МЕХАНИКА И МАШИНОСТРОЕНИЕ

УДК 62.242; 62.232.1

Санаев Н. К.

МЕХАНИЗМ ОБРАЗОВАНИЯ ПОГРЕШНОСТЕЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОРШНЯ И ШАТУНА

Sanaev N.K.

THE MECHANISM OF FORMATION OF ERRORS MACHINING OF THE PISTON AND CONNECTING ROD

Приведены исследования, позволяющие раскрыть механизм образования погрешности осевых размеров поршней и шатунов судовых малоразмерных дизелей с целью совершенствования технологии процесса изготовления и стабилизации геометрических параметров.

Ключевые слова: погрешность, чистовая обработка, точность, поршень, базирование, закрепление, податливость, технологическая система.

Researches allowing to expose the mechanism of error formation of the axial piston sizes of ship small-sized diesels rods for the purpose of improvement of production process technology and stabilization of geometrical parameters are given.

Key words: error, finishing, precision, piston, basing, fastening, pliability, technological system.

Поршень судового малоразмерного дизеля (в дальнейшем СМД) работает в чрезвычайно тяжелых условиях, характеризующихся: воздействием высокого давления газов $6.5 \div 8.35$ МПа; контактом с горячим рабочим телом с температурой от $300^0 - 2200^0$ К; движением с переменной по величине и направлению скоростью.

Как известно, к поршню предъявляют повышенные требования, в том числе к диаметральным размерам тронковой части и отверстий в бобышках под поршневой палец.

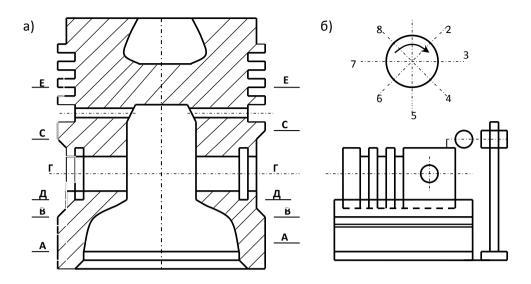

Сравнение погрешностей до и после чистовой обработки показало, что отмечается определенная корреляционная связь, вследствие копирования погрешностей (табл. 1).

Таблица 1 - Уравнения корреляционных связей погрешностей формы поршня по ходу технологического процесса

Исследуемые операции	Пояса измерений, рис. 14	Уравнения, мм	Коэффициент корреляции
3аготовка (x)	A-A	$\overline{y} = 0.002 + 0.497 \cdot \bar{x}$	0,15
Черновое точение (у)	B-B	$\overline{y} = 0.016 + 0.3057 \cdot \bar{x}$	0,30
	Д-Д	$\overline{y} = 0.037 + 0.16 \ \overline{x}$	0,316
Черновое точение (х)	A-A	$\overline{y} = 0.009 + 0.482 \ \overline{x}$	0,216
Чистовое точение (у)	B-B	$\bar{y} = 0.06 + 0.47 \ \bar{x}$	0,47
	Д-Д	$\overline{y} = 0.011 + 0.119 \ \bar{x}$	0,62

Анализ результатов измерений размеров поршней в трех сечения A-A, B-B, Д-Д (см. рисунок 1) СМД, проведенный с помощью единовременных текущих выборок, показал, что на каждой операции наблюдается колебание размеров, как в осевом, так и в радиальном направлениях. Некруглость (эллипсность) юбки поршня неодинакова по

высоте поршня, а наибольшая его величина в плоскости А-А. Объясняется это переменной жесткостью поршня по высоте и в поперечных сечениях.

Рисунок 1 - Схема измерения поршня: а) пояса и направления; б) схема установки на призму

Отмеченное наследование конструктивной формы оказывает отрицательное влияние на точность изготовления поршня, что обуславливает необходимость принятия конструктивных и технологических мер с учетом масс и моментов инерции как по длине, так и в поперечных сечениях поршня. Так, в работе [1] показано, что: погрешность формы составляет 70% общей погрешности поршня.

Таблица 2 - Процентное соотношение моментов инерции $(H \cdot M \cdot c^2)$ в различных сечениях поршней [2]

Тип	СЕЧЕНИЕ								
дизеля	A - A	B - B	Д - Д	Γ - Γ	C - C	E - E			
Ч 8,5/11	-	5	28	32	25	22			
Ч 9,5/11	-	4,5	30	33	24	21			

Достижение перпендикулярности оси поршня от отверстий в бобышках к его образующей, является основной задачей технологического процесса и одним из важных геометрических параметров, влияющих на работу поршня.

Статистический анализ экспериментальных данных по точности указанного параметра для поршней дизелей Ч8,5/11 показал:

- в процессе изготовления поршней происходит последовательное наследование погрешностей от операции к операции;
- формирование погрешности для СМД можно представить в виде следующей зависимости.

$$\overline{\Delta}_i = 0.0152 + 0.073 \cdot \overline{\Delta}_{i-1} \cdot 10^{-2}, \text{MM}.$$
 (1)

Из выражения (1) следует, что при $\overline{\Delta}_{i-1} = 0$, то есть при отсутствии последовательного наследования погрешности, $\overline{\Delta}_i = 0.0152$ погрешность соответствует допуску на неперпендикулярность оси отверстия в бобышке поршня к образующей юбки на длине радиуса поршня. Погрешность базирования и