enterprises. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 214-222. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-214-222

ЭКОНОМИЧЕСКИЕ НАУКИ

УДК: 69.003.13

DOI: 10.21822/2073-6185-2018-45-1-214-222

РОЛЬ КОММУНИКАЦИОННЫХ СЕТЕЙ В ОРГАНИЗАЦИИ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ СТРОИТЕЛЬНЫХ ПРЕДПРИЯТИЙ

Абдуллаева Т.К. 1 , Алиева П.А. 2

1-2 Дагестанский государственный технический университет, 1-2 367026, г. Махачкала, пр. И. Шамиля, 70, Россия, ¹e-mail: reli65@mail.ru, ²e-mail: alievapat@icloud.com

Резюме. Цель. В статье решаются актуальные проблемы, связанные с использованием коммуникационных сетей в организации материально-технического обеспечения строительных предприятий. Целесообразность раскрытия роли коммуникационных сетей в строительстве обусловлена тем, что уровень развития коммуникационных связей на предприятиях, где проводились исследования, находятся на низком уровне и слабо соответствуют ее принципам. Целью исследования является поиск методов реализации коммуникационных функций в сфере материально-технического обеспечения за счет факторов, способствующих росту конкурентных преимуществ и повышению эффективности управления строительных предприятий. Метод. Теоретической основой исследования послужили основы теории менеджмента, экономики строительства, логистики. Исследование основано на раскрытии значимости коммуникационных сетей в организации материально-технического обеспечения строительных предприятий. Применение методов анализа, наблюдения, анкетирования и интервьюирования позволили создать цельный портрет внутренней и внешней системы коммуникационных связей в сфере организации материально-технического обеспечения строительных предприятий Республики Дагестан. Результат. В результате проведенного наблюдения за организацией функции материально-технического обеспечения строительных предприятий Республики Дагестан были обнаружены существенные препятствия на пути установления необходимых контактов между субъектами управления и принятия оптимальных управленческих решений на всех уровнях. Доказано, что совершенствование методов организации коммуникационных сетей способствует определению обоснованных сроков закупки материальных ресурсов, обеспечению соответствия между количеством поставок и потребностями в них; созданию необходимых контактов в ходе реализации функции материально-технического обеспечения и принятию оптимальных управленческих решений, что позволит повысить эффективность деятельности строительных предприятий. Вывод. Формирование коммуникационных связей в материальнотехническом обеспечении строительных предприятий оптимизирует количество поставщиков сырья и материалов, снижает издержки производства, способствует развитию наиболее тесных контактов между всеми заинтересованными лицами, что влияет в конечном итоге на увеличение выпуска конкурентоспособной строительной продукции.

Ключевые слова: коммуникационные сети, материально-техническое обеспечение, строительные предприятия, управление, анализ, функции, эффективность, система внутренних коммуникаций, логистика

ECONOMIC SCIENCE

THE ROLE OF COMMUNICATION NETWORKS IN THE ORGANISATION OF MATERIAL AND TECHNICAL SUPPORT FOR CONSTRUCTION ENTERPRISES

Tamara K. Abdullaeva¹, Patimat A. Aliyeva²

1-2 Daghestan State Technical University,

¹⁻²70 I. Shamilya Ave., Makhachkala, 367026, Russia,

¹e-mail: reli65@mail.ru, ²e-mail: alievapat@icloud.com

Abstract Objectives. The article is devoted to relevant issues associated with the use of communication networks in the organisation of material and technical support for construction enterprises. The expediency of disclosing the role of communication networks in construction is due to the fact that the level of development of communication links at the enterprises where the studies were conducted is low and lacks consistency. The aim of the research is to establish methods for implementing communication functions in the field of material and technical support due to factors that promote the growth of competitive advantages and increase the management efficiency of construction enterprises. Methods. The theoretical basis for the study consisted in the foundations of management theory, construction economics and logistics. The study is based on an investigation of the importance of communication networks in the organisation of material and technical support for construction enterprises. The application of analysis, observation, survey and interviewing methods allowed the creation of an integral portrait of the internal and external system of communication links in the sphere of organisation of material and technical support for construction enterprises in the Republic of Dagestan. Results. The results of monitoring the organisation of the logistical support function for construction enterprises in the Republic of Dagestan showed that significant obstacles continue to prevent the establishment of necessary contacts between the subjects of management, hampering the formation of optimal management decisions at all levels. It is shown that an improvement in methods for organising communication networks facilitates timely purchase of material resources, ensuring a correspondence between the quantity of supplies and demand for them. The creation of necessary contacts in the course of the implementation of material and technical support functions and consequent optimisation of management decisions will improve the efficiency of construction companies. Conclusion. The formation of communication links in the material and technical support of construction companies optimises the number of suppliers of raw materials and materials, reduces production costs and promotes the development of the closest contacts between all stakeholders, ultimately increase the output of competitive construction products.

Keywords: communication networks, material and technical support, construction companies, management, analysis, functions, efficiency, internal communication system, logistics

Введение. Экономический кризис неотвратимо сказывается на деятельности строительных предприятий и видоизменяет ее. Обесценивание рубля и нестабильность поставок замедляют развитие строительной отрасли, некоторые предприятия которой вынуждены ограничивать или завершать свою деятельность. Большинство строительных предприятий России для выживания «замораживают» свои объекты, сокращают количество персонала и принимают ряд других кризисных мер.

Следует отметить, что одной из основных причин кризиса и приостановления развития строительного производства является специфика материально-технического обеспечения строительных предприятий (рис. 1) и проблемы его организации: задержки поставок, сроки доставки, недостаточность финансирования, дисбаланс закупок, высокие цены на материально-технические ценности, нарушение условий их хранения, прекращение или ограничение производства строительных материалов [1].

Рис. 1. Укрупненная схема специфики материально-технического обеспечения строительного предприятия в современных условиях

Fig. 1. The enlarged scheme of specificity of material and technical support of the building enterprise in modern conditions

Постановка задачи. Материально-техническое обеспечение строительных предприятий в условиях рынка ориентировано на кооперацию предприятий промышленности строительного сектора, транспортных, энергетических, исследовательских, проектных, учебных и других.

Логистика в строительстве — это звено в деятельности, строительстве или эксплуатации производственных и непроизводственных объектов, содержание которой направлено на снабжение соответствующих объектов необходимыми ресурсами (материалами, энергией, комплектующими, запасными частями) [2-3,8].

В нынешних условиях, эта деятельность направлена на предоставление комплексу строительных предприятий необходимых материально-технических ресурсов «точно в срок». Перебои в материально-техническом обеспечении приводят к срыву графиков строительных работ, вызывающих простои оборудования и рабочей силы, что значительно удорожает стоимость возведения и ввода в эксплуатацию строительных объектов.

В современном строительстве все более широкое распространение получили инновационные материалы и технологии. Учитывая, что производство этих материалов является уникальным, возникает проблема своевременного их изготовления и поставки. При возникновении аварийных ситуаций замена этих материалов-аналогов практически невозможна. И это задача глобального масштаба [6-7].

При реализации глобальных задач является зачастую решающим компонентом тот факт, что внешняя среда достаточно быстро модифицируется, поэтому, если поиск и реализация решения совершаются медленнее изменений во внешней среде, то и результат этого решения будет негативным [9-13].

Методы исследования. Анализ деятельности в сфере материально-технического обеспечения в строительстве, особенно инновационных материалов и продуктов, позволил выявить наиболее важные методические, методологические и практические проблемы организационно-экономического плана, в том числе:

1. Проблема такой организации эффективного взаимодействия всех участников процесса на территории региона и страны, чтобы все субъекты, осуществляющие деятельность в единой системе инвестиционно-строительной деятельности, являлись эффективными для решения проблем экономического роста;

- 2. Задача разработки и реализации механизма адаптации системы управления материально-техническим обеспечением изменениями условий и параметров инвестиционного и строительного процесса;
- 3. Проблема активизации деятельности обеспечения материальными ресурсами на принципе единства экономических, организационных и правовых механизмов, обеспечивающих согласование экономических интересов и синхронизацию усилий участников инвестиционной и строительной деятельности;
- 4. Необходимость внимания, понимания и совершенствования коммуникационного менеджмента как процесса управления и обмена информацией.

Области предоставления материальных ресурсов, обмена информацией, как основная цель коммуникации, расположены как внутри строительного предприятия, так и между контрагентами по инвестиционной и строительной деятельности, органами налогового контроля, государственной статистики и государственной власти. Обмен структурированной информацией, базами данных, обработки, анализа и обновления данных, является прерогативой учетной функции управления.

Обсуждение результатов. Проведенное исследование показало, что реализация коммуникационной функции способствует росту конкурентного преимущества строительных предприятий и повышает экономическую эффективность управления за счет, по крайней мере, четырех факторов [5]:

- 1. Содействие достижению высоких показателей развития производственных и логистических процессов;
 - 2. Влияние на формирование менталитета участников рынка;
 - 3. Своевременного стимулирования потребления;
 - 4. Ограничения непредсказуемости рынка и снижения рисков в управлении.

Объективность современного рынка такова, что развитие коммуникационных сетей и формирование среды для успешной деятельности коммуникаций в строительных предприятиях являются фактически главными задачами управления.

Так, нарушение информационных потоков внутри предприятия и связи с внешней средой функционирования ставит его существование под угрозу. Сама по себе информация не является исчерпывающим фактором. Только соответствующее преобразование и обработка информации, то есть формирование коммуникационной связи, обеспечивают ее эффективное применение, а значит, существование и эффективное функционирование строительных предприятий.

Согласно результатам анализа работы персонала и руководителей строительных предприятий республики Дагестан (далее – РД), только 17% руководителей считают, что отсутствие, либо неразвитость сетей коммуникаций является главным препятствием на пути достижения эффективности деятельности их организаций. Для примера, аналогичный опрос, проведенный в развитых странах, показал, что так считают, 73% руководителей американских, 63% английских и 85% японских компаний [14,18-19].

В настоящее время строительный комплекс республики насчитывает 4578 предприятий и организаций (4303 — строительство, 275 — промышленность строительных материалов), 1223 — малых предприятий и 415 индивидуальных предпринимателя. Отрасль «Строительство» является вторым по значению видом экономической деятельности в Республике Дагестане [4]. Удельный вес строительства в общем объеме валового регионального продукта составляет около 24%, в инвестициях в основной капитал — 17,8 %, в общей численности работающих в республике — 6,8 % [4].

Несмотря на то, что на строительном рынке республики создана конкурентная среда, создающая благоприятные условия для дальнейшего развития отрасли, только 6% от общего числа инвестиций в строительство осуществляется силами предприятий строительного комплекса республики, т.к. нерациональная структура не дает возможностей для накопления финансовых и материальных ресурсов [16-17].

По сведениям Дагстата деловая активность строительных предприятий республики Да-

гестан снижается - объем работ, выполненный всеми хозяйствующими субъектами, по виду деятельности «Строительство» за январь 2018 г. равен 1702,9 млн. рублей, что составило 21,2 % от объема работ в январе 2017 г. [4]. Анализ бухгалтерской и статистической отчетности строительных предприятий региона показал, что чистая прибыль — основной источник инвестиций предприятий — по средней оценке не превышает 0,5%, а рентабельность активов менее 1% [4].

В Стратегии социально-экономического развития Республики Дагестан до 2025 года одним из основных направлений развития республики определен строительный комплекс [15]. Однако, по оценкам экспертов, ее реализации угрожает разрозненность субъектов строительной деятельности и отсутствие тесной взаимосвязи между государством, наукой и производством [20-22]. Это приводит к снижению эффективности использования научных разработок и внедрения результатов фундаментальных и прикладных исследований в строительстве.

Теоретически разработка механизма обмена информацией предусмотрена как составная часть деятельности предприятий и прочих субъектов строительной сферы.

Практически, коммуникации (внутренние и внешние) не существуют или не действуют системно в части материально-технического обеспечения, и это отрицательно сказывается на результатах деятельности и возможностях развития строительных предприятий.

Как показал анализ системы материально-технического обеспечения крупных и средних строительных предприятий РД, все попытки снизить сложность и затраты, не имеют никаких видимых результатов по нескольким причинам:

- руководители данных подразделений теряют много времени на поиск информации и ее обработку;
- происходит регулярное дублирование информации одна и та же информация попадает из разных источников, ее фильтрация зачастую невозможна, что влечет недостоверность данных о потребностях в материально-технических ресурсах;
- несбалансированность информации ощущается недостаток, либо перегрузка информации от разных объектов строительства, последствием чего является несбалансированность материально-технического обеспечения объектов строительства, либо по видам материально-технических ресурсов;
- специалисты служб материально-технического обеспечения мало осведомлены о деятельности, планах смежных подразделений, ориентации и положении во внешней среде строительного предприятия, что искажает и снижает эффективность процессов интеграции, точного выполнения приказов руководства и т.д.

Система внутренних коммуникаций (далее – CBK) – это совокупность информационных каналов, позволяющих передавать сведения делового, интеллектуального и эмоционального содержания внутри предприятия между сотрудниками. В идеале, СВК в любой организации, независимо от сферы деятельности, должна отвечать принципам открытости, простоты, ясности, регулярности, достаточности, достоверности, своевременности, сложности, надежности, скорости, адресности и т.д.

Наличие причинно-следственной связи между эффективностью функционирования СВК и результатами деятельности предприятий доказывается проведенными исследованиями работы сотрудников отделов снабжения предприятий строительной сферы. Анализ служебных ошибок показал, что в 48% случаев необходимая информация поступила слишком поздно, а более половины (57%) сотрудников вынуждены вникать в распространяемую вышестоящим начальством, либо другими подразделениями информацию, которая не связана с их профессиональной деятельностью.

К критериям оценивания степени эффективности СВК мы относим:

- число каналов связи;
- качество исполнения функций, требующих усилий специалистов разных подразделений;
- количество промежуточных звеньев цепи при передаче и обработке информации;
- скорость движения и адресность распространения информации;
- соответствие использования информационных каналов сферам деятельности подразделений;

- сбалансированность вертикальных и горизонтальных коммуникаций, а также между документированными и вербальными процедурами;
- социально-психологический и деловой климат в коллективе;
- количество и скорость распространения неформальных коммуникаций (слухов).

Рассматривая функцию материально-технического обеспечения как открытой системы, т. е. системы, которая будет влиять и испытывать влияние от внутреннего и внешнего окружения, мы должны учитывать интересы партнерской и конкурентной среды [22].

Материально техническое обеспечение в строительстве по своей функциональной природе обеспечивает обмен информацией с объектами строительства, производителями строительных материалов и техники, транспортными организациями, государственными структурами.

Основным элементом коммуникационной политики материально-технического обеспечения является оптимальный объем заказа или партии для каждого вида основных материалов, конструкций и деталей, используемых при выполнении строительных работ.

Объем имеет название экономически обоснованного объема одной партии заказа. Его использование позволяет достичь минимальных издержек, связанных с содержанием запаса, и ответить на два вопроса: сколько и когда.

Для оптимизации размера текущих производственных запасов авторами рекомендовано использовать известную модель экономически обоснованного объема одной партии заказа (Economic ordering quantity – EOQ) [3, 9]. Модель «EOQ» имеет вид:

$$q = \sqrt{\frac{2 \cdot S \cdot Z}{H}} \tag{1}$$

где q — объем одной партии заказа в натуральных единицах;

S — общая потребность в сырье на период в натуральных единицах;

Z — стоимость выполнения одной партии заказа; руб.

Н — затраты по хранению единицы сырья, руб.

Расчет оптимальной суммы запасов, включаемых в состав оборотных средств строительного предприятия осуществляется по формуле:

$$3_{\text{ont}} = (H_{3\text{T}} \times O_{\text{on}}) + 3_{\text{cx}} + 3_{\text{ILH}},$$
 (2)

где 3_{опт} – оптимальная сумма запасов;

Н₃ – норматив запасов текущего хранения в днях оборота;

 O_{on} – однодневный объем производства (для запасов сырья и материалов) или реализации;

 3_{cx} – планируемая сумма запасов сезонного хранения;

3_{ин} – планируемая сумма запасов целевого назначения других видов.

Современная функция материально-технического обеспечения накладывает на специалистов постоянный контроль и изучение достижений науки и техники и навыки оценки возможностей их использования в строительстве, что обеспечивает конкурентное преимущество.

Следует отметить, что сотрудники служб снабжения строительных предприятий взаимодействуют не только с коллегами, но и с бизнес-сообществом за пределами предприятия, что предполагает оценку полезности коммуникационных связей, ориентированную на дейдолгосрочный период. Развитие коммуникационных связей определено не только экономическими интересами строительного предприятия, но и социально-политической ролью внешних коммуникаций, обусловленной не связанными с профессиональной деятельностью интересами персонала в местах локализации. Причем, связь с муниципалитетами является также фактором взаимодействия предприятия с персоналом, что в свою очередь оказывается влияние на социально-психологический климат предприятия.

Не стоит пренебрегать значимостью прочных дружественных взаимоотношений с поставщиками материально-технических ресурсов из других регионов, так как они определяются стремлением к предупреждению возможных конфликтов территориальных, а также конфликтов связанных с кризисом и чрезвычайными ситуациями.

Общеизвестно, что социально-политический климат существенно влияет на инвестиционную сферу и может привлечь, либо оттолкнуть потенциальных внешних инвесторов. Рост инвестиционной активности региона влечет за собой рост уровня жизни [23-24]. Таким образом, для строительного предприятия население прилегающих к объектам строительства территорий является заинтересованным и особо мотивированным слоем потребителей.

Помимо социально-политической ситуации коммуникационные связи в сфере экологии также являются фактором надежности строительного предприятия.

Коммуникационные связи строительного предприятия при решении вопросов экологического баланса, в дискуссиях в области охраны окружающей среды и использования экологически безопасных материально-технических ресурсов, повышает значимость и доверие к предприятию со стороны властей, потребителей, контрагентов [21, 25].

В результате наблюдения работы коммуникаций в организации функции материальнотехнического обеспечения строительных предприятий РД, нами были обнаружены существенные препятствия на пути установления необходимых контактов между субъектами и принятия верных управленческих решения на всех уровнях, такие как:

- информационные перегрузки отсутствие возможности вовремя реагировать на всю поступающую информацию, необходимость ее систематизации и фильтрования из-за ее большого объема и отсутствия конкретики (38%);
- потери, связанные с отсутствием, либо недостаточным наличием необходимого этапа коммуникационных связей – обратной связи (22%);
- отсутствие целостности, понимания роли и места текущей информации в общих целях и задачах подразделения, в принятии решений или причинах, побудивших их принять (21%);
- страх и чувство нерешительности относительно точности, полноты и своевременности сообщения (10%);
- рассеянность и небрежность по причине усталости (9%).

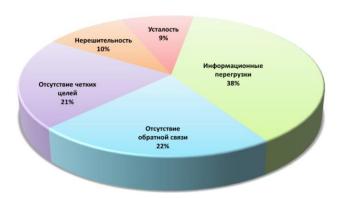


Рис. 2. Влияние коммуникационных барьеров на эффективность организации материально-технического обеспечения строительных предприятий РД

Fig. 2. Influence of communication barriers on the effectiveness of the organization of material and technical support of construction enterprises of the Republic of Dagestan

Вывод. Анализ документов, результатов наблюдения, интервью и анкетирования позволили создать цельный портрет внутренней и внешней системы связи в деятельности материально-технического обеспечения строительных предприятий РД.

Степень развития коммуникаций на строительных предприятиях, где проводились исследования, находится на низком уровне и мало соответствует ее принципам.

Специалист, работающий с неполной, недостоверной или несвоевременной информацией, чувствует себя небезопасно при принятии оперативных и стратегических профессиональных решений, что повышает риск снижения эффективности всей функции материальнотехнического обеспечения. Оттуда проблемы и ошибки, которые возникают в ходе обеспечения строительства материально-техническими ресурсами, и, как правило, завышенные сроки и

цена строительства, низкое качество труда, падение эффективности работы строительного предприятия в целом.

Библиографический список:

- 1. Плетнева Н.Г. Развитие логистики в строительстве: особенности, перспективы, методы принятия решений. 2009. № 2(30). С. 251–254.
- 2. Алиева П.А. Логистические системы материальнотехнического обеспечения строительных проектов. Журнал «Экономика и предпринимательство». №12 ч.1, 2015. С. 738-740.
- 3. Вартазарова А. Э. Организация материальнотехнического обеспечения в строительстве. Молодой ученый. 2014. №19. С. 275-277.
- 4. Федеральная служба государственной статистики Республики Дагестан http://dagstat.gks.ru
- 5.Кияткина Е.П., Федорова С.В. Экономика строительства, 2011. С.71
- 6. Абдуллаева Т.К., Алиева П.А. К вопросу о некоторых проблемах материально-технического обеспечения строительных предприятий в Республике Дагестан и путях их решения. Журнал «Экономика и предпринимательство» №11 ч.4, 2016. С. 905-912.
- 7. Наврузов Ю. Роль коммуникаций в организации. Менеджмент в России и за рубежом. 2013. №6. С. 26-29.
- 8.Проценко О.Д., Проценко И. О. Логистика и управление цепями поставок взгляд в будущее. 2015. С.220.
- 9. Мате Э., Тиксье Д. Материально-техническое обеспечение деятельности предприятия 1993. С. 158.
- 10. Мороз О.Е. Управление обеспечение строительного предприятия производственными ресурсами//Вестник Дагестанского государственного технического университета. Технические науки. 2011. №1 (20). –С. 56-66.
- 11. Горфинкель В.Я., Торопцов В.С., Швандар В.А. Коммуникации и корпоративное управление. 2015. С. 125.
- 12. Ковалев Г.Д. Инновационные коммуникации. 2002. С. 56.
- 13. Каймакова М. В. Коммуникации в организации Ульяновск : УлГТУ, 2008. С.73.
- 14. Smith L. Effective internal communications. Buy now from Kogan Page, 2005. C.19.
- 15. Морозова Н. А. Управление коммуникациями в организации //Вестник ВГУ. Серия: Экономика и управление. 2014. №. 2. С.173-181.

References:

- 1. Pletneva N.G. Razvitie logistiki v stroitel'stve: osobennosti, perspektivy, metody prinyatiya reshenii. 2009;2(30):251–254. [Pletneva N.G. Development of logistics in construction: features, perspectives, decision-making methods. 2009;2(30):251–254. (In Russ.)]
- 2. Alieva P.A. Logisticheskie sistemy material'notekhnicheskogo obespecheniya stroitel'nykh proektov. Ekonomika i predprinimatel'stvo. 2015;12(1):738-740. [Alieva P.A. Logistic systems of material and technical support of construction projects. Economy and Entrepreneurship. 2015;12(1):738-740. (In Russ.)]
- 3. Vartazarova A.E. Organizatsiya material'no-tekhnicheskogo obespecheniya v stroitel'stve. Molodoi uchenyi. 2014;19:275-277. [Vartazarova A.E. Organisation of material and technical support in construction. The young scientist. 2014;19:275-277. (In Russ.)]
- 4. Federal'naya sluzhba gosudarstvennoi statistiki Respubliki Daghestan http://dagstat.gks.ru [Federal'naya sluzhba gosudarstvennoi statistiki Respubliki Daghestan http://dagstat.gks.ru (In Russ.)]
- 5. Kiyatkina E.P., Fedorova S.V. Ekonomika stroitel'stva. 2011:71. [Kiyatkina E.P., Fedorova S.V. Economy of construc-

- 16. Cornelissen J. Corporate Communications: Theory and Practice / J. Cornelissen. London : SAGE Publications, 2004. $C.206\,$
- 17. Суровцева Е. К. Организационно-экономический механизм эффективного управления коммуникациями предприятия: дис. канд. экон. наук / Е. К. Суровцева. Краснодар, 2008. С.172
- 18. Bramel J., Chen X., Simchi-Levi D. The logic of Logistics: Theory, Algorithms and Applications for Logistics and Supply Chain Management. Second Edition. New-York: Springer, 2005
- 19. Stadtler H., Kilger C. Supply chain management and Advanced Planning: Concepts, Models, Software and Case Studies (second edition). Berlin: Springer, 2002
- 20. Сергеев И.В. Экономика предприятия: Уч. пособие. М.: Финансы и статистика, 2009. С. 304
- 21. Абдуллаева Т.К., Алиева П.А. Экологический аудит в системе материально-технического обеспечения строительных предприятий. Журнал «Экономика и предпринимательство». №5 ч.2(46-2), 2014. С. 743-746.
- 22. Муллахмедова С.С., Абдуллаева Т.К. Управление материально-техническим обеспечением строительного предприятия с позиции маркетинга. Проблемы теории и практики управления развитием социально- экономических систем: материалы VII Всероссийской научнопрактической конференции.- Ч.І.- 2010г. Махачкала: ДГТУ, 2010. –С.11-17.
- 23. Муллахмедова С.С., Абдуллаева Т.К. Анализ важнейших факторов, влияющих на конкурентоспособность строительных фирм. Социально-экономической развитие России: проблемы и перспективы. Материалы всероссийской научно-практической конференции.- Махачкала ГОУ ВПО «ДГТУ», 2010. С.123-128.
- 24. Абдуллаева Т.К., Магомедова Т.В., Муллахмедова С.С. Развитие системы управления инвестиционностроительным комплексом. Монография. Махачкала: ИД «Наука плюс», 2010. 134 с.
- 25. Абдуллаева Т.К., Алахвердиева С.В., Петросянц В.З. Направления совершенствования жилищной политики: региональный аспект (монография)Махачкала: ИД «Наука плюс», 2014. -148 с.

tion. 2011:71. (In Russ.)]

- 6. Abdullaeva T.K., Alieva P.A. K voprosu o nekotorykh problemakh material'no-tekhnicheskogo obespecheniya stroitel'nykh predpriyatii v Respublike Dagestan i putyakh ikh resheniya. Ekonomika i predprinimatel'stvo. 2016;11(4):905-912. [Abdullaeva T.K., Alieva P.A. On the issue of some problems of material and technical support of construction enterprises in the Republic of Dagestan and ways to solve them. Economy and Entrepreneurship. 2016;11(4):905-912. (In Russ.)]
- 7. Navruzov Yu. Rol' kommunikatsii v organizatsii. Menedzhment v Rossii i za rubezhom. 2013;6:26-29. [Navruzov Yu. Rol' kommunikatsii v organizatsii. The role of communications in the organisation. Management in Russia and Abroad. 2013;6:26-29. (In Russ.)]
- 8. Protsenko O.D., Protsenko I.O. Logistika i upravlenie tsepyami postavok vzglyad v budushchee. 2015. S.220. [Protsenko O.D., Protsenko I.O. Logistics and supply chain management a look into the future. 2015. P.220. (In Russ.)]
- 9. Mate E., Tiks'e D. Material'no-tekhnicheskoe obespechenie deyatel'nosti predpriyatiya. 1993. S. 158. [Mate E., Tiks'e D. Material and technical support of the enterprise activity. 1993. P. 158. (In Russ.)]

- 10. Moroz O.E. Upravlenie obespechenie stroitel'nogo predpriyatiya proizvodstvennymi resursami. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2011;1(20). [Moroz O.E. Management of the provision of a construction enterprise with production resources. Herald of the Dagestan State Technical University. Technical sciences. 2011;1(20) pp.56-66. (In Russ.)]
- 11. Gorfinkel' V.Ya., Toroptsov V.S., Shvandar V.A. Kommunikatsii i korporativnoe upravlenie. 2015. S. 125. [Gorfinkel' V.Ya., Toroptsov V.S., Shvandar V.A. Communications and corporate management. 2015. P. 125. (In Russ.)]
- 12. Kovalev G.D. Innovatsionnye kommunikatsii. 2002. S. 56. [Kovalev G.D. Innovative communications. 2002. P. 56. (In Russ.)]
- 13. Kaimakova M.V. Kommunikatsii v organizatsii. Ul'yanovsk: UlGTU; 2008. S.73. [Kaimakova M.V. Communications in the organization. Ul'yanovsk: UlGTU; 2008. P.73. (In Russ.)]
- 14. Smith L. Effective internal communications. Buy now from Kogan Page; 2005. P.19.
- 15. Morozova N.A. Upravlenie kommunikatsiyami v organizatsii. Vestnik VGU. Seriya: Ekonomika i upravlenie. 2014;2:173-181. [Morozova N.A. Management of communications in the organisation. Proceedings of Voronezh State University. Series: Economics and Management. 2014;2:173-181. (In Russ.)]
- 16. Cornelissen J. Corporate Communications: Theory and Practice. London: SAGE Publications; 2004. P.206
- 17. Surovtseva E.K. Organizatsionno-ekonomicheskii mekhanizm effektivnogo upravleniya kommunikatsiyami predpriyatiya: dis. kand. ekon. nauk. Krasnodar; 2008. S.172. [Surovtseva E.K. Organisational and economic mechanism for effective management of enterprise communications. Candidate of Economical Sciences Thesis. Krasnodar; 2008. P.172 (In Russ.)]
- 18. Bramel J., Chen X., Simchi-Levi D. The logic of Logistics: Theory, Algorithms and Applications for Logistics and Supply Chain Management. Second Edition. New-York: Springer; 2005
- 19. Stadtler H., Kilger C. Supply chain management and Advanced Planning: Concepts, Models, Software and Case Studies (second edition). Berlin: Springer; 2002.
- 20.Sergeev I.V. Ekonomika predpriyatiya: Uch. posobie. M.: Finansy i statistika; 2009. S. 304. [Sergeev I.V. Business Economics: a tutorial. M.: Finansy i statistika; 2009. P. 304. (In

Russ.)]

- 21. Abdullaeva T.K., Alieva P.A. Ekologicheskii audit v sisteme material'no-tekhnicheskogo obespecheniya stroitel'nykh predpriyatii. Ekonomika i predprinimatel'stvo. 2014;5(46-2):743-746. [Abdullaeva T.K., Alieva P.A. Environmental audit in the system of material and technical support of construction enterprises. Economy and Entrepreneurship. 2014;5(46-2):743-746. (In Russ.)]
- 22. Mullakhmedova S.S., Abdullaeva T.K. Upravlenie material'no-tekhnicheskim obespecheniem stroitel'nogo predpriyatiya s pozitsii marketinga. Materialy VII Vserossiiskoi nauchno-prakticheskoi konferentsii "Problemy teorii i praktiki upravleniya razvitiem sotsial'no- ekonomicheskikh sistem". Ch.I. Makhachkala: DGTU; 2010. S.11-17. [Mullakhmedova S.S., Abdullaeva T.K. Management of the material and technical support of a construction company from a marketing standpoint. Proceedings of the VII All-Russian scientific-practical conference "Problems of theory and practice of managing the development of socio-economic systems". PartI. Makhachkala: DSTU; 2010. P.11-17. (In Russ.)]
- 23. Mullakhmedova S.S., Abdullaeva T.K. Analiz vazhneishikh faktorov, vliyayushchikh na konkurentosposobnost' stroitel'nykh firm. Materialy vserossiiskoi nauchnoprakticheskoi konferentsii "Sotsial'no-ekonomicheskoe razvitie Rossii: problemy i perspektivy". Makhachkala: GOU VPO DGTU; 2010. S.123-128. [Mullakhmedova S.S., Abdullaeva T.K. Analysis of the most important factors affecting the competitiveness of construction firms. Materials of the All-Russian Scientific and Practical Conference "Social and Economic Development of Russia: Problems and Prospects". Makhachkala: GOU VPO DSTU; 2010. P.123-128. (In Russ.)]
- 24. Abdullaeva T.K., Magomedova T.V., Mullakhmedova S.S. Razvitie sistemy upravleniya investitsionno-stroitel'nym kompleksom. Makhachkala: ID "Nauka plyus"; 2010. 134 s. [Abdullaeva T.K., Magomedova T.V., Mullakhmedova S.S. Development of the management system of the investment and construction complex. Makhachkala: ID "Nauka plyus"; 2010. 134 p. (In Russ.)]
- 25. Abdullaeva T.K., Alakhverdieva S.V., Petrosyants V.Z. Napravleniya sovershenstvovaniya zhilishchnoi politiki: regional'nyi aspekt. Makhachkala: ID "Nauka plyus"; 2014. 148 s. [Abdullaeva T.K., Alakhverdieva S.V., Petrosyants V.Z. Areas for improving housing policy: the regional dimension. Makhachkala: ID "Nauka plyus"; 2014. 148 p. (In Russ.)]

Сведения об авторах:

Абдуллаева Тамара Курбановна – доктор экономических наук, профессор, заведующая кафедрой менеджмента.

Алиева Патимат Алиевна – аспирант.

Information about the authors.

Tamara K. Abdullaeva – Dr.Sci. (Economics), Prof., Head of Department of management.

Patimat A. Aliyeva – Graduate Student.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 30.01.2018.

Принята в печать 27.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 30.01.2018.

Accepted for publication 27.02.2018.

Для цитирования: Алёхина Т.А., Захаркина Н.В. Импортозамещение как основной инструмент развития экономики России. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 223-235. DOI:10.21822/2073-6185-2018-45-1-223-235

For citation: Alyokhina T.A., Zakharkina N.V. Import substitution as a basic development tool of the Russian economy. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 223-235. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-223-235

ЭКОНОМИЧЕСКИЕ НАУКИ

УДК:338.2

DOI: 10.21822/2073-6185-2018-45-1-223-235

ИМПОРТОЗАМЕЩЕНИЕ КАК ОСНОВНОЙ ИНСТРУМЕНТ РАЗВИТИЯ ЭКОНОМИКИ РОССИИ

Aлёхина $T.A.^{1}$, 3ахаркина $H.B.^{2}$

 $^{1-2} O$ рловский государственный университет экономики и торговли,

¹⁻²302028, г. Орел, ул. Октябрьская, 12, Россия,

¹e-mail:tat.alehina@mail.ru, ²e-mail:natashazaharkina@mail.ru

Резюме: Цель. Статья посвящена актуальной проблеме, решение которой позволит изменить существующий инструментарий оценки программы по импортозамещению в России. Целью данного исследования является анализ практики применения аспектов импортозамещения на уровне регионов и в стране в целом, а также определение задач, ожидаемых результатов к 2020 году. Предметом исследования являются возможности и ограничения реализации политики импортозамещения как метода стабилизации экономики. Авторами определены основные проблемы импортозамещения во всех отраслях экономики страны, а также сделаны выводы и разработаны предложения по решению данных проблем. Метод. При написании статьи применялись общенаучные методы познания и методы экспериментальнотеоретического уровня, которые позволили определить цели, проблематику, ожидаемые результаты политики импортозамещения и методы их достижения, а также выделить наиболее важные инструменты поддержки проектов импортозамещения. Результать исследования направлены на реализацию политики импортозамещения в наиболее перспективных отраслях экономики. Научная новизна исследования состоит в постановке, теоретическом обосновании и разрешении комплекса вопросов, сопряженных: с систематизацией существующего инструментария поддержки политики импортозамещения; с проблематикой выбора инструментария и адаптации к российским реалиям. Рекомендации, содержащиеся в статье, о значимости реализации импортозамещения, которые охарактеризованы различными примерами, адаптированными к российским условиям, могут представлять практический интерес для экономики всех регионов и страны в целом. Вывод. Разработанные положения могут быть использованы при формировании и осуществлении эффективной политики импортозамещения, учитывая все особенности и проблемы ее реализации.

Ключевые слова: импортозамещение, Россия, экономика, регион, политика, реализация, цель, результат

ECONOMIC SCIENCE

IMPORT SUBSTITUTION AS A BASIC DEVELOPMENT TOOL OF THE RUSSIAN **ECONOMY**

Tatyana A. Alyokhina¹, Natalya V. Zakharkina²
¹⁻²Orel State University of Economy and Trade,

1-212 Oktyabr'skaya Str., Orel 302028, Russia,

¹e-mail: tat.alehina@mail.ru, ²e-mail: natashazaharkina@mail.ru

Abstract Objectives The article is devoted to a highly topical issue, the solution of which will allow the existing toolkit for evaluating the import substitution programme in Russia to be improved. The aim of the study was to analyse the practice of applying aspects of import substitution at the regional and country level, as well as to define the objectives and expected results by 2020. The subject of the study consisted in the potentialities and limitations of implementing the import substitution policy as a means of stabilising the economy. The main problems of import substitution in all sectors of the country's economy were identified, conclusions drawn up and proposals developed to address these problems. Methods When writing the article, general scientific cognitive approaches were used in conjunction with experimental and theoretical methods to define goals, problems and expected results of import substitution policies and methods for their achievement, as well as to highlight the most important tools for supporting import substitution projects. Results The detailed results of the research are made available for supporting the implementation of the import substitution policy in the most promising sectors of the economy. The scientific novelty of the research consists in the formulation, theoretical substantiation and resolution of a set of issues related to the systematisation of existing instruments for supporting the policy of import substitution as well as with the problems of the choice of methodological tools and adaptation to Russian realities. The recommendations on the importance of import substitution contained in the article, which are characterised by various examples adapted to Russian conditions, may be of practical interest to the economy of all regions as well as the country as a whole. **Conclusion** The developed provisions can be used in the formation and implementation of an effective import substitution policy, taking into account all the specifics and problems of implementation.

Keywords: import substitution, Russia, economy, region, policy, implementation, purpose, result

Введение. Как правило, термин «импортозамещение» применяют к различным странам или экономическим субъектам, которые по ряду причин решили в кратчайшие сроки снизить объем поступающей в государство импортной продукции. Чтобы создать эффективное импортозамещение, страны, как правило, увеличивают производственные объемы, развивают прибыльные отрасли. Термин «импортозамещение» также можно использовать в отношении, как предприятий, так и отраслей.

Импортозамещение в России – это то, чему уделяют в данный момент особое внимание и стараются наиболее полно заменить импортные товары отечественными, теми, что произведены на территории нашей страны.

Развитие импортозамещения в России пришлось на 2014 год. Тогда против нашей страны западные государства ввели санкции. С 4 августа 2015 года началось создание правительственных комиссий по импортозамещению в России. Велось создание пакета нормативных актов, направленных на поддержку государством российского производителя [1-2].

Сейчас экономика в стране переживает не лучшие времена, поскольку наблюдается серьезный структурный кризис. Данная ситуация возникла в 2012 году, когда нефть серьезно упала в цене, а вместе с ней снизился и российский рубль. Со стороны российского правительства были предприняты попытки увеличить внутреннее производство, началось составление плана импортозамещения в России, чтобы без особых потерь пережить кризисный период.

Экономика любого государства, как правило, направлена на создание добавленной стоимости. Ранее Россия шла к желаемому результату, используя разные методы, однако не всегда достигала успеха. Если вспомнить самый удачный пример политики локализации, можно сказать о продвижении российского автопроизводства [8].

В начале 2000-х годов наша страна снизила таможенные пошлины на ввозимый автопром, поставив условие, что импортеры переведут часть производственных объемов в Россию. Государство подписало инвестиционные контракты, в которых были указаны определенные обязательства. Обычно сторона, производящая продукцию или услугу, обещает увеличение местной добавочной стоимости при условии выпуска товаров ежегодно в указанном объеме. При этом российское правительство использует нулевую пошлину на продукцию, необходимую для производственного процесса. Такими льготами сегодня пользуются почти все отрасли автомобильной промышленности.

С тех пор как Россия вступила в ВТО, льготная система должна была закончиться, поскольку постепенно таможенные барьеры стерлись бы. Кроме того, дестабилизация всей системы стимулирования произошла и в связи с тем, что обвалился российский рубль. Сейчас необходимо, чтобы отечественные и зарубежные производители пришли к общему соглашению, укрепив свои торгово-экономические отношения.

Если рассматривать отрасль сельского хозяйства РФ, то здесь выбраны иные методы. Россией было введено эмбарго, закрыт практически весь рынок продовольственных товаров, поступающих из других стан. Эти меры были приняты в связи с экономическими санкциями США и Евросоюза. При этом Россией были осуществлены масштабные меры относительно собственной сельскохозяйственной отрасли. Сегодня можно с уверенностью сказать, что, несмотря на экономический кризис, отрасли пищевой промышленности и сельского хозяйства стремительно растут и развиваются.

В вопросе импортозамещения появились нововведения, касающиеся зарубежных поставщиков, которые реализуют на отечественном рынке свою продукцию. Принятые меры являются потенциально опасными для них с финансовой точки зрения.

В связи с вступлением в силу закона о промышленной политике в РФ (N 488-Ф от 31 декабря 2014 г.) был отменен ряд принципов госзакупок, принятых ранее. Если до этого у отечественных и зарубежных товаров были равные условия конкуренции, то в настоящий момент российский рынок ставит на первое место свою продукцию. Это может нанести значительный материальный урон зарубежным участникам, не имеющим на территории России налаженного производства [10].

Постановка задачи. В данной статье целесообразно отметить, что импортозамещение в России характеризуют с нескольких сторон, если учесть, что основная его цель — обеспечить экономическую безопасность страны. Импортозамещение в России ставит перед собой определенные задачи, главные из которых:

- придание отечественной экономике устойчивых конкурентоспособных преимуществ;
- повышение качества отечественной экономики в вопросе производства товаров для международного рынка по мировым стандартам;
- защита и развитие отечественных производителей;
- работа по ограничению деятельности государств-экспортеров на внутреннем рынке;
- беспрепятственное получение запчастей, материалов, сырья импортного производства.

При импортозамещении государство или вытесняет, или замещает зарубежные товары на российском рынке. Такую политику ведут, чтобы повысить национальную и экономическую безопасность государства. Здесь можно сказать о двух направлениях.

- 1. Ситуации, когда в отношении отечественных экономических отраслей вводятся импортные протекционистские барьеры для снижения конкуренции с иностранными поставщиками и создания благоприятной среды для развития импортозамещения в России;
- 2. Ситуации, когда к отраслям отечественного производства, которые выпускают товары импортозамещения в России и конкурируют с западными аналогами, применяют косвенные и прямые субсидии, чтобы увеличить уровень конкурентоспособности нацио-

нальной продукции и добиться сокращения импорта [11].

Нередко эти направления используют вместе. Например, чтобы развить машиностроительную отрасль, страна на 20 % повышает сумму таможенных пошлин на ввоз в Россию автомобилей зарубежного производства, а также оборудования, чтобы снизить объем иностранных товаров в машиностроительной отрасли.

Вместе с тем часто используют льготное налогообложение на определенный промежуток времени для машиностроительной отрасли, а также различные льготы для компаний, занимающихся выпуском соответствующей продукции. Такие меры приводят к снижению издержек в отечественном производстве, дают возможность вступать в борьбу с зарубежными конкурентами и достигать в ней успеха. Как правило, когда внутреннее производство растет и укрепляется, политику импортозамещения постепенно перестают вести.

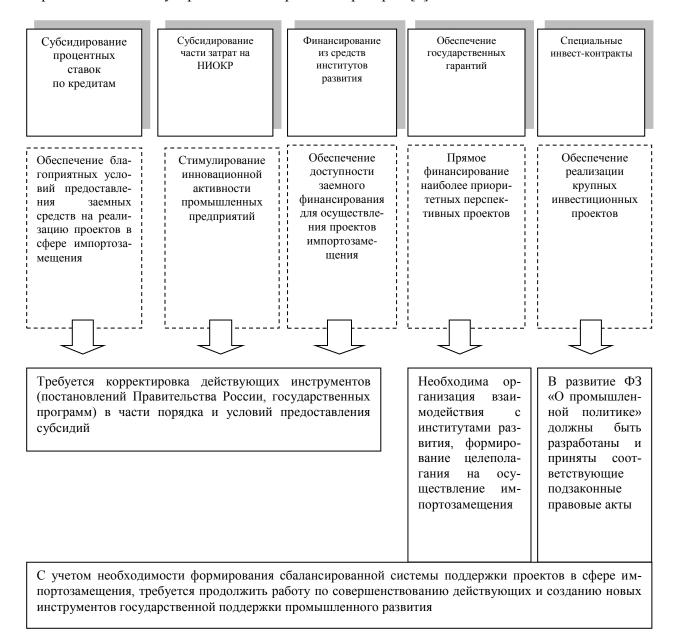
Метод исследования. Реализация поставленных задач основывается на общенаучных методах познания и методах экспериментально-теоретического уровня, которые позволяют определить проблематику, ожидаемые результаты политики импортозамещения и методы их достижения, а также выделить наиболее важные инструменты поддержки проектов импортозамещения.

В современном российском государстве применяют инструменты, позволяющие реализовывать импортозамещающую политику. Речь, в частности, идет о введении высоких пошлин; о формировании перечня продукции, запрещенную к ввозу; о квотировании и лицензировании; об административном и экономическом стимулировании организации совместного производственного процесса.

Можно сказать, что в настоящее время мы не готовы к полному импортозамещению в России, поскольку стратегическая конкурентоспособность экономики является недостаточной. Требуется перейти к использованию инновационной модели экономического развития, а на это, как считают аналитики, уйдет порядка двадцати лет [12].

Таким образом, сегодня в товарной структуре отечественного импорта должны присутствовать различные элементы развития. Речь идет о всевозможных ноу-хау, патентах, технологическом оборудовании. Товарам, выпущенным с использованием этих параметров, необходимо обеспечить хорошие условия существования и продвижения на внутреннем рынке.

Немало важную роль играют инструменты поддержки проектов импортозамещения (рис.1).


Среди наиболее эффективных и мощных инструментов для стимулирования производственного, любого политического и экономического процесса можно выделить государственный заказ. В данный момент именно этим инструментом пользуются прогрессивные государства в мире.

Обсуждение результатов. В нашей стране государство инициировало массовое импортозамещение, а потому выступает в качестве активного и крупного закупщика. Импортозамещение в России в государственных закупках регулируется государственным правом, которое закреплено в Законе о системе контрактов. Согласно ему у нашей страны есть возможность в любой момент наложить ограничения на импорт любых услуг и продукции.

Существует постановление Российского Правительства от 24 декабря 2013 года об установлении запрета и ограничений на допуск товаров, поставляемых из-за рубежа, для обеспечения обороны и безопасности страны (ред. от 18.07.2016). Действие документа понятно. В нем сказано о том, что Россия может закупать различное импортное оборудование, но только в том случае, если в стране отсутствуют аналоги. Даже если аналоги в стране есть, закупку можно осуществить в соответствии с Постановлением, но лишь при условии проведения дополнительных проверок.

Есть также Постановление Правительства от 14 июля 2014 года (ред. от 09.06.2016), где сказано о запрете на допуск отдельных типов продукции в машиностроительной отрасли, поставляемой из-за рубежа для обеспечения нужд муниципального и государственного характера. Логика документа проста. На закупки продукции за рубежом наложен запрет. При этом не важно, есть ли в России соответствующие аналоги. Если необходимый продукт имеется в спис-

ке Постановления, можно осуществить закупку на территории России или таких стран, как Белоруссия, Армения, Казахстан. Если же продукции в списке нет, в соответствии с политикой импортозамещения государство может провести проверки [6].

Puc.1. Инструменты поддержки проектов импортозамещения Fig.1. Support tools for import substitution projects

Надо сказать и о Постановлении Правительства от 11 августа 2014 года (ред. от 17.02.2016), в соответствии с которым установлен запрет на допуск продукции в сфере легкой промышленности, поступающей из-за рубежа, для осуществления закупок, удовлетворяющих федеральные нужды. Начало действия Постановления – 1 сентября 2014 года. С этого дня действует запрет на импорт всей продукции из списка. В документе есть две части, первая из которых говорит о запрете на допуск зарубежных продуктов легкой промышленности, а вторая – о дополнительных требованиях к тем, кто закупает соответствующие товары импортозамещения в России. Постановления отличаются друг от друга тем, что в соответствии с первой частью учитываются лишь государственные заказчики на федеральном уровне, а в соответствии со второй – другие участники программы [13].

Также существует Постановление Правительства РФ от 5 февраля 2015 года (ред. от 02.06.2015, от 22.04.2016), где говорится об ограничениях допуска отдельных видов продукции медицинского типа, поступающих из-за рубежа, для закупки в целях обеспечения государственных и муниципальных нужд.

Ограничение работает просто. Если, когда выполняется заявка по закупкам, в торгах присутствуют конкуренты (это могут быть как производители, так и импортеры), то фирмы с иностранными предложениями не участвуют в сделках, так как им не дают допуска. При этом в перечне Постановления есть данные о производителях в сфере медицины и фармацевтики.

Чтобы выпускать товары импортозамещения в России, государство делает ставку в том числе на предпринимателей, работающих в среднем и малом бизнесе. Чтобы их поддерживать, российское правительство занимается разработкой ряда программ, основные и наиболее востребованные из которых — это, к примеру, программа по импортозамещению в сельскохозяйственной отрасли, предусматривающая субсидирование расходов на покупку специализированной и необходимой для данной отрасли техники.

Когда отечественные фермеры получают возможность покупать все требуемое для производственного процесса с 25-30 %-ной скидкой, борьба с иностранными фирмами и масштабными компаниями-аграриями становится равной. Не стоит забывать и об эффективных инструментах, позволяющих поддерживать малое предпринимательство. Здесь следует сказать о федеральных и региональных фондах по кредитованию, позволяющих выходить на новые уровни и увеличивать квоты для бизнеса до 15 % в госзакупках.

Предпринимая ответные действия на введение санкций со стороны Запада, наша страна полностью запретила ввоз товаров из таких стран, как США, Норвегия, Канада, Австралия, государств Евросоюза. Помимо этого, чтобы добиться более эффективного импортозамещения в России в санкционной обстановке, потребовалось немного откорректировать ставки по таможенным пошлинам и всю систему государственных закупок [11].

Когда Россия предприняла эти действия, малому и среднему бизнесу предоставили новые возможности для развития импортозамещения в России, так как предприниматели смогли попробовать свои силы на освободившейся части рынка. У малого и среднего бизнеса в России есть все шансы выйти на новый уровень, поскольку перечень продукции, запрещенной к ввозу на территорию нашей страны, очень и очень обширен.

Большие шансы на успех есть и у предпринимателей, занимающихся производством строительных и ремонтных материалов. Те, кто выпускает сухие строительные смеси, добавки в бетон, краски, грунтовки, гидроизоляцию, получает дополнительные возможности для роста. Если компания является партнером какой-либо масштабной организации, занимающейся разработкой инновационного проекта, у нее есть перспективы проводить диагностирование, апробацию и рекламу образцов новых продуктов.

Отдельно следует сказать о ряде отраслей в сельском хозяйстве. Производители мяса (свинины и говядины), молочных продуктов и сыра, животных жиров, яблок, овощей и других фруктов получают дополнительные привилегии и имеют большие перспективы развития в импортозамещении в России. Самое выгодное положение в данный момент – у предпринимателей южных и центральных российских регионов (Волгоградская, Астраханская область, Краснодарский край) – словом, областей, на территории которых природа наиболее благоприятна для развития сельского хозяйства [3].

Российское правительство задумалось о развитии сельского хозяйства и безопасности в данной сфере еще в 2012 году. Одним из ключевых вопросов в рамках государственной программы развития сельхозотрасли на 2013—2020 годы стало импортозамещение в России. Но в связи с введением санкций со стороны Запада Правительство вынуждено было взглянуть на данный вопрос шире и задуматься о формировании масштабной программы, которая охватила бы множество сфер импортозамещения в России.

При этом в рамках правительственного плана импортозамещения в России была выпущена Госпрограмма № 320 о развитии промышленной сферы и повышении уровня конкуренто-способности в ней, а далее – и другие акты законодательства, основной задачей которых яви-

лось формирование более четкой позиции государства в импортозамещении в России. Рассмотрим все документы подробнее.

Создание Госпрограммы № 320 о развитии промышленности и повышении уровня ее конкурентоспособности от 15 апреля 2014 года велось с целью регламентирования процессов развития в производственной сфере в России. Государственная программа дает информацию о том, как нужно грамотно распределять финансовые ресурсы, в которых нуждается отечественная промышленность для своего роста [4-5].

Очень важен следующий момент: в этом документе сказано о правовой стороне импортозамещения в России. При этом в нем нет сведений о том, что конкретно нужно делать, чтобы реализовать импортозамещение в России. В основу Госпрограммы положен перечень задач и целей, а также критериев успешности достижения успеха, сказано об исполнителях, ответственных за процесс, и тех, кто наблюдает за ним.

Цели импортозамещения в России:

- 1) создание сбалансированного промышленного производства в стране с отличными конкурентными качествами;
- 2) разработка и применение передовых технологий в импортозамещении промышленности в России;
- 3) создание индустрии, целью которой является обоснование на новых рынках инновационных товаров импортозамещения в России.

Ожидаемые результаты импортозамещения в России к 2020 году:

- 1. Развитие инфраструктуры, которая позволила бы продуктивно работать различным инновационным производствам.
- 2. Формирование и достижение качественной системы, направленной на поддержку спро-
- 3. Создание новых квалифицированных рабочих мест.
- 4. Окончательная модернизация технологической базы.
- 5. Улучшение эффективности на производствах для достижения высокого конкурентного качества продукции на мировом рынке.
- 6. Завершение разработки технических регламентов и национальных стандартов для устранения преград в торговой сфере импортозамещения в России.
- 7. Увеличение количества запатентованных технологий, разработанных с применением мировых стандартов и успешно внедренных в практическую деятельность [7].

Методы достижения результатов:

- 1. Создание условий для вывода на рынок инновационных товаров импортозамещения в России, устранение регуляторных барьеров.
- 2. Создание инновационной инфраструктуры для развития новых сфер торговли.
- 3. Фокусирование государства на вопросе стимулирования возрастания спроса в потребительской отрасли.
- 4. Стимулирование конкурентных свойств, проведение исследований в промышленной отрасли с опорой на сектор инвестиций.
- 5. Сохранение текущих позиций в отрасли метрологических измерений, создание системы технического регулирования.

Методы измерения достигнутых результатов:

- 1. Показатели индекса производства в промышленной отрасли к предыдущему году.
- 2. Расходы на применение технологических инноваций в общем количестве отгруженной продукции.
- 3. Процент компаний в сфере промышленности, которые работают с организационными, маркетинговыми и технологическими инновациями, в общем количестве исследованных компаний.
- 4. Вывоз высокотехнологичной продукции российского производства.
- 5. Расходы на проведение исследований и разработок из внебюджетных и бюджетных средств.

Сделаем прогноз, каким же будет импортозамещение в России в 2018 году. В течение 2017 года показатели импортозамещения в России находились в пределах 30 %. Это значит, что все услуги и продукция российского производства вместе составляют лишь 30 %. Закупка всего остального товара происходит за границей. В конце 2017 года показатель стал ниже, но не благодаря увеличению выпуска отечественной продукции, а вследствие уменьшения импорта, изза чего в России и образуется дефицит [9-10].

Аналитики считают, что среди наиболее перспективных отраслей импортозамещения на сегодняшний день можно выделить:

- производство танков согласно полученным данным показатели по импорту составляют свыше 90 %;
- отрасль тяжелого машиностроения;
- производство текстильной продукции;
- сферу электронной промышленности;
- медицину и фармацевтику [22].

Достичь результативного импортозамещения в России в вышеперечисленных сферах можно, если производительные мощности будут высокими [20-22]. Кроме того, необходимо создать предприятия и компании с хорошими конкурентоспособными качествами, способными разрабатывать качественную продукцию и вести грамотное ценообразование. Далее объем импорта может быть снижен за счет развития новых технологий, и этот процесс должен быть отрегулирован и простимулирован.

Минпромторг РФ считает, что, если грамотно вести политику по импортозамещению в России, к 2020 году можно достичь снижения импорта в ряде различных отраслей с 90 % до 50 % [21]. Применительно к некоторым сферам импортозамещения в России показатели вполне могут быть более высокими.

Надо отметить, что введение санкций стало не угрожающим российской экономике фактором, а скорее стимулом к развитию импортозамещения в России. Российское правительство отреагировало на действия Запада, введя запрет на ввоз ряда продуктов из стран Евросоюза и США. На законодательном уровне оказались недопустимыми поставки мяса коров и другого крупного скота, рыбы, птицы, свинины, некоторых ракообразных, сыра, колбасы, фруктов и овощей. Как следствие – аграрии смогли наиболее полно проявить себя и добиться высоких по-казателей в работе [11].

Основные направления импортозамещения в России в отрасли сельского хозяйства - селекция коров (применяется трансплантация эмбрионов), выращивание и выпуск семян, садоводческая и овощеводческая деятельность, а также рыбопереработка. Средний и малый бизнес также получил возможность реализовать себя, поскольку избавился от западных конкурентов.

По мнению экспертов, все шансы на успешное развитие импортозамещения в России есть у малого и среднего бизнеса. Данные отрасли импортозамещения в России могут продуктивно работать в тех регионах, где уровень конкуренции минимален. Так, к примеру, те, кто производят продукты, стали работать с большим энтузиазмом благодаря возможности размещать свои товары в супермаркетах – их владельцы быстрее идут навстречу предпринимателям, нежели раньше.

Возникает вопрос – способны ли мелкие фирмы к обеспечению необходимого объема и качества товаров импортозамещения в России? [3]. По предположениям у крупного бизнеса появится желание наладить сотрудничество с малыми фирмами. Однако ситуацию нужно оценивать объективно. Если рассматривать среднее и малое предпринимательство, здесь наблюдаются более низкие показатели производства труда. Что касается качества, оно не всегда находится в соответствии со стандартами. Здесь присутствуют небольшие производственные объемы, что также важно.

Свыше 80 % работающих в данный момент компаний представляют собой не очень большие организации, которые можно отнести к малому бизнесу. Следует в сжатые сроки позаботиться о создании благоприятных условий для развития небольших компаний и оказывать им помощь на федеральном уровне.

В данной статье рассмотрим направления оптимизации программы импортозамещения на региональном уровне (на примере Орловской области) (рис. 2).

Направления оптимизации программы импортозамещения на региональном уровне

Формирование перечня видов продукции, производство которой способствует снижению зависимости отраслей экономики региона от поставок импортной продукции

Формирование перечня приоритетных инвестиционных проектов в сфере промышленности, содействующих импортозамещению

Сопровождение инвестиционных проектов, направленных на организацию импортозамещения в режиме «одного окна»

Реализация комплекса мероприятий по поддержке малого и среднего предпринимательства, направленных, в том числе, на содействие импортозамещению

Puc. 2. Направления оптимизации программы импортозамещения на региональном уровне Fig. 2. The directions of optimization of the import substitution program at the regional level

Что касается Орловской области, то импортозамещение в данном регионе идет по двум направлениям: в сельском хозяйстве и в промышленности.

Орловскими властями разработан план мероприятий по содействию импортозамещению в регионе на 2016-2020 годы.

Поддержку получат инвестиционные проекты заводов «Ливгидромаш», «Протонэлектротекс», группы компаний «Протон», Мценского литейного завода, заводов «Коммаш», «Орелкомпрессормаш», «Ливнынасос», «Стеклопак» и завода имени Медведева.

Среди инструментов, которыми будут создавать аналоги зарубежных продуктов называют: субсидии на компенсацию части затрат на проведение научно- исследовательских и опытно-конструкторских работ (по данному направлению поддержка оказывается АО «Протон»); программу поддержки инвестиционных проектов, реализуемых на основе проектного финансирования (поддержку получает ООО «СтеМал»); специальный инвестиционный контракт.

По состоянию на конец 2015 года в Минпромторг России поступило 13 заявлений о заключении специальных инвестиционных контрактов с суммарным объемом частных инвестиций 265 млрд. рублей. 21 июня 2016 года межведомственной комиссией по заключению специальных инвестиционных контрактов Министерства вынесено положительное заключение о подписании специнвестконтракта с группой компаний «ГМС», в которую входит АО «ГМС Ливгидромаш». В результате осуществления проекта будет организован выпуск продукции отечественного производства взамен аналогичной продукции ведущих иностранных произво-

лителей.

Также организовано взаимодействие с ПАО «Газпром» по программе импортозамещения. Сейчас уже 5 предприятий Орловской области осуществляют поставки импортозамещающей продукции в ПАО «Газпром». Ведется работа по расширению географии орловских поставщиков компании.

Далее необходимо проанализировать проблемы импортозамещения, которые существуют в России сегодня. Россия зависит от иностранных технологий, цены на которые очень высоки. Это основная проблема, из-за которой достаточно сложно повысить качество и увеличить объемы выпуска продукции. Также затруднительно осуществление программы, разработанной Правительством РФ. Приведем примеры наиболее проблемных вопросов.

Минпромторг России, оценив продукцию для импорта, пришел к выводу, что вычислительная техника и оборудование телекоммуникаций имеют высокий спрос, благодаря чему произошел стремительный рост их стоимости. Это говорит о положительном эффекте в деле выпуска товаров импортозамещения в России. В настоящий момент отечественные компании готовятся к разработке аналогов в сфере радиоэлектроники. Но высокая стоимость запчастей, приобретаемых в других странах, предполагает возможный низкий спрос. В этом остается надеяться только на государственный сектор [21].

Нефтегазовая отрасль показывает, насколько зависима наша страна от иностранных технологий. Так как нефтегазовая отрасль развивается медленными темпами, становится понятно, почему компании пренебрегают отечественными разработками. Поэтому мы делаем вывод, что быстрого изменения этих процессов не произойдет.

Одной из главных проблем является также вложение средств в не вполне современные технологии. Из-за этого российская экономика развивается медленнее. Использование зарубежных технологий и производств предполагает уже завершенный цикл продукта на мировом рынке. Для западных компаний лучшим способом развития своего бизнеса является приобретение производства, отвечающего всем мировым тенденциям, а не попытка инвестирования в усовершенствование предприятия. Надежность в этом отношении можно отнести к совместным предприятиям, позволяющим встраивание в мировые производственно-технологические цепочки, для которых модернизированные производства и продвижение на мировом рынке, выпуск конкурентоспособной продукции являются главными задачами.

По мнению экспертов, основными препятствиями для экспорта, решения проблем с импортозамещением в России и для роста конкурентоспособности предприятия являются [14-19]:

- 1. Отсутствие поддержки государства в создании проекта для экспорта за рубеж, благодаря чему стимуляция производства товаров для экспорта и импорта не производится в нужной мере, приводя к малоэффективности.
- 2. Трудный доступ к существующим мерам государственной поддержки и недостаточная подготовленность предприятия.
- 3. Неспособность продвигать продукцию для экспорта в России (сырье, материалы комплектующие, запасные части систем и т. д.).
- 4. Трудности кредитования в производстве и экспорте, противоречия в характере государственной политики о кредитовании реальных секторов в экономики России.
- 5. Отсутствие достаточного опыта для успешности в сфере внешних экономических деятельностей у большей части предприятий в отрасли машиностроения на фоне чрезмерных формальностей, разрешительных и таможенных процедур, неспособности получать информацию (о рыночных коньюнктурах, о возможных сотрудниках, об ограничении импортозамещения в России и т. д.).
- 6. Слабость в стимулировании предприятий, работающих в научных и инновационных сферах, неполное осознание того, как важны патент, обеспечение защиты авторских прав при экспорте продукции.
- 7. Пассивность в работе над увеличением числа присутствующей отечественной продукции на рынках развивающихся стран Азии, Африки и Латинской Америки.
- 8. Нехватка профессионально обученных сотрудников в различных сферах, подготовка

которых требует от 8 до 11 лет (с учетом получения высшего специального образования и практики в высокотехнологичных научно-производственных учреждениях) [4].

Вывод. Таким образом, на основе проведенного исследования необходимо сформулировать следующие выводы.

- 1. Государство способствует обеспечению благоприятных условий, благодаря которым отечественные производители могут реализовать себя в импортозамещении в России. Важность конкурентоспособности не уменьшается. Наоборот, предприятия обязаны обратить внимание на качество выпускаемой продукции, поняв тем самым, что вхождение продукции на рынок должно обеспечивать не только государство, но и само предприятие.
- 2. После принятия государством политики импортозамещения в России, условия, которые временно создаются, должны предполагать обязательные работы по модернизации предприятий.
- 3. Политика импортозамещения способствует проведению мероприятий по повышению качества выпускаемой продукции.
- 4. Результат представленной политики должен способствовать последующему увеличению конкурентоспособности, безопасности и доступности на российском экономическом рынке.
- 5. Импортозамещение в России подразумевает положительный эффект, действие которого должно ощущаться производителем, государством и потребителем.

Таким образом, грамотность в разработке и реализации политики импортозамещения в России должна привести к следующим результатам: повышению конкурентоспособности среди предприятий одной страны; стимулированию притока вложений из других стран; созданию новых рабочих мест (также и высокотехнологичных); увеличению доходов и благосостояния населения; стимулированию экономического роста; решению проблем, связанных с импортом товаров и продуктов; обеспечению экономической и продовольственной безопасности государства.

Библиографический список:

- 1. Елецкий, Н. Д., Столбовская А. Г. Импортозамещение в России: не проблема, а задача // Молодой ученый. 2015. №6. С. 406-408. URL: https://moluch.ru/archive/86/16390/ (дата обращения: 24.01.2018).
- 2. Зажигалкин А.В. О программе стандартизации в области импортозамещения [Электронный ресурс]. URL: http://www.slideshare.net/ssuser200359/ss-47856384 (дата обращения 27.07.2015).
- 3. Импортозамещение в России [Электронный ресурс]. URL: http://newsruss.ru/doc/index.php/ (дата обращения 25.01.2018).
- 4. Коваленко, С., Сарварова, Р., Чибугаева, С. Импортозамещение как фактор роста экономики страны // Молодой ученый. - 2015. - №24. - С. 466-468.
- 5. Немеш, Е. А. Анализ импортозамещения в России // Молодой ученый. 2016. №13.1. С. 69-73. URL: https://moluch.ru/archive/117/30358/ (дата обращения: 24.01.2018).
- 6. Показатели, характеризующие импортозамещение в России. Официальная статистика [Электронный ресурс]. URL: http://www.gks.ru (дата обращения: 15.05.2016).
- 7. Половинкин, В. Н., Фомичев, А. Б. Проблемы импортозамещения в отечественной экономике // Экспертный союз. 2014. № 12 (42). URL: http://www.unionexpert.ru/index.php/zhurnal-qekspertnyj-soyuzq-osnova/zhurnal qehkspe rtnihyj-soyuzq-122014g/item/655-problemy-importozameschenia
- 8. Путин В. В. Послание Президента РФ Федеральному собранию от 03.12.2015. URL:

- http://www.kremlin.ru/events/president/transcripts/messages/5 0864 (дата обращения 25.01.2018).
- 9. Росстат. Доклад «Социально-экономическое положение России». 2015/ Росстат. М., 2015. С. 108–138. URL: http://www.gks.ru/bgd/regl/b15_01/ (дата обращения 25.01.2018).
- 10. Счетная палата РФ: возможности импортозамещения ограничены объемами производства [Электронный ресурс]. URL: http://sitv.ru/arhiv/news/economics/72801/ (дата обращения 25.01.2018).
- 11. Федосеева, Γ . А. Мировой опыт развития импортозамещения промышленного производства / Γ . А. Федосеева // Известия Иркутской государственной экономической академии. 2015. T. 25, № 6. C. 1036–1043.
- 12. Цухло, С. П. Процесс пошел: как происходит импортозамещение в промышленности [Электронный ресурс] // РБК. 2015. № 6. URL: http://www.rbc.ru/opinions/economics (дата обращения 20.06.2016).
- 13. Шматко, А.О. Проблема вариативности финансовой поддержки инновационной деятельности высокотехнологичных предприятий // Экономика и предпринимательство. 2013. № 10 (39). С. 722-724.
- 14. Baer W. Import Substitution and Industrialization in Latin America: Experiences and Interpretations // Latin American Research Review. 2013. Vol. 7. No. 1. P. 95-122.
- 15. Funke M., Ruhwedel R. Product Variety and Economic Growth: Empirical Evidence for the OECD Countries // IMF Staff Papers. 2014. Vol. 48. No. 2. P. 1.
- 16. Tacchella A., Cristelli M., Caldarelli G., Gabrielli A.,

- Pietronero L. Economic complexity: Conceptual grounding of a new metrics for global competitiveness // Journal of Economic Dynamics and Control. 2013. Vol. 37. No. 8. P. 1683-1691.
- 17. Årezki R., Hadri K., Loungani P., Rao Y. Testing the Prebisch-Singer hypothesis since 1650: Evidence from panel techniques that allow for multiple breaks // IMF Working Paper. 2013. No. 13/180.
- 18. Dollar D., Kraay A. Trade, growth, and poverty // Economic Journal. 2014. Vol. 114. No. 493. P. 22-49.
- 19. Saleem H. N. Import substitution in the manufacturing sector // New Delhi: Ashish Printers & Publication.2015. Vol.

References:

- Stolbovskaya A.G. Importoza-1. Eletskii N.D., meshchenie v Rossii: ne problema, a zadacha. Molodoi 2015;6:406-408. uchenyi. URL: https://moluch.ru/archive/86/16390/ (data obrashcheniya: 24.01.2018). [Eletskii N.D., Stolbovskaya A.G. Import substitution in Russia: not a problem, but a task. Young scientist. 2015;6:406-408. URL: https://moluch.ru/archive/86/16390/ date: 24.01.2018). (In Russ.)]
- 2. Zazhigalkin A.V. O programme standartizatsii v oblasti importozameshcheniya [Elektronnyi resurs]. URL: http://www.slideshare.net/ssuser200359/ss-47856384 (data obrashcheniya 27.07.2015). [Zazhigalkin A.V. About the programme of standardisation in the field of import substitution [Electronic resource]. URL: http://www.slideshare.net/ssuser200359/ss-47856384 (access date 27.07.2015). (In Russ.)]
- 3. Importozameshchenie v Rossii [Elektronnyi resurs]. URL: http://newsruss.ru/doc/index.php/ (data obrashcheniya 25.01.2018). [Import substitution in Russia [Electronic resource]. URL: http://newsruss.ru/doc/index.php/ (access date 25.01.2018). (In Russ.)]
- 4. Kovalenko S., Sarvarova R., Chibugaeva S. Importozameshchenie kak faktor rosta ekonomiki strany. Molodoi uchenyi. 2015;24:466-468. [Kovalenko S., Sarvarova R., Chibugaeva S. Import substitution as a factor of the country's economic growth. Young scientist. 2015;24:466-468. (In Russ.)]
- 5. Nemesh E. A. Analiz importozameshcheniya v Rossii. Molodoi uchenyi. 2016;13(1):69-73. URL: https://moluch.ru/archive/117/30358/ (data obrashcheniya: 24.01.2018). [Nemesh E. A. Analysis of import substitution in Russia. Young scientist. 2016;13(1):69-73. URL: https://moluch.ru/archive/117/30358/ (access date: 24.01.2018). (In Russ.)]
- 6. Pokazateli, kharakterizuyushchie importozameshchenie v Rossii. Ofitsial'naya statistika [Elektronnyi resurs]. URL: http://www.gks.ru (data obrashcheniya: 15.05.2016). [Indicators characterizing import substitution in Russia. Official statistics [Electronic resource]. URL: http://www.gks.ru (access date: 15.05.2016). (In Russ.)]
- 7. Polovinkin V.N., Fomichev, A.B. Problemy importozameshcheniya v otechestvennoi ekonomike. Ekspertnyi soyuz. 2014;12(42). URL: http://www.unionexpert.ru/index.php/zhurnalqekspertnyj-soyuzq-osnova/zhurnal qehkspe rtnihyjsoyuzq-122014g/item/655-problemyimportozameschenia. [Polovinkin V.N., Fomichev, A.B.

- 18. No. 8. P. 11.
- 20. [Электронный pecypc]. URL: https://www.eg-online.ru/article/261445/ (дата обращения: 24.12.2017).
- 21. [Электронный ресурс]. URL: http://voprosik.net/slozhnosti-importozameshheniya-v-rossii/(дата обращения: 10.12.2017).
- 22. [Электронный ресурс]. URL: https://topwar.ru/134061-kormit-stranu-nechem-importozameschenie-provaleno.html (дата обращения: 24.01.2018).

Problems of import substitution in the domestic economy. Expert Union. 2014;12(42). URL: http://www.unionexpert.ru/index.php/zhurnal-qekspertnyj-soyuzq-osnova/zhurnal qehkspe rtnihyj-soyuzq-122014g/item/655-problemy-importozameschenia. (In Russ.)]

- 8. Putin V.V. Poslanie Prezidenta RF Federal'nomu sobraniyu ot 03.12.2015. URL: http://www.kremlin.ru/events/president/transcripts/messa ges/50864 (data obrashcheniya 25.01.2018). [Putin V.V. Message of the President of the Russian Federation to the Federal Assembly from 03.12.2015. URL: http://www.kremlin.ru/events/president/transcripts/messa ges/50864 (access date 25.01.2018). (In Russ.)]
- 9. Rosstat. Doklad "Sotsial'no-ekonomicheskoe polozhenie Rossii". 2015/ Rosstat. M.; 2015. S. 108–138. URL: http://www.gks.ru/bgd/regl/b15_01/ (data obrashcheniya 25.01.2018). [Rosstat. The report "Social and Economic Situation in Russia". 2015/ Rosstat. M.; 2015. P. 108–138. URL: http://www.gks.ru/bgd/regl/b15_01/ (access date 25.01.2018). (In Russ.)]
- 10. Schetnaya palata RF: vozmozhnosti importozameshcheniya ogranicheny ob"emami proizvodstva [Elektronnyi resurs]. URL: http://sitv.ru/arhiv/news/economics/72801/ (data obrashcheniya 25.01.2018). [The Accounting Chamber of the Russian Federation: the possibilities of import substitution are limited by the volumes of production [Electronic resource]. URL: http://sitv.ru/arhiv/news/economics/72801/ (access date 25.01.2018). (In Russ.)]
- 11. Fedoseeva G.A. Mirovoi opyt razvitiya importozameshcheniya promyshlennogo proizvodstva. Izvestiya Irkutskoi gosudarstvennoi ekonomicheskoi akademii. 2015;25(6):1036-1043. [Fedoseeva G.A. World experience of development of import substitution of industrial production. Izvestiya Irkutskoi gosudarstvennoi ekonomicheskoi akademii. 2015;25(6):1036–1043. (In Russ.)] 12. Tsukhlo S.P. Protsess poshel: kak proiskhodit importozameshchenie v promyshlennosti [Elektronnyi resurs]. 2015;6. URL: http://www.rbc.ru/opinions/economics (data obrashcheniya 20.06.2016). [Tsukhlo S.P. The process started: how the import substitution occurs in the industry [Elecresource]. RBK. 2015;6. URL: http://www.rbc.ru/opinions/economics date (access 20.06.2016). (In Russ.)]
- 13. Shmatko A.O. Problema variativnosti finansovoi podderzhki innovatsionnoi deyatel'nosti vysokotekhnologichnykh predpriyatii. Ekonomika i predprinimatel'stvo. 2013;10(39):722-724. [Shmatko A.O. The

problem of the variability of financial support for innovative activities of high-tech enterprises. Economy and Entrepreneurship. 2013;10(39):722-724. (In Russ.)]

- 14. Baer W. Import Substitution and Industrialization in Latin America: Experiences and Interpretations. Latin American Research Review. 2013;7(1):95-122.
- 15. Funke M., Ruhwedel R. Product Variety and Economic Growth: Empirical Evidence for the OECD Countries. IMF Staff Papers. 2014;48(2):1.
- 16. Tacchella A., Cristelli M., Caldarelli G., Gabrielli A., Pietronero L. Economic complexity: Conceptual grounding of a new metrics for global competitiveness. Journal of Economic Dynamics and Control. 2013;37(8):1683-1691.
- 17. Arezki R., Hadri K., Loungani P., Rao Y. Testing the Prebisch-Singer hypothesis since 1650: Evidence from panel techniques that allow for multiple breaks. IMF Working Paper. 2013;13/180.
- 18. Dollar D., Kraay A. Trade, growth, and poverty. Economic Journal. 2014;114(493):22-49.

- 19. Saleem H. N. Import substitution in the manufacturing sector. New Delhi: Ashish Printers & Publication. 2015;18(8):11.
- 20. [Elektronnyi resurs]. URL: https://www.eg-online.ru/article/261445/ (data obrashcheniya: 24.12.2017). [[Electronic resource]. URL: https://www.eg-online.ru/article/261445/ (data access date: 24.12.2017). (In Russ.)]
- 21. [Elektronnyi resurs]. URL: http://voprosik.net/slozhnosti-importozameshheniya-v-rossii/(data obrashcheniya: 10.12.2017). [[Electronic resource]. URL: http://voprosik.net/slozhnosti-importozameshheniya-v-rossii/(access date: 10.12.2017). (In Russ.)]
- 22. [Elektronnyi resurs]. URL: https://topwar.ru/134061-kormit-stranu-nechem-importozameschenie-provaleno.html (data obrashcheniya: 24.01.2018). [[Electronic resource]. URL: https://topwar.ru/134061-kormit-stranu-nechem-importozameschenie-provaleno.html (access date: 24.01.2018) (In Russ.)]

Сведения об авторах:

Алёхина Татьяна Алексеевна - кандидат экономических наук, доцент.

Захаркина Наталья Владимировна - кандидат экономических наук, доцент.

Information about the authors.

Tatyana A. Alyokhina – Cand. Sci. (Economics), Assoc. Prof.

Natalya V. Zakharkina - Cand. Sci. (Economics), Assoc. Prof.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 26.12.2017.

Принята в печать 31.01.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 26.12. 2017.

Accepted for publication 31.01.2018.

Для цитирования: Исмаилова Ш.Т., Юсуфова А.М. Стимулирование как механизм развития строительных организаций. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 236-244. DOI:10.21822/2073-6185-2018-45-1-236-244

For citation: Ismailova Sh.T., Yusufova A.M. Stimulation as an effective development instrument for building organisations. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 236-244. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-236-244

ЭКОНОМИЧЕСКИЕ НАУКИ

УДК: 69.003

DOI: 10.21822/2073-6185-2018-45-1-236-244

СТИМУЛИРОВАНИЕ КАК МЕХАНИЗМ РАЗВИТИЯ СТРОИТЕЛЬНЫХ ОРГАНИЗАЦИЙ

Исмаилова Ш.Т.¹, **Юсуфова А.М**². ¹⁻²Дагестанский государственный технический университет, ¹⁻²367026 г. Махачкала, пр. И. Шамиля, 70, Россия

¹e-mail: shani717@mail.ru,²e-mail: u.agahka@yandex.ru

Резюме. Цель. Целью исследования является систематизация теоретических и организационно-экономических основ стимулирования развития строительного производства, реализация которых способствует повышению эффективности функционирования строительных организаций на долгосрочный период в условиях модернизации экономики; а также разработка комплекса практических мер по совершенствованию существующих форм и методов стимулирования развития строительных организаций. Метод. В ходе исследования использованы общенаучные методы, среди которых можно выделить системный подход, основанный на анализе и синтезе, графический метод и методы статистического анализа. Результат. Определена приоритетная цель государственной политики в отношении развития строительной отрасли – формирование и обеспечение наиболее безопасной и комфортной среды жизнедеятельности населения. Для достижения этой цели особое внимание уделено формированию эффективного механизма стимулирования развития строительного производства, который обеспечит долговременный экономический рост отрасли и экономике страны в целом. Доказано, что в современных условиях, когда предъявляются высокие требования к процессу стимулирования развития строительных организаций и поднимаются проблемы обеспечения его эффективности, особо важными становятся вопросы о классификации способов, условий и факторов стимулирующего воздействия, которые раскрыты в данной статье. Вывод. Подтверждено, что стимулирование как функция управления, способствует динамичному экономическому развитию строительных организаций. Формирование системы стимулирования развития строительных организаций связано с реализацией конкурентной стратегии развития, предусматривающей переход строительных организаций к инновационным преобразованиям, к применению новых технологиий и расширению рыночных ниш.

Ключевые слова: строительство, строительная организация, стимулирование, мотивирование, экономический рост, интенсивный тип экономического развития, инновация, интенсивность, НТП

ECONOMIC SCIENCE

STIMULATION AS AN EFFECTIVE DEVELOPMENT INSTRUMENT FOR BUILDING ORGANISATIONS

Shani T. Ismailova¹, Agahanum M. Yusufova²

¹⁻²Daghestan State Technical University,

¹⁻²70 I. Shamilya Ave., Makhachkala, 367026, Russia,

¹e-mail: shani717@mail.ru,²e-mail: u.agahka@yandex.ru

Abstract Objectives. The purpose of the study was to systematise the theoretical and organisational and economic foundations of stimulating the development of construction production, the implementation of which contributes to the long-term functional effectiveness of construction organisations under the conditions of economic modernisation as well as the development of a set of practical measures to improve existing forms and methods for stimulating the development of construction organisations. Methods. Over the course of the research, general scientific approaches were used, including a system approach based on analysis and synthesis, graphical and statistical analysis methods. Results. The priority goal of state policy regarding the development of the construction industry is defined, namely the provision of an optimally safe and comfortable environment for the lives of residents. To achieve this goal, special attention is paid to the formation of an effective mechanism for stimulating the development of construction production to ensure the long-term economic growth of the industry and the economy of the country as a whole. It is shown that under modern conditions, when high demands are placed on the process of stimulating the development of construction organisations and problems of ensuring its effectiveness are identified, issues relating to the classification of stimulation methods, conditions and factors disclosed in this article become especially important. Conclusion. It is confirmed that stimulation as a management function contributes to the dynamic economic development of construction organisations. The formation of a system for stimulating the development of construction organisations is associated with the implementation of a competitive development strategy that provides for the transition of construction organisations to innovative transformations, as well as to the application of new technologies and the expansion of market niches.

Keywords: construction, construction organisation, stimulation, motivation, economic growth, intensive type of economic development, innovation, intensity, STP

Введение. В экономике любой страны особую роль играет строительная отрасль, задающая темпы экономического развития страны в целом. Экономический кризис и продолжающиеся экономические санкции неизбежно затронули строительную отрасль и внесли в нее большие коррективы.

Особо следует отметить, что одной из основных причин кризиса и приостановки развития является свертывание ранее принятых инвестиционных проектов, остановка или ограничение производства строительных материалов, снижение платежеспособности потенциальных потребителей жилья и строительных материалов [1-6].

В этих условиях хозяйствования строительные организация просто вынуждены выстраиваться в комбинации методов и способов рыночной регулировки с постепенным усилением таких рыночных элементов и механизмов, как стимулирование производства и организаций.

Постановка задачи. Строительная отрасль является генератором инновационного развития огромного количества смежных отраслей промышленности и одной из важнейших точек роста национальной экономики. В строительной отрасли функционирует большое количество различных организаций, участвующих в процессе создания новых объектов и производственных мощностей.

Инновационный путь развития Российской Федерации и задачи связанные с реализацией ее национальной стратегии, определяют необходимость широкомасштабного повышения инвестиционной активности, роста объектов капитальных вложений в новое строительство.

В связи с замедлением промышленного развития и снижением темпов экономического роста в сфере торговли и услуг, многие предприятия этой сферы деятельности, с целью минимизации своих издержек, прекращают расширения производства за счет нового строительства и одновременно замораживания начатое строительство. Помимо слабой инвестиционной активности, основными проблемами, негативно влияющими на предпринимательскую деятельность в строительной отрасли, на данный момент являются высокая внутриотраслевая конкуренция и монопольное положение отдельных строительных организаций, избыточные административные барьеры, а также несовершенство технического регулирования, расхождение строительных норм и сводов правил с международными стандартами [7-8].

На основе данных Росстата сгруппированы основные экономические показатели, характеризующее вид деятельности «Строительство».

 Таблица 1. Основные экономические показатели строительной отрасли

 Table 1. The main economic indicators of the construction industry [9]

№	Наименование показателя	Отчетные периоды			
Π/Π		2014г.	2015г.	2016г.	
1.	Доля строительства в ВВП РФ в	5,5%	6,4 %	5,2	
	сопоставимых ценах				
2.	Объем работ выполненных по	6125,2	6148,4	6184,4	
	виду деятельности млрд.руб.				
3.	Среднегодовая численность за-	5,6 млн. чел.	5,5 млн. чел.	1 млн. чел.	
	нятых в отрасли	(8,4%)	(7,6%)	(3%)	
4.	Количество зарегистрирован-	818	832	512,4	
	ных юр. лиц тыс.				

Одним из немаловажных показателей, используемых для определения состояния и динамики развития строительной отрасли, является индекс предпринимательского доверия (уверенности) (ИПД), определяемый в отраслевом контексте, в частности индекс предпринимательского доверия в строительстве (рис.1).

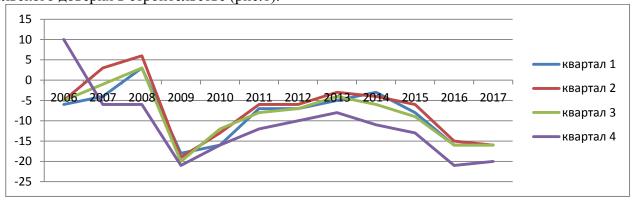


Рис.1. Динамика индекса предпринимательского доверия (ИПД) [8] Fig.1. Dynamics of the index of entrepreneurial trust (IPD)

В IV квартале 2016 года, ИПД в строительство составил -21%, что на 8% ниже, чем в IV квартале 2015 года, а в IV квартале 2017 года этот показатель поднялся 4% и составил -17%. Отрицательное значение данного показателя указывает на низкий уровень деловой активности на данный момент, то есть строительная отрасль находится в зоне неблагоприятного делового климата.

Но, тем не менее, в настоящее время появилась реальная возможность перехода отрасли к экономическому росту, так как заметным становится процесс макроэкономической стабилизации, который связан в основном с восстановлением экономики, снижением инфляционных и курсовых рисков, повышением доходности некоторых экономических агентов, стабилизацией реальных доходов и заработной платы населения и рядом других факторов. Все эти и другие позитивные факторы, в случае их дальнейшего улучшения, способствуют стимулированию

государства, корпоративного сектора и домашних хозяйств к увеличению своей инвестиционной активности в реализации строительных проектов с целью увеличения производства и удовлетворения отложенного спроса на жилье [10].

В этой связи проблемы развития строительного производства в новых условиях хозяйствования занимают центральное место в политике государства. И особое значение приобретают проблемы стимулирования развития строительного производства. Для решения этих проблем, особое внимание следует уделить формированию эффективного механизма стимулирования развития строительного производства, который обеспечит долговременный экономический рост в отрасли и в экономике в целом.

Методы исследования. Экономический рост является ключевым фактором социальноэкономического развития хозяйствующего субъекта. Экономический рост сопровождается повышением эффективности производства, сокращением безработицы, стабильностью цен и другими положительными экономическими и социальными процессами. Повышение эффективности производства может осуществляться интенсивным, экстенсивным и комплексным способами. Однако необходимо подчеркнуть, что экономический рост и развитие не идентичные понятия. Экономический рост — строго говоря, увеличение определенных показателей предприятия: выручки, стоимости активов и т.д., который может происходить вместе с развитием или даже при его отсутствии. А развитие это понятие, которое более тесно связано с качеством выпускаемой продукции, технологиями, управлением, инновационной политикой строительного предприятия в целом, т.е. развитие строительных организаций можно получить, применив интенсивные и смешанные типы экономического роста [1, 10].

Использование интенсивного типа экономического развития строительными организациями предполагает, прежде всего, улучшение технологий производства, повышение производительности труда и применение инновационных подходов при выполнении всех видов строительных работ [10].

Инновации характеризуются более высоким технологическим уровнем, новыми потребительскими качествами товара или услуги по сравнению с предыдущим продуктом. Инновационный процесс охватывает цикл от возникновения идеи до ее практической реализации. Основная масса инноваций реализуется в рыночной экономике предпринимательскими структурами как средство решения производственных, коммерческих задач, как важнейший фактор обеспечения стабильности их функционирования, экономического роста и конкурентоспособности. Качество реализованных нововведений существенно зависит от того, как организован инновационный процесс [11].

Обсуждение результатов. Современный этап развития строительных организаций предъявляет высокие требования к организации стимулирования инновационной деятельности и поднимает проблему обеспечения его эффективности. В рамках разработки механизма стимулирования инновационного развития строительных предприятий, очень важен вопрос о классификации способов, условий и факторов стимулирующего воздействия.

Стимулы, равно как и мотивы, служат в качестве факторов влияния, которые руководители применяют с целью достижения определенных целей и результатов. С данной точки зрения стимулирование рассматривается нами, подобно одной из основных функций управления строительной организацией. Организация стимулирования здесь основана на исполнении интересов управления и в то же время, являясь условием развития системы интересов, как владельцев, так и исполнителей.

Под формой организации стимулирования строительного производства подразумевается метод взаимосвязи результатов данной деятельности и стимулов, выделенных согласно установленному правилу. Все стимулы можно относительно разделить на: материальные и нематериальные. Основные виды и формы стимулирования приведены в табл. 2. [12]

 Таблица 2. Виды и формы организация стимулирования строительного производства

 Table 2. Types and forms of organization of incentives for construction

Критерий	Rulli w dopmil crumylupopaling	I		
<u> </u>	Виды и формы стимулирования Материальное:	Краткая характеристика в качестве стимула принимаются		
Исходя из предмета потребности	•	· · · · · · · · · · · · · · · · · · ·		
потреоности	- материальное денежное	денежные выплаты и санкции;		
	MOTORNO III NOO NOTONOMINO	в качестве стимула используют-		
	-материальное неденежное	ся те материальные блага, кото-		
		рые невозможно купить за день-		
		ги в рамках действующего за-		
		конно, либо имеются в дефици-		
	II.	те.		
	Нематериальное стимулирование:	регулирование действий объек-		
	- стимулирование временем	тов управления на основе про-		
		должительности рабочего вре-		
	Vone vi voe envi vivine povive	мени;		
	- моральное стимулирование	общественное или государствен-		
		ное признание заслуг, повыше-		
	TRAILED OF CENTRAL THE OPENING	ние или понижение престижа;		
	- трудовое стимулирование	основано на изменении чувства		
		удовлетворенности проделанной работой.		
По степени	Опережающую форму стимулирова-	сведения о данной взаимосвязи		
информированности	ния	предоставляется до начало дея-		
информированности	пил	тельности;		
	Подкрепленную форму стимулиро-	стимул как бы подкрепляет уже		
	вания	ранее осуществленные действия,		
	Бинул	т.е. объект управления узнают		
		только лишь при завершении		
		деятельности.		
По учету результата	Коллективная	по результатам деятельности в		
строительной органи-	TOOM ON THE PROPERTY OF THE PR	целом всего рабочего коллекти-		
зации при установле-		Ba;		
нии стимула	Индивидуальная	по итогам работы отдельного		
		сотрудника.		
По учету отклонения	Позитивная	преобладания нормативных, ли-		
результатов деятель-	110011111111111111111111111111111111111	бо плановых показателей;		
ности от нормативных	Негативная	недовыполнение планов и нор-		
		мативов.		
По временному лагу	Непосредственная	временной лаг не имеется;		
между итогами и по-	Текущая	стимулируется с отставанием от		
лучением стимула	3 1	результатов деятельности до		
,	Перспективная	года;		
	*	сначала стимул, потом резуль-		
		тат.		
По степени и характе-	Общая	отсутствует конкретность в		
ру конкретности усло-	Эталонная	оценке результатов;		
вий получения стиму-		за достижения конкретных, за-		
ла:		ранее оговоренных результатов.		

В настоящей практической деятельности данные формы применяются, как правило, в комплексе [13-16].

В зависимости от интенсивности затрат на инновационную деятельность выделяют пропорциональное, прогрессивное и регрессивное стимулирование. При пропорциональном виде стимулирование основывается на постоянной мере стимула, которая изначально определена и принята как нормальная, удовлетворяющая изменение затрат усилий или их интенсивность, и предполагает пропорциональное изменение меры стимула. Регрессивное стимулирова-

ние основывается на убывающей мере стимула. Прогрессивное стимулирование основывается на возрастающей мере стимула.

Можно выделить следующие условия стимулирующего воздействия на строительных организациях: зависимость между активностью инновационной деятельности и стимулированием; определенность принципов стимулирования; стабильность критериев оценки активности стимулирования; особенности объекта стимулирования [17-18].

Стимулирование развития строительной отрасли может быть эффективным, если его организационно-экономический механизм отвечает следующим принципам:

- 1. Комплексность означает единство всех используемых материальных и нематериальных, индивидуальных и коллективных, поощряющих стимулов;
- 2. Дифференцированность разнообразие стимулов в зависимости от видов нововведений;
- 3. Информативность означает необходимость создания системы непрерывного сбора информации о нововведениях;
- 4. Гибкость—изменчивость, предусматривает безпрерывный процесс выработки инновационных идей на всех этапах жизненного цикла инновации;
- 5. Оперативность обеспечение оперативности в принятии решений в условиях потенциальных проблем инновационного развития строительных предприятий;
- 6. Участие работников в стимулировании инновационной активности выражается в оценке, анализе и контроле условий развития строительных организаций.

Формирование системы стимулирования развития строительных организаций связано с реализацией конкурентной стратегии, в рамках которой основным средством развития рассматривается инновация [19-20]. Стимулирование развития строительных предприятий предполагает необходимость разработки и применения современных форм и методов управления этим процессом. При выборе этих форм необходимо учитывать факторы, влияющие на процесс стимулирования, сгруппированные в табл.3 [21].

Таблица 3. Факторы, влияющие на выбор способа стимулирования Table 3. Factors influencing the choice of the method of stimulation

№ п/п	Группы факторов	Факторы, стимулирующие развитие строительной отрасли	Факторы, препятствующие развитию строительных организаций		
1.	Технологические	- использование передовых технологий и оборудований; - наличие современных НТСП (научно-технические средства производства);	устаревшая материально- техническая база;устаревшие технологии;недоиспользование мощно- стей.		
2.	Организационно- правовые	 государственная поддержка инновационного развития; нормативная база регулирующая деятельность; 	- законодательные ограничения со стороны налоговой, ФАС; - сложность получения патентов и лицензий.		
3.	Организационно- управленческие	-стратегическое планирование инновационного развития; - формирование целевых проблемных групп; - реинжииринг;	- преобладание интересов те- кущего планирования; -излишняя централизация управления.		
4.	Экономические	- материальное поощрение; - наличие различных резервов;	-недостаток средств на финан- сирование инновационных про- ектов.		
5.	Социальные	- возможность самореализации и творческого развития; - общественное признание; -здоровый психологический климат;	- боязнь новшеств, изменений; - наличие стереотипов; - сопротивление новшествам.		

Вывод. Можно выделить два основных направления организации системы стимулирования развития строительных организаций:

- изменение всей структуры управления в единую систему, скоординировав связи между ними как по горизонтали, так и по вертикали. Это позволит интегрировать все стадии проекта развития в единый непрерывный процесс, консолидировать ресурсы для выполнения крупномасштабных задач;
- создание самостоятельной структуры, которая будет управлять процессами развития,
 т.е. систему управления инновационными процессами. Система управления инновационными процессами будет обособлена от всей традиционной системы управления

Выбор системы управления строительной организации будет зависить от финансового состояния и от тех целей, которые ставит перед собой хозяйствующий субъект.

Следует отметить, что существующие проблемы функционирования и развития строительных предприятий говорят о необходимости стимулирования их развития и о необходимости поиска новых форм и методов повышения результативности деятельности. В целом стимулирование развития строительной отрасли позволит интенсифицировать процесс производства, что напрямую повлияет на благосостояние общества, а также повысить восприимчивость строительных организаций к НТП.

В этом контексте под стимулированием мы понимаем общую функцию управления, которая характеризует всю совокупность существующих средств и методов воздействия на активизацию инновационно-производственной деятельности, способствующая экономическому развитию предприятия.

Библиографический список:

- 1. Дикарева А. А., Мирская М. И. Сущность стимулирования труда и его функции. // Социология труда. М.: Высш. шк. 1989. с. 163.
- 2. Стратегия инновационного развития строительной отрасли Российской Федерации до 2030 года. http://dokipedia.ru/document/5235823?pid=102. 2016.-314c. Серия: Бакалавр и магистр. Академический курс.
- 3. https://www.fedstat.ru/indicator/31450 Единая межведомственная информационно-статистическая система.
- 4. Весин В.Р. Управление персоналом. Теория и практика: учебник для вузов/ В,Р. Веснин.-М.: Проспект, 2008.- 688 с.
- 5. Гасанова Н.М. Методы и инструменты стимулирования инновационной деятельности предприятий строительного комплекса // РППЭ. 2016. №3 (65). URL: https://cyberleninka.ru/ article/n/metody-i-instrumenty-stimulirovaniya-innovatsionnoy-devatelnosti-predprivativ-stroitelnogo-kompleksa. (дата
- deyatelnosti-predpriyatiy-stroitelnogo-kompleksa (дата обращения: 09.04.2018).
- 6. Еременко М.М. Инструменты стимулирования индивидуального жилищного строительства в республике Беларусь// Актуальные проблемы науки XXI века. 2016. № 5. С. 22-26.
- 7.http://www.gks.ru/wps/wcm/connect/rosstat_main/ross tat/ru/statistics/accounts/ Официальный сайт Федеральной службы государственной статистики.
- 8. Бирюкова А.А., Сычева А.В. Третьякова Ю.В. Динамика и перспективы строительной отрасли// Экономические науки. №58-2, 09.01.2017г.
- 9. Каминский М.А. Исследование требований к деятельности строительных предприятий в условиях новой модели экономического роста// Экономика и предпринимательство. 2013. №11/40. С. 456-458.

- 10. Esetova A.M., Pavliuchenko E.I., Ismailova Ch.T., Levitsky T.Y. System Restructuring as a Factor of Increasing Management Efficiency in Construction. Indian Journal of Science and Technology. 2015; 8(s10): 247-255. DOI: 10.17485/ijst/2015/v8iS10/IPL0810.
- 11. Ежегодные обследования в строительстве за 2017 год. 1c. indikatori_DAS.xls.
- 12. Типы экономического роста. Типы и факторы экономического роста. https://www.syl.ru/article/167911/new_tipyi-ekonomicheskogo-rosta-tipyi-i-faktoryi-ekonomicheskogo-rosta
- 13. https://www.cmpro.ru/
- 14. Calof J., Richards G., Smith J. (2015) Foresight, Competitive Intelligence and Business Analytics. Tools for Making Industrial Programmes More Efficient. Foresight-Russia, vol. 9, no 1, pp. 68–81. DOI: 10.17323/1995-459X.2015.1.68.81
- 15. Мазаева М. Р., Луферова А. Д. Совершенствование мотивации труда управленческого персонала строительных организаций // Век качества. 2017. №2. URL:

https://cyberleninka.ru/article/n/sovershenstvovanie-motivatsii-truda-upravlencheskogo-personala-stroitelnyh-organizatsiy

- 16. Фарухов Т.А., Эсетова А.М. Основные направления инновационного развития строительного производства // Вестник ДГТУ. Технические науки. 2014. №4. URL: https://cyberleninka.ru/article/n/osnovnyenapravleniya-innovatsionnogo-razvitiya-stroitelnogo-proizvodstva
- 17. Усманов И. А., Буриев Х. Т. Пути совершенствования стимулирования повышения качества работ в сельском строительстве // ЭВД. 2018. №1 (51). URL: https://cyberleninka.ru/article/n/puti-

sovershenstvovaniya-stimulirovaniya-povysheniyakachestva-rabot-v-selskom-stroitelstve

- 18. Батуков С.А. Перспективные направления развития строительной отрасли России // Российское предпринимательство. 2008. Том 9. № 12. С 102-105.
- 19. Мзоков А.Р. Финансовые аспекты системы вознаграждения сотрудников компаний // Лидерство и менеджмент. 2017. Том 4. № 3. С. 139-151. doi: 10.18334/lim.4.3.38179102-105.
- 20. Разаханова Ф.М. Особенности импортозамеще-

References:

- 1. Dikareva A.A., Mirskaya M.I. Sushchnost' stimulirovaniya truda i ego funktsii. Sotsiologiya truda. M.: Vyssh. shk; 1989. 163 s. [The essence of labour stimulation and its functions. Sociology of labour. M.: Vyssh. shk; 1989. 163 p. (In Russ.)]
- 2. Strategiya innovatsionnogo razvitiya stroitel'noi otrasli Rossiiskoi Federatsii do 2030 goda. http://dokipedia.ru/document/5235823?pid=102. [Strategy of innovative development of the construction industry of the Russian Federation until 2030. http://dokipedia.ru/document/5235823?pid=102. (In Russ.)]
- 3. https://www.fedstat.ru/indicator/31450 Edinaya mezhvedomstvennaya informatsionno-statisticheskaya sistema. [https://www.fedstat.ru/indicator/31450 Unified interdepartmental information and statistical system. (in Russ.)]
- 4. Vesin V.R. Upravlenie personalom. Teoriya i praktika: uchebnik dlya vuzov. M.: Prospekt; 2008. 688 s. [Vesin V.R. Personnel Management. Theory and practice: a textbook for universities. M.: Prospekt; 2008. 688 p. (In Russ.)]
- 5. Gasanova N.M. Metody i instrumenty stimulirovaniya innovatsionnoi deyatel'nosti predpriyatii stroitel'nogo kompleksa. RPPE. 2016;3(65). URL: https://cyberleninka.ru/article/n/metody-i-instrumenty-stimulirovaniya-innovatsionnoy-deyatelnosti-predpriyatiy-stroitelnogo-kompleksa (data obrashcheniya: 09.04.2018). [Gasanova N.M. Methods and tools for stimulating innovation activities of enterprises of the construction complex. RPPE. 2016;3(65). URL: https://cyberleninka.ru/article/n/metody-i-instrumenty-stimulirovaniya-innovatsionnoy-deyatelnosti-predpriyatiy-stroitelnogo-kompleksa (access date: 09.04.2018).
- 6. Eremenko M.M. Instrumenty stimulirovaniya individual'nogo zhilishchnogo stroitel'stva v respublike Belarus'. Aktual'nye problemy nauki XXI veka. 2016;5:22-26. [Eremenko M.M. Tools for stimulating individual housing construction in the Republic of Belarus. Aktual'nye problemy nauki XXI veka. 2016;5:22-26. (In Russ.)]
- 7. http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/r u/statistics/accounts/ Ofitsial'nyi sait Federal'noi sluzhby gosudarstvennoi statistiki. [http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/st atistics/accounts/ Official website of the Federal State Statistics Service. (In Russ.)]
- 8. Biryukova A.A., Sycheva A.V. Tret'yakova Yu.V. Dinamika i perspektivy stroitel'noi otrasli. Ekonomicheskie nauki. 2017;58-2. 09.01.2017 g. [Biryukova A.A., Sycheva A.V. Tret'yakova Yu.V. Dynamics and prospects of the construction industry. Economic sciences. 2017;58-2. 09.01.2017 (In Russ.)]
- 9. Kaminskii M.A. Issledovanie trebovanii k deyatel'nosti stroitel'nykh predpriyatii v usloviyakh novoi modeli ekonomicheskogo rosta. Ekonomika i predprinimatel'stvo. 2013;11/40:456-458. [Kaminskii M.A. Research requirements for the activities of construction companies in the new model of economic growth. Economy and Entrepreneurship. 2013;11/40:456-458. (In Russ.)]
- 10. Esetova A.M., Pavliuchenko E.I., Ismailova Ch.T., Levitsky T.Y. System Restructuring as a Factor of Increasing Man-

- ния строительных материалов на рынке строительной продукции. Вестник Дагестанского государственного технического университета. Технические науки. 2017;44(4):223-233. DOI:10.21822/2073-6185-2017-44-4-223-233
- 21. Озерникова Т.Г. Система мотивации и стимулировании трудовой деятельности [Электронный ресурс]: учеб. пособие/ Озерникова Т.Г.- Иркутск: Издательство БГУ, 2016. 183 с.
- agement Efficiency in Construction. Indian Journal of Science and Technology. 2015;8(s10):247-255. DOI: 10.17485/ijst/2015/v8iS10/IPL0810.
- 11. Ezhegodnye obsledovaniya v stroitel'stve za 2017 god. 1s. indikatori_DAS.xls. [Annual surveys in construction for 2017. 1s. indikatori_DAS.xls. (In Russ.)]
- 12. Tipy ekonomicheskogo rosta. Tipy i faktory ekonomicheskogo rosta. https://www.syl.ru/article/167911/new_tipyiekonomicheskogo-rosta-tipyi-i-faktoryi-ekonomicheskogo-rosta [Types of economic growth. Types and factors of economic growth. https://www.syl.ru/article/167911/new_tipyiekonomicheskogo-rosta-tipyi-i-faktoryi-ekonomicheskogo-rosta (in Russ.)]
- 13. https://www.cmpro.ru/ [https://www.cmpro.ru/ (In Russ.)] 14. Calof J., Richards G., Smith J. Foresight, Competitive Intelligence and Business Analytics. Tools for Making Industrial Programmes More Efficient. Foresight-Russia. 2015;9(1):68–81. DOI: 10.17323/1995-459X.2015.1.68.81
- 15. Mazaeva M. R., Luferova A. D. Sovershenstvovanie motivatsii truda upravlencheskogo personala stroitel'nykh organizatsii. Vek kachestva. 2017;2. URL: https://cyberleninka.ru/article/n/sovershenstvovanie-motivatsiitruda-upravlencheskogo-personala-stroitelnyh-organizatsiy [Mazaeva M. R., Luferova A. D. The improving of work motivation of the administrative personnel of construction organisations. The of quality. 2017;2. age https://cyberleninka.ru/article/n/sovershenstvovanie-motivatsiitruda-upravlencheskogo-personala-stroitelnyh-organizatsiy (In
- 16. Farukhov T.A., Esetova A.M. Osnovnye napravleniya innovatsionnogo razvitiya stroitel'nogo proizvodstva. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2014;4(35):200-209. URL: https://cyberleninka.ru/article/n/osnovnye-napravleniya-innovatsionnogo-razvitiya-stroitelnogo-proizvodstva [Farukhov T.A., Esetova A.M. The basic directions of innovative development of building production. Herald of Daghestan State Technical University. Technical Sciences. 2014;4(35):200-209. URL: https://cyberleninka.ru/article/n/osnovnye-napravleniya-innovatsionnogo-razvitiya-stroitelnogo-proizvodstva (In Russ.)]
- 17. Usmanov I.A., Buriev Kh.T. Puti sovershenstvovaniya stimulirovaniya povysheniya kachestva rabot v sel'skom stroitel'stve. Ekonomicheskii vestnik Donbassa. 2018;1(51):160-163. URL: https://cyberleninka.ru/article/n/puti-sovershenstvovaniya-stimulirovaniya-povysheniya-kachestva-rabot-v-selskom-stroitelstve [Usmanov I.A., Buriev Kh.T. Ways to improve incentives to increase the work quality in rural construction. Ekonomicheskii vestnik Donbassa. 2018;1(51):160-163. URL: https://cyberleninka.ru/article/n/puti-sovershenstvovaniya-stimulirovaniya-povysheniya-kachestva-rabot-v-selskom-stroitelstve (In Russ.)]
- 18. Batukov S.A. Perspektivnye napravleniya razvitiya stroitel'noi otrasli Rossii. Rossiiskoe predprinimatel'stvo. 2008;9(12):102-105. [Batukov S.A. Prospective directions of development of the construction industry in Russia. Russian journal of entrepreneurship. 2008;9(12):102-105. (In Russ.)]

19. Mzokov A.R. Finansovye aspekty sistemy voznagrazhdeniya sotrudnikov kompanii. Liderstvo i menedzhment. 2017;4(3):139-151. DOI: 10.18334/lim.4.3.38179102-105. [Mzokov A.R. Financial aspects of the remuneration system of company employees. Leadership and management. 2017;4(3):139-151. DOI: 10.18334/lim.4.3.38179102-105. (In Russ.)]

20. Razakhanova F.M. Osobennosti importozameshcheniya stroitel'nykh materialov na rynke stroitel'noi produktsii. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2017;44(4):223-233.

DOI:10.21822/2073-6185-2017-44-4-223-233 [Razakhanova F.M. Features of import substitution of building materials in the construction products market. . Herald of Daghestan State Technical University. Technical Sciences. 2017;44(4):223-233. DOI:10.21822/2073-6185-2017-44-4-223-233 [In Russ.]] 21. Ozernikova T.G. Sistema motivatsii i stimulirovanii trudovoi deyatel'nosti [Elektronnyi resurs]: ucheb. posobie. Irkutsk: Izdatel'stvo BGU; 2016. 183 s. [Ozernikova T.G. System of motivation and stimulation of work [Electronic resource]: a tutorial. Irkutsk: Izdatel'stvo BGU; 2016. 183 p. (In Russ.)]

Сведения об авторах:

Исмаилова Шани Тагировна – доктор экономических наук, профессор, заведующая кафедрой экономической теории.

Юсуфова Агаханум Мирземагомедовна – старший преподаватель, кафедра экономической теории. **Information about the authors:**

Shani T. Ismailova – Dr. Sci. (Economics), Prof., Head of the Department of Economic Theory.

Agahanum M. Yusufova – Senior Lecturer, Department of economic theory.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 09.01.2018.

Принята в печать 15.02.2018.

Conflict of interest.

The authors declare no conflict of interest.

Received 09.01.2018.

Accepted for publication 15.02.2018.

Для цитирования: Оборин М.С. Перспективы развития инфраструктуры строительных объектов на сельских территориях. Вестник Дагестанского государственного технического университета. Технические науки. 2018; 45 (1): 245-254. DOI:10.21822/2073-6185-2018-45-1-245-254

For citation: Oborin M.S. Prospective infrastructural development of building objects in rural territories. Herald of Daghestan State Technical University. Technical Sciences. 2018; 45 (1): 245-254. (In Russ.) DOI:10.21822/2073-6185-2018-45-1-245-254

ЭКОНОМИЧЕСКИЕ НАУКИ

УДК: 338.48

DOI: 10.21822/2073-6185-2018-45-1-245-254

ПЕРСПЕКТИВЫ РАЗВИТИЯ ИНФРАСТРУКТУРЫ СТРОИТЕЛЬНЫХ ОБЪЕКТОВ НА СЕЛЬСКИХ ТЕРРИТОРИЯХ

Оборин М.С.

Пермский институт (филиал) Российского экономического университета имени Г.В. Плеханова,

614070, г. Пермь, ул. бульвар Гагарина, 57, Россия,

Пермский государственный национальный исследовательский университет

614990, г. Пермь, ул. Букирева, 15, Россия,

Пермский государственный аграрно-технологический университет им. ак. Д.Н. Прянишникова,

614990, г. Пермь, ул. Петропавловская, 2, Россия,

Сочинский государственный университет

354000, г. Сочи, ул. Советская, 26-а, Россия

e-mail: recreachin@rambler.ru

Резюме: Цель. Целью исследования является изучение состояния и оценка перспектив развития инфраструктуры строительства на примере Пермского края. Метод. Методами исследования являются системный подход, ситуационный анализ, формально-логический метод, диалектический метод исследования социально-экономических процессов. Результат. Доказана важная роль инфраструктуры строительной отрасли в социально-экономическом развитии регионов. Установлено, что создание инфраструктуры строительных объектов на сельских территориях способствует повышению занятости, обеспечению комплексного эффекта для укрепления национальной безопасности, росту доходов населения, развитию бизнес-структур. К первоочередным мерам создания инфраструктуры относится техническая оснащенность строительной отрасли. Не менее значимой является коммунальная инфраструктура, влияющая на качество продукции и санитарно-гигиенические условия труда. Особая роль принадлежит транспортной обеспеченности, поскольку от качества и наличия транспортно-логистических сетей зависит эффективность сбытовой деятельности, снабжения, соблюдения сроков производства. Вывод. Исследование инфраструктуры строительной отрасли позволило выявить проблемы транспортной обеспеченности основных процессов, высокую себестоимость и снижение рентабельности застройщиков в отдаленных местностях и сельских территориях, которые не приспособлены для организации бесперебойного производственного цикла. Сельские территории остро нуждаются в реализации государственных программ, которые комплексно направлены на преобразование социальноэкономического пространства, инфраструктурный рост. Организация системного инвестиционного процесса будет способствовать повышению количественно-качественных характеристик объектов инфраструктуры, повлечет развитие строительства, обеспечение достойного уровня жизни населения, роста заработной платы и занятости жителей сельских территорий. Решению основных инфраструктурных проблем строительства на сельских территориях страны может способствовать ориентированность государственной политики на экономическую безопасность отдельных регионов; упрощение системы поставки продукции от производителя к потребителю без потери качества; развитие транспортнологистических сетей.

Ключевые слова: строительство, экономическая безопасность, инфраструктура, транспорт, техническая оснащенность, сельские территории, показатели, себестоимость строительства, цены на жилье

ECONOMIC SCIENCE PROSPECTIVE INFRASTRUCTURAL DEVELOPMENT OF BUILDING OBJECTS IN RURAL TERRITORIES

Matvey S. Oborin

Perm Institute (branch) of Plekhanov Russian University of Economics 57 Gagarina Blvd, Perm 614070, Russia, Perm State University, 15 Bukireva Str., Perm, 614990, Russia, D.N. Pryanishnikov Perm State Agro-Technological University, 23 Petropavlovskaya Str., Perm, 614990, Russia, Sochi State University, 26a Sovetskaya Str., Sochi 354000, Russia, e-mail: recreachin@rambler.ru

Abstract Objectives. The purpose is to study the present state and developmental prospects of the rural built environment infrastructure and to assess its impact on the sustainable growth of regional socio-economic indicators on the example of the Perm Territory. Methods. Research methods included the system approach, situational analysis, the formal-logical method and the dialectical method of studying social and economic processes. Results. The important role of the built environment infrastructure in the socio-economic development of the regions is demonstrated. It is established that the creation of the built environment infrastructure in rural areas contributes to the increase of employment, providing a comprehensive effect for strengthening national security, increasing the incomes of the population and developing business structures. The primary measures for creating the infrastructure include the technical equipment of the construction industry. Equally important is the communal infrastructure, which affects the quality of products as well as providing sanitary and hygienic working conditions. A special role belongs to transport security, since the quality and availability of transport and logistic networks depends on the efficiency of marketing activities, supply, optimisation and compliance with production times. Conclusion. The investigation of the infrastructure of the construction industry makes it possible to identify problems related to the transport security of the primary processes, including high production costs and lower profitability of developers in remote and rural areas that are not adapted for the organisation of an uninterrupted production cycle. Rural territories are in acute need of the implementation of state programmes comprehensively aimed at transforming the socio-economic space and infrastructural growth. The systematic organisation of the investment process will contribute to the improvement of the quantitative and qualitative characteristics of infrastructure facilities and support construction development, ensuring a decent standard of living for the population through increased wages and employment of rural residents. The solution of the basic infrastructural problems related to construction in rural areas of the country can be facilitated by the orientation of state policy towards the economic security of individual regions, the simplification of the supply system of products from the producer to the consumer without loss of quality and the development of transport and logistic networks.

Keywords: construction, economic security, infrastructure, transport, technical equipment, rural areas, indicators, cost of construction, housing prices

Введение. Сложные макроэкономические условия привели к необходимости формирования концепции экономической безопасности, ее конкретизации в различных отраслях экономики.

Капитальное строительство является сложным материальным производством, обладающим особенностями, связанными с несколькими аспектами: социальным, экономическим, экологическим.

Первая часть связана с обеспечением норм безопасности, поскольку отрасль является одной из наиболее травмоопасных с точки зрения выполнения работ разных категорий; нару-

шение норм и правил возведения капитальных объектов могут повлечь в будущем нанесение ущерба здоровью и жизни людей; отсутствие комплексного подхода к управлению безопасностью и регулированию ответственности на всех уровнях способствует уязвимости. Экологический аспект, связанный с работами, заключается в контроле и превентивных мерах о не нанесении ущерба окружающей среде, что представляется сложным с точки зрения достижения нескольких целей, связанных с экономическим ростом и безопасностью. Некоторые территории России представляют собой депрессивные регионы, которые необходимо развивать, в том числе на основе комплексных проектов, предполагающих ввод новых объектов материальной инфраструктуры в эксплуатацию. Отдельные районы могут представлять ценность как особо охраняемые зоны, где строительство может быть запрещено. Наиболее сложным является регулирование экономического роста отрасли.

Опыт передовых стран и России свидетельствует о том, что развитие строительства оказывает мощный положительный эффект на экономику регионов и государств в целом. Капитальное строительство способствует обеспечению занятости работников разной квалификации, что существенно улучшает социальные показатели территории, обеспечивает рост доходов граждан и местных бюджетов. Материальная инфраструктура, которая является результатом инвестиционных проектов, оказывает преобразующее воздействие на региональное пространство, являясь основой других отраслей экономики: промышленности, гостиничного бизнеса и санаторно-курортного комплекса, сферы услуг, агропромышленного комплекса, транспорта.

Современный исторический этап, связанный с длительными кризисными явлениями, показал уязвимость отрасли строительства по ряду причин: сокращение денежной массы способствует снижению числа проектов, их длительной заморозке вследствие высоких затрат и неопределенности; чувствительность проявляет спрос рынка жилищной и коммерческой недвижимости, что увеличивает количество банкротств предприятий-застройщиков; поддержка на государственном и региональном уровнях не дает быстрого эффекта, в связи с этим в условиях дефицита ликвидности является труднореализуемой.

Вторая группа проблем относится непосредственно к самим сельским территориям: отток трудоспособного населения в регионы, районные центры, которые экономически более развиты; неразвитость бизнес-структур, обеспечивающих занятость и удовлетворяющих спрос местных жителей в товарах и услугах.

Исследования показывают, что техническая, коммуникационная и транспортная обеспеченность являются приоритетными при развитии строительства на сельских территориях страны, поскольку повышается качество снабжения и сокращаются затраты, снижаются сроки, вследствие чего возрастает рентабельность застройщика [1-5].

Постановка задачи. Недостаточная инфраструктурная обеспеченность является серьезным ограничивающим фактором в развитии строительства на сельских территориях. Достаточно много проектов связано с формированием материальной базы депрессивных регионов, но отсутствие транспортно-логистических сетей, качественных дорог и коммуникаций способствует заморозке, а иногда и свертыванию инвестиций в пользу более развитых субъектов РФ. В связи с этим возникает необходимость формирования инфраструктуры строительства, соответствующей потребностям региона и населения, отвечающей требованиям экономической эффективности.

Методы исследования. Системный подход заключается в комплексной оценке влияния инфраструктуры строительства на сопутствующие отрасли, социально-экономические показатели развития сельских территорий. Ситуационный анализ состоит в учете факторов и условий, оказывающих воздействие на объект исследования в данный период: состояние отрасли, наличие структурных и финансовых проблем, разработка новых направлений инвестирования в инфраструктурные объекты.

Формально-логический метод направлен на выявление причинно-следственной связи между изучаемым объектом и социально-экономическими показателями территориального развития и устойчивого роста экономики, в выявлении наиболее перспективных направления преобразования коммунальной и транспортной инфраструктуры сельских территорий.

Диалектический метод исследования социально-экономических процессов способствует пониманию направлений развития объекта исследования и моделированию показателей, характеризующих устойчивый рост отрасли строительства на сельских территориях.

Обсуждение результатов. Проблемы отрасли строительства рассматривались отечественными и зарубежными учеными-экономистами, выделим наиболее актуальные.

В современных условиях назревает необходимость формирования эффективного организационно-экономического механизма, ориентированного на учет особенностей регионов, муниципалитетов, сельских территорий, потребностей бизнеса, населения и государственных приоритетов по развитию субъектов страны [1-6]. Важная роль отводится государству как субъекту и потребителю отрасли, регулятору социально-экономических отношений в сфере строительства, направленных на интересы коммерческих структур и населения, важным инструментом являются программы, основанные на целевом подходе, системе показателей, контроле [2]. Некоторые исследователи комплексно подходят к анализу проблем отрасли с точки зрения безопасности, являющейся многоаспектной, затрагивающей политику субъектов бизнеса, региональных и федеральных органов власти, необходимость модернизации правовой системы [3]. Целесообразным является анализ динамики и тенденций ключевых показателей строительства в стране и отдельных регионах, оценка роли данной сферы деятельности в социально-экономическом развитии страны [4].

Развитие строительства как приоритетной экономической сферы рассматривается также многими зарубежными учеными, в основном подчеркивается связь с инвестициями в инфраструктурное обеспечение, выбор оптимальных параметров проектов с точки зрения социальной, коммерческой эффективности [9-13].

Актуальность исследований инфраструктурного потенциала территорий подтверждается большим количеством зарубежных публикаций, посвященных данной тематике.

Особенности формирования инновационной инфраструктуры представлены в трудах Mises, L [17]; специфика развития отраслевой инфраструктуры охарактеризована в работах Asfaw, S., Davis, B., Dewbre, J., Handa, S. & Winters, P. [8]; Evans, D.K. & Popova, A. [14].

Отдельно следует упомянуть Fujita, M. & Thisse, J. F. [15], Henderson, J. V. [16], исследующих промышленную инфраструктуру регионов, а также Porter, M. E. [18], раскрывающих проблемы становления индустриальных парков как актуального направления социально-экономического развития территорий.

Как показало проведенное исследование, отрасль строительства России находится в сложном положении. Рынок жилищного строительства России значительно отстает в развитии от стран ближнего и дальнего зарубежья. Приоритетными направлениями в области жилищной политики на среднесрочный период являются сохранение объемов жилищного строительства, государственная поддержка спроса на рынке жилья и повышение доступности жилья [7, 14-16].

Характерной особенностью отрасли жилищного строительства России является тот факт, что чуть больше половины введенной площади жилья приходится на 8 субъектов федерации. Лидерами по объемам жилищного строительства являлись: Москва и Московская область – 15,3 %, Краснодарский край - 5,6%, Санкт-Петербург и Ленинградская область – 6,6%, Республика Башкортостан - 3,4%, Тюменская область - 3,3%, Республика Татарстан – 3,0%, Ростовская область - 2,9%, Новосибирская область - 2,8%, Свердловская область - 2,6%, Республика Дагестан и Самарская область - по 2,3%.

Таким образом, центральные территории России являются лидерами практически по всем параметрам рынка жилищного строительства. Такое неравномерное распределение объемов ввода жилья связано с тем, что движение ресурсов, инвестиций и квалифицированной рабочей силы ориентировано на состоятельные регионы, а из депрессивных территорий наблюдается отток ресурсов, в том числе рабочей силы (развитая трудовая миграция). В итоге богатые регионы богатеют, бедные регионы если и не беднеют, то рост их благосостояния весьма ограничен. Объем работ выполненных по экономическому виду деятельности «Строительство» в целом по России в фактических ценах вырос в 2016 году по сравнению с предыдущим годом на 3%, тогда как в сопоставимых ценах — снизился на 2% (рис. 1).

Рис. 1. Объем работ по виду деятельности «Строительство» Динамика основных показателей строительства в России за 2016 год, % [7]

Fig. 1. Volume of works by type of activity "Construction" Dynamics of the main indicators of construction in Russia for 2016, % [7]

Прочие стоимостные показатели строительной отрасли, такие как средняя цена реализации 1 квадратного метра и стоимость его строительства также продемонстрировали динамику, сходную с общероссийскими показателями. Так средняя стоимость строительства 1 кв.метра во введенных в эксплуатацию жилых домах, построенных в 2016 г. составила в Пермском крае 39 334 рубля, что меньше общероссийского показателя на 4%, в 2015 г. – 35 801 рубль, в 2010 г. – 29 679 рублей. Средняя же цена 1 м² на первичном рынке жилья по сравнению с предыдущим годом выросла незначительно на 0,6% и в конце 2016 г. составила 52 300 рублей, что в 1,3 раза превышает среднюю фактическую стоимость строительства [5]. Если предположить, что пермские застройщики как и участники рынка из других регионов следуют правилу успешного продвижения жилых объектов на рынке и направляют на эти цели в среднем 5% от выручки, то рентабельность их затрат в 2016 году медленно, но неуколнно приблизилась к общероссийскому показателю и не превысила 25%, тогда как в предыдущие годы колебалась от 35 до 40% (рис. 2).

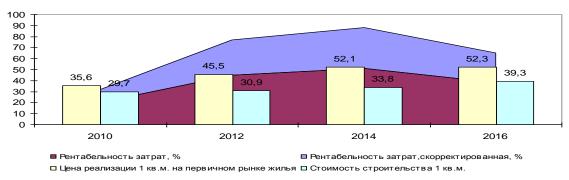


Рис. 2. Динамика основных показателей реализации и себестоимости строительства в России, тыс.руб.; % [7]

Fig. 2. Dynamics of the main indicators of realization and Prime cost of construction in Russia, thousand rubles.; % [7]

Серьезным фактором снижения маржинальности деятельности строительных компаний явился рост себестоимости материалов более чем на 25%. В течение 2016 года объем предложения на рынке новостроек сократился на 40%. Если в 2015-м в продаже фиксировалось рекордное за последние 5 лет количество квартир (около 4 тыс.), то в 2016 года количество предложений не превышало 2200 в месяц.

В 2016 году появилась тенденция перераспределения потребительского спроса из сегмента вторичного жилья в новое. Этому способствовала доступность ипотечных кредитов на квартиры в новостройках по договорам долевого участия и более высокая ликвидность нового жилья.

Рынок первичного жилья — единственный сегмент пермского рынка недвижимости, который в последние годы демонстрирует стабильную ценовую динамику. На протяжении 3 лет цены на рынке строящегося многоквартирного жилья в Перми сохраняются в пределах 52 тыс. руб./ кв. м. Рынок сохраняет прямую зависимость от доступности ипотечного кредитования.

По данным Банка России, объем предоставленных физическим лицам ипотечных кредитов на покупку жилья на первичном рынке (в рублях) в 2016 г. составил в Пермском крае 26,2 млрд. рублей, что больше объема выданных жилищных кредитов в 2015 г. на 22%. Темпы прироста количества выданных ипотечных кредитов по Пермскому краю за аналогичный период сформировались примерно на том же уровне. Средняя сумма ипотечного займа значительно уступает общероссийскому показателю 1,7, против 1,35 млн. руб. [5].

Важным показателем обеспечения развития отрасли строительства является транспортная инфраструктура. Степень согласованности и развитости этих систем влияет на экономику региона в целом, поскольку именно транспортная инфраструктура связывает все отрасли региона в единый механизм. Недостаточное обеспечение нарушает взаимодействие отраслей и может снижать темпы социально-экономического развития экономики региона, в том числе агропромышленного комплекса.

Являясь важной частью любого региона, инфраструктура (включая транспортную) обеспечивает сокращение времени перехода от стадии сырья (заготовок) продукции до покупки их конечным потребителем. В свою очередь от развития материальных объектов застройщика зависит стоимость транспортных услуг, объем использования транспортных услуг, транспортные затраты, поскольку только рациональное расположение позволяет определить оптимальные размеры перевозок.

Совершенствование транспортной инфраструктуры вокруг строящихся объектов позволит повысить уровень финансово-экономических связей между различными звеньями производства и снабжения. Сокращение сроков доставки продукции от одного звена в другой позволит уменьшить денежные потери на транспортировку.

Транспортная инфраструктура в Пермском крае за последние года характеризуется снижением количества перевозки грузов автомобильным и водным транспортом, ростом перевозок железнодорожным транспортом (табл. 1).

Таблица 1. Перевозки грузов по видам транспорта (тысяч	ı тонн) [7]
Table 1. The carriage of goods by modes of transport (thousand	nd tons) [7]

Рин і транапарта	2010г.	2011г.	2014г.	2016г.	Изменение	
Виды транспорта					Абс.	%
Транспорт, всего,						
в том числе	72811	66906	57635	53525	-19286	73,5
Железнодорожный	40828	40117	42173	41855	1027	102,5
Автомобильный	25659	22627	11376	9728	-15931	37,9
Внутренний (водный)	6324	4023	4085	1942	-4382	30,7

Снижение объемов перевозки грузов автомобильным транспортом может говорить, как и об ухудшении качества дорог Пермского края, так и, прежде всего, введении системы «Платон» для большегрузных перевозок. Данные меры коснулись и АПК Пермского края.

Для определения конкретной тенденции развития транспорта и АПК Пермского края рассмотрим динамику транспортной инфраструктуры по степени развития в регионе транспортных коммуникаций (автомобильных, железных дорог) (табл.2).

Таблица 2. Динамика развития транспортной инфраструктуры Пермского края [4; 5] Table 2. Dynamics of transport infrastructure in Perm region [4; 5]

П	Значение показателя по годам				Изм., %	
Показатель	2012	2013	2014	2015	2016	2016/2012
Плотность автомобильных дорог с твердым покрытием, км путей на 1000 км2 территории	118	124	128	130	134	113,6
Удельный вес автомобильных дорог с твердым покрытием в общей протяженности автомобильных дорог	70%	68%	68%	67%	69%	

Из табл. 2 видно, что несмотря на увеличение плотности дорог с твердым покрытием за последние 5 лет, их удельный вес в общем объеме автомобильных дорог снижался вплоть до 2016. Это является негативным фактором, поскольку именно автомобильные дороги с твердым покрытием являются основой транспортной инфраструктуры, как для экономики региона, так и для отрасли строительства. Увеличение данного показателя в 2016 году дает возможность делать оптимистичный прогноз о развитии автомобильных дорог региона.

В Пермском крае наблюдается противоречивая ситуация: с одной стороны происходит рост некоторых показателей (плотность автомобильных дорог с твердым покрытием, с другой стороны идет неоднозначный рост других важных показателей (удельный вес автомобильных дорог с твердым покрытием, объем производства отрасли строительства в сопоставимых ценах). Таким образом, можно сделать вывод о том, что идет медленное развитие строительства сельских территорий.

В тоже время, при рассмотрении карты дорог Пермского края можно видеть, что к южным районам пролегают крупные магистрали, что говорит о транспортной доступности этих регионов. Поэтому доступность для доставки строительных материалов в другие регионы осуществляется по нескольким маршрутам (рис. 3).

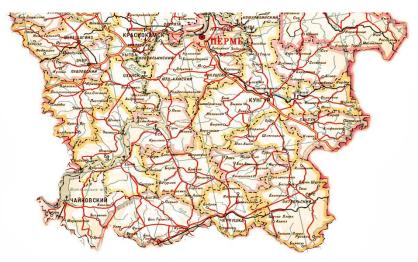


Рис. 3. Карта дорог южных районов Пермского края Fig. 3. Map of the roads of the southern districts of Perm Krai

Тем не менее, большинство дорог южных регионов, так и многих других находится в плохом состоянии. Согласно последним проведенным исследованиям более 22% региональных дорог Пермского края находятся в ненормативном состоянии, не соответствуют общепринятым стандартам. Свыше 19% дорог перегружены большим количеством транспорта. При этом большинство дорог имеет ускоренный износ из-за передвижения по ним большегрузных машин. С муниципальными трассами ситуация хуже — по официальным исследованиям около 43,8% из них находятся в ненормативном состоянии.

Таким образом, можно говорить о том, что обеспеченность дорогами, как основной ча-

стью транспортной инфраструктуры сельских территорий, достаточно слабая. Особенно это актуально для муниципальных территорий, поскольку большинство сельскохозяйственных предприятий находятся в сельской местности.

Все вышеуказанное говорит о том, что транспортная инфраструктура имеет достаточно сильное влияние на развитие строительства в сельских территориях Пермского края, поскольку хорошая обеспеченность различными путями сообщения позволяет развиваться экономике более интенсивно.

К сожалению, оценивая ситуацию в Пермском крае, можно лишь говорить о небольшом улучшении транспортной инфраструктурой в последние годы. Несмотря на то, что достаточно значительная часть бюджета расходуется на строительство и реконструкцию автомобильных дорог, радикальные изменения отсутствуют. Это может говорить либо о некачественном подборе материалов для строительства дорог, либо о малой обеспеченностью дорогами в одном направлении, что приводит к большему их износу.

При этом развитие строительства на сельских территориях региона имеет постепенную, устойчивую тенденцию к росту. Все это говорит о необходимости постоянного участия государства в инвестиционной поддержке социального, транспортного и производственного развития отдаленных регионов, которая в современных условиях должна быть направлена не столько на увеличение отдельных количественных показателей производства, сколько на способность привлечения стабильного инвестирования, обеспечивающего капитальное и жилищное строительство, достижению более полного удовлетворения социальных потребностей и качества жизни сельского населения, сохранению и приумножению объектов инфраструктуры.

Вывод. Строительство как вид экономической деятельности является одним из приоритетных для решения стратегических задач. В первую очередь речь идет о повышении качества жизни населения за счет улучшения жилищных условий. Другой аспект заключается в формировании материально-технической базы других отраслей, которые не могут развиваться без материальных объектов: заводов, санаториев, гостиниц, складских помещений, гаражей и автопарков. Сельские территории остро нуждаются в реализации государственных программ, которые комплексно направлены на преобразование социально-экономического пространства, инфраструктурный рост.

Развитие объектов материальной инфраструктуры сельских территорий повышает экономическую устойчивость хозяйств, снижает риск непредвиденных потерь. Однако не во всех регионах климатические и экономические условия позволяют проводить масштабную модернизацию инфраструктуры.

Сегодня активно проводится модернизация сельских территорий, реализуются крупные инвестиционные проекты, направленные на повышение качества жизни населения, формирования материальной основы экономики и социальных услуг. Одновременно необходимо предотвратить риск роста структурной безработицы среди сельского населения, должностные обязанности которого подпадают под автоматизацию.

Для предотвращения подобных явлений необходимо заранее способствовать формированию новых рабочих мест.

Решению основных инфраструктурных проблем строительства на сельских территориях страны может способствовать формирование системы нормативно-правовой и экономической поддержки малого бизнеса; ориентированность государственной политики на экономическую безопасность отдельных регионов; упрощение системы поставки продукции от производителя к потребителю без потери качества; развитие транспортно-логистических сетей.

Библиографический список:

- 1. Гладкова О.Н. Организационно-экономический механизм регионального рынка строительства жилья// Baikal Research Journal. 2013. № 5. С. 89-96.
- 2. Ларин С. Н. Экономическое обоснование эффективности программ воспроизводства жилищного фонда// Региональная экономика: теория
- и практика. 2012. № 29 (260). С. 41-52.
- 3. Мхитарян Ю.И. Национальная безопасность и ее обеспечение в строительной отрасли Российской Федерации// Власть. 2016. № 6. С. 52-61.
- 4. Паттури Я.В. Жилищное строительство в России: анализ состояния и перспективы развития отрасли// Вестник Новгородского государственного

- университета им. Ярослава Мудрого. 2011. № 9. С. 14-23.
- 5. Пермский край в цифрах. 2017: Краткий статистический сборник/Территориальный орган Федеральной службы государственной статистики по Пермскому краю. Пермь, 2017. 193 с.
- 6. Пожилова И.В. Актуальные аспекты оптимизации региональной жилищной политики// Вестник Волгоградского государственного университета. Серия 3: Экономика. Экология. 2014. № 9. С. 69-77.
- 7. Федеральная служба государственной статистики. [Электронный ресурс]. Режим доступа: http://www.gks.ru/ (дата обращения: 01.02.2017).
- 8. Asfaw, S., Davis, B., Dewbre, J., Handa, S. & Winters, P. (2014). Cash transfer programme, productive activities and labour supply: evidence from a randomized experiment in Kenya. The Journal of Development Studies, 50(8): 1172–1196.
- 9. Gatti, S. (2014). Private Financing and Government Support to Promote Long-term Investments in Infrastructure, OECD Publishing, Paris.
- 10. Gatti, S. and Della Croce, R. (2015). International trends in infrastructure finance, in Caselli S., Corbetta G., Vecchi V. (2015), Public Private Partnership for infrastructure and business development, Palgrave Macmillan, New York.
- 11. Gatti S., Vecchi V., Borgonovo E., Cusumano N.,

Amadio S. (2014). Do Public Guarantees to Infrastructure Investments Engender Moral Hazard of Private Bidders? A Multiple Agents Based Simulation. Paper Laboratorio ASPI – Bocconi.

- 12. Hellowell M., Vecchi V., Caselli S. (2015). Return of the State? An Appraisal of Policies to Enhance Access to Credit for Infrastructure-based PPPs, Public Money Management, 35 (1): 71-78.
- 13. Helm, d. and Tindall, T. (2009). The Evolution of Infrastructure and Utility Ownership and its Implications, Oxford Review of Economic Policy, Vol. 25, No. 3: 52-59.
- 14. Evans, D.K. & Popova, A. 2014. Cash transfers and temptation goods:a review of global evidence. World Bank Policy Research Working Paper No.6886. Washington, DC, World Bank.
- 15. Fujita, M. & Thisse, J. F. (2002). Economics of Aglomeration Cities, Industrial Location, and Regional Growth. Cambridge University Press.
- 16. Henderson, J. V. (1988). Urban Development. Theory, Fact and Illusion. Oxford: Oxford University Press.
- 17. Mises, L. (2005). Human Action: a treatise on economic theory. Moscow, Society, 717. (In Russian).
 18. Porter, M. E. (1998). On competition. Cambridge. MA: A Harvard Business Review Book.

References:

- 1. Gladkova O.N. Organizatsionno-ekonomicheskii mekhanizm regional'nogo rynka stroitel'stva zhil'ya. Baikal Research Journal. 2013;5:89-96. [Gladkova O.N. The organisational and economic mechanism of the regional housing market. Baikal Research Journal. 2013;5:89-96. (In Russ.)]
- 2. Larin S. N. Ekonomicheskoe obosnovanie effektivnosti programm vosproizvodstva zhilishchnogo fonda. Regional'naya ekonomika: teoriya i praktika. 2012;29(260):41-52. [Larin S. N. Economic rationale for the effectiveness of programs for the reproduction of housing stock. Regional Economics: Theory and Practice. 2012;29(260):41-52. (In Russ.)]
- 3. Mkhitaryan Yu.I. Natsional'naya bezopasnost' i ee obespechenie v stroitel'noi otrasli Rossiiskoi Federatsii. Vlast'. 2016;6:52-61. [Mkhitaryan Yu.I. National security and its provision in the construction industry of the Russian Federation. The Authority. 2016;6:52-61. (In Russ.)]
- 4. Patturi Ya.V. Zhilishchnoe stroitel'stvo v Rossii: analiz sostoyaniya i perspektivy razvitiya otrasli. Vestnik Novgorodskogo gosudarstvennogo universiteta im. Yaroslava Mudrogo. 2011;9:14-23. [Patturi Ya.V Housing construction in Russia: analysis of the state and prospects for the development of the industry. Vestnik of Yaroslav the Wise Novgorod State University 2011;9:14-23. (In Russ.)]
- 5. Permskii krai v tsifrakh. 2017: Kratkii statisticheskii sbornik. Territorial'nyi organ Federal'noi sluzhby gosudarstvennoi statistiki po Permskomu krayu. Perm'; 2017. 193 s. [Perm region in figures. 2017: A Brief Statistical

- Digest. Territorial body of the Federal State Statistics Service for Perm Krai. Perm'; 2017. 193 p. (In Russ.)]
- 6. Pozhilova I.V. Aktual'nye aspekty optimizatsii regional'noi zhilishchnoi politiki. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 3: Ekonomika. Ekologiya. 2014;9:69-77. [Pozhilova I.V. Relevant aspects of optimisation of regional housing policy. Science Journal of VolSU. Global Economic System. 2014;9:69-77. (In Russ.)]
- 7. Federal'naya sluzhba gosudarstvennoi statistiki. [Elektronnyi resurs]. Rezhim dostupa: http://www.gks.ru/ (data obrashcheniya: 01.02.2017). [Federal Service of State Statistics. [Electronic resource]. Available at: http://www.gks.ru/ (Access date: 01.02.2017). (In Russ.)]
- 8. Asfaw S., Davis B., Dewbre J., Handa S. & Winters P. Cash transfer programme, productive activities and labour supply: evidence from a randomized experiment in Kenya. The Journal of Development Studies. 2014;50(8):1172–1196.
- 9. Gatti S. Private Financing and Government Support to Promote Long-term Investments in Infrastructure. OECD Publishing: Paris; 2014.
- 10. Gatti S. and Della Croce R. International trends in infrastructure finance. Public Private Partnership for infrastructure and business development. Palgrave Macmillan: New York; 2015.
- 11. Gatti S., Vecchi V., Borgonovo E., Cusumano N., Amadio S. Do Public Guarantees to Infrastructure Investments Engender Moral Hazard of Private Bidders? A Multiple Agents Based Simulation. Paper Laboratorio ASPI Bocconi; 2014.

- 12. Hellowell M., Vecchi V., Caselli S. Return of the State? An Appraisal of Policies to Enhance Access to Credit for Infrastructure-based PPPs. Public Money Management. 2015;35(1):71-78.
- 13. Helm D. and Tindall T. The Evolution of Infrastructure and Utility Ownership and its Implications. Oxford Review of Economic Policy. 2009;25(3):52-59.
- 14. Evans D.K. & Popova A. Cash transfers and temptation goods: a review of global evidence. World Bank Policy Research Working Paper No.6886. Washington DC: World Bank. 2014.
- 15. Fujita M. & Thisse J. F. Economics of Aglomeration Cities, Industrial Location, and Regional Growth. Cambridge University Press; 2002.
- 16. Henderson J. V. Urban Development. Theory, Fact and Illusion. Oxford: Oxford University Press; 1988.
- 17. Mises L. Human Action: a treatise on economic theory. Moscow, Society, 717. 2005 (In Russian).
- 18. Porter M. E. On competition. Cambridge. MA: A Harvard Business Review Book; 1998

Сведения об авторе:

Оборин Матвей Сергеевич – доктор экономических наук, профессор.

Information about the authors:

Matvey S. Oborin - Dr. Sci. (Economics), Prof.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов. **Поступила в редакцию** 02.02.2018.

Принята в печать 01.03.2018.

Conflict of interest.

The author declare no conflict of interest.

Received 02.02.2018.

Accepted for publication 01.03.2018.

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ СТАТЕЙ

Верстка журнала осуществляется с электронных копий. Используется компьютерная обработка штриховых и полутоновых (в градациях серого) рисунков. Журнал изготавливается по технологии офсетной печати. В редакцию журнала необходимо представить:

- распечатку рукописи (2 экз.); распечатка должна представлять собой письменную копию файла статьи;
 - электронную копию (допустима передача по электронной почте);
 - экспертное заключение о возможности опубликования в открытой печати (1 экз.);
 - метаданные авторов (1 экз.);

Правила оформления текста

Текст подготавливается в текстовом редакторе MicrosoftWord. Статья должна предусматривать разделы: «Введение», «Постановка задачи», «Методы исследования», «Обсуждение результатов», «Вывод». Объем непосредственно содержания статьи должен составлять не менее9 -10 страниц машинописного текста.

Формулы подготавливаются во встроенном редакторе формул MicrosoftWord или в редакторе MathType.

Шрифтовое начертание обозначений в формулах, в таблицах и в основном тексте должно быть полностью идентичным.

Ссылки на формулы и таблицы даются в круглых скобках, ссылки на использованные источники (литературу) - в квадратных скобках.

Формат бумаги A4. Параметры страницы: поля - левое 3 см, верхнее и нижнее 2 см, правое 1,5 см; колонтитулы отсутствуют.

Элементы заглавия публикуемого материала

- УДК/ББК
- Перечень авторов (разделяется запятыми, инициалы после фамилий, на русском и английском языке); выравнивание слева.
 - Название статьи (на русском и английском языке).
- Аннотация (Abstract) 200-250 слов, характеризующих содержание статьи (на русском и английском языке).
- Ключевые слова (keywords) 5-10 слов или словосочетаний, отражающих содержание статьи (на русском и английйском языке).

Каждый элемент заглавия приводится, начиная с новой строки; выравнивание проводится по центру.

Основной текст

Шрифт TimesNewRoman 12 pt, выравнивание по ширине, первая строка с отступом1,25 см, межстрочный интервал - 1.

Библиографический список

В статье указывается строка с текстом «**Библиографический список»**. Библиографический список на русском языке выполняется по ГОСТ Р 7.0.5 -2008.

Библиографический список должен составлять не менее 20 наименований источников литературы, среди которых от 30-70 % ссылок на иностранные источники. Ссылки на неопубликованные работы не допускаются.

Обязательно цитирование современных работ, изданных по тематике статьи за последние

5 лет. Доля ссылок на статьи авторов рукописи, изданных ранее, не должна превышать 20% от общего количества ссылок.

Библиографический список обязательно должен быть переведен на английский язык. «References» должен быть составлен по стандарту «Ванкувер».

Ссылки на материалы, размещенные на электронных носителях, следует допускать в крайнем случае.

Редакция оставляет за собой право потребовать от автора замены ссылки, если на момент обработки статьи по указанному адресу материал будет отсутствовать.

Справка об авторах

Включает для каждого автора фамилию, имя, отчество (полностью), ученую или академическую степень, ученое звание, название и полный адрес места работы. Обязательно указывается адрес электронной почты. Сведения представляются на русском и английском языках.

Верстка формул

Формулы подготавливаются во встроенном редакторе формул MicrosoftWord или в редакторе MathType; нумеруются только те формулы, на которые есть ссылки в тексте статьи; использование при нумерации букв и других символов не допускается.

Выписанные в отдельную строку формулы выравниваются по середине строки, номер заключается в круглые скобки и выравнивается по правому краю текста. Все впервые встречающиеся в формуле обозначения должны быть расшифрованы сразу после формулы.

Верстка рисунков

Рисунки, представляющие собой графики, схемы и т. п., должны быть выполнены в графических векторных редакторах (встроенный редактор MicrosoftWord, CorelDraw, MicrosoftVisio и т. п.). Использование точечных форматов (.bmp, .jpeg, .tif, .html) допустимо только для рисунков, представление которых в векторных форматах невозможно (фотографии, копии экрана монитора и т. п.). Название рисунка указывается на русском и английском языках.

Верстка таблиц

Таблица состоит из следующих элементов: нумерационного заголовка (слова «Таблица» и ее номера арабскими цифрами); шапки (заголовочной части), включающей заголовки граф (объясняют значение данных в графах); боковика (первой слева графы) и прографки (остальных граф таблицы). Название таблицы указывается на русском и английском языках.

Требования к рецензированию и хранению рецензий научных статей, поступивших в редакцию журнала

Научная статья, поступившая в редакцию журнала, рассматривается ответственным редактором на соответствие тематике и направлениям журнала, правилам оформления и наличие сопроводительных документов.

Редакция осуществляет рецензирование всех поступающих в редакцию материалов, с целью их экспертной оценки. Все рецензенты являются признанными специалистами по тематике рецензируемых материалов. Рецензии хранятся в редакции издания в течение 5 лет.

При поступлении соответствующего запроса редакция вправе направлять копии рецензий в Министерство образования и науки РФ.

План-график издания журнала

Выпуск 1 (март) – прием статей до 31 декабря предыдущего года;

Выпуск 2 (июнь) – прием статей до 31 марта текущего года;

Выпуск 3 (сентябрь) – прием статей до 30 июня текущего года;

Выпуск 4 (декабрь) – прием статей до 30 сентября текущего года.

Редколлегия оставляет за собой право производить редакционные изменения, не искажающие основное содержание статьи.

Статьи, не отвечающие правилам оформления, к рассмотрению не принимаются. Рукописи и электронные носители авторам не возвращаются. Датой поступления считается день получения редколлегией окончательного текста статьи.

Адрес редакционного совета: 367026, РД, г. Махачкала, пр. И. Шамиля, 70, ФГБОУ ВО «ДГТУ», Учебно-лекционный корпус 2, редакция журнала «Вестник Дагестанского государственного технического университета. Технические науки». Технические вопросы можно выяснить по электронному адресу: vestnik.dgtu@mail.ru и по телефону 8(8722)62-39-64.

FORMATTING REQUIREMENTS FOR PAPERS

Electronic copies are used when laying out the journal. Computer processing is used for line and halftone (grayscale) graphics. The journal is produced by offset printing technology. Therefore, the following should be submitted to the editor:

- a printout of the manuscript (2 copies.); the printout should be a hard copy of the electronic article file:
 - electronic copy (e-mail is acceptable);
 - an expert opinion supporting the article's suitability for publication (1 copy);
 - Information about authors.

Guidance for the preparation of texts

The text should be prepared in Microsoft Word. The article must include sections entitled: "Introduction", "Background", "Methods", "Results and Discussion", "Conclusion". The article itself is supposed to comprise at least 9-10 if typewritten pages.

Formulae should be prepared in Microsoft Word's built-in equation editor or MathType.

Font symbols used in formulae, tables and in the main text must be completely identical.

References to formulae and tables are given in round brackets; references to the sources referred to (literature) – in square brackets.

Paper size - A4. Page setup: margins - left 3 cm, top and bottom - 2 cm, right - 1.5 cm; no headers or footers.

Elements of the title of the published material

- UDC / LBC
- List of authors (separated by commas; initials after surnames; in Russian and English); alignment *right*.
 - Title of the article (in Russian and English).
- Abstract 200-250 words or 850 characters describing the content of the article (in Russian and English).
- \bullet Keywords 5-10 words or phrases that reflect the content of the article (in Russian and English).
 - Each title element should start on a new line; aligned centre.

Body text

Font TimesNewRoman 12 pt, full justification, first line with 1.25 cm indentation, line spacing – 1.

Bibliography

The bibliography list should be entitled References. References in Russian prepared according to GOST R 7.0.5 -2008.

The reference list is considered to include at least 20 names of literature sources, including 30–70% of references to foreign sources. References to unpublished works are not permitted.

Only recent works on the subject of the article published within the past 5 years should be cited. The proportion of references to articles previously published by the authors should not exceed 20% of the total number of references.

The bibliography must be translated into English. "References" should be drawn up according to the "Vancouver" standard. Please indicate your chosen standard when formulating the bibliography.

Links to material on electronic media shall be allowed as a last resort. The editors reserve the right to require a replacement reference from the author if an item is absent at a specified address at the time of processing of the article.

Information about authors

For each author, the following information should be provided: first name, middle name (or patronymic) and last name, scientific or academic degree, academic title, brief academic biography (no more than 5-6 lines), name and full address of place of work. The specification of an email address is mandatory.

Composition of formulas

Formulas should be prepared in the built MicrosoftWord equation editor or MathType Editor; only those formulas that are referenced in the text should be numbered; the use of letters or other characters is not permitted when enumerating equations.

Formulas written out on a separate line are aligned to the middle of the line; their respective numbers shall be in parentheses and right-aligned. All symbols occurring in the formula for the first time must be decoded immediately after the formula.

Layout of figures

Drawings, consisting of graphs, charts, etc. should be prepared in graphic vector editors (the internal editor of MicrosoftWord, CorelDraw, MicrosoftVisio etc.). The use of bitmap formats (.bmp, .jpeg, .tif) is only permissible for graphics whose presentation is not possible in vector formats (photos, screenshots, etc.).

Layout of tables

A table should consist of the following elements: numerical title (the word "Table" and its number in Arabic numerals); title (header section) including column headings (explaining the meaning of the data in the columns); side heading (the first column on the left) and the table body (the other columns of the table).

Reviewing requirements for and saving of scientific article reviews, received by the journal editorial staff

A scientific article received by the editorial office is considered by the responsible editor in terms of its compliance with topics and directions of the magazine, formatting guidelines and availability of supporting documents.

The editorial staff carries out a review of all incoming materials to the editor with a view to peer review. All reviewers are acknowledged experts on the topic of the peer-reviewed material. Reviews are stored at the editorial office for 5 years.

On receipt of a proper request, editorial staff have the right to submit copies of reviews to the RF Ministry of Education and Science.

Publication schedule

- Issue 1 (March) articles accepted until 31 December of the previous year;
- Issue 2 (June) articles accepted until March 31 of the present year;
- Issue 3 (September) articles accepted until 30 June of the present year;
- Issue 4 (December) articles accepted until September 30 of the present year;

The Editorial Board reserves the right to make editorial changes which do not distort the main content of the article.

Articles that do not conform to formatting guidelines will not be taken into consideration. Manuscripts and electronic media will not be returned. The date of acceptance shall be deemed to be the date of receipt of the final text by the editorial board.

Address of the editorial board: 70 ImamaShamilya Ave., Makhachkala 367026, Daghestan, Russia. Daghestan State Technical University, Tutorial-Lecture Building 2, Editorial Board «Herald of Daghestan State Technical University. Technical Sciences». Technical questions can be clarified by e-mail: vestnik.dgtu@mail.ru or by telephone 8 (8722) 62-39-64.

Министерство образования и науки РФ

ВЕСТНИК

ДАГЕСТАНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА. ТЕХНИЧЕСКИЕ НАУКИ

Махачкала, Том 45– №1 – 2018.

HERALD

OF DAGHESTAN STATE TECHNICAL UNIVERSITY. TECHNICAL SCIENCES

Makhachkala, Volume 45, No.1, 2018.

Верстка: Шагина С.Б. **Адрес редакции:**

367026, РД, г. Махачкала, пр. И.Шамиля, 70, ФГБОУ ВО «Дагестанский государственный технический университет»

Тел./факс(8722)623715

(8722)623964

E-mail: vestnik.dgtu@mail.ru Website: http://vestnik.dgtu.ru

Layout: Svetlana B.Shagina

Editorial address: 70 I. Shamil Ave., Makhachkala 367026, Daghestan, Russia.

FSBEE HE «DSTU» Tel./fax (8722)623715 (8722)623964

«БЕСПЛАТНО»

Подписано в печать 30.03.2018 г. Сдано в печать 30.03.2018 г. Формат $60x84^{-1}/_8$. Гарнитура «Тітев». Бумага офсетная Тираж 500. Усл. п.л. 27,06 Уч. изд.л. 26,55 Заказ N_{2}

Отпечатано в типографии ООО «Издательство «Лотос» 367018. Республика Дагестан, г. Махачкала, пр-кт Петра I, 61.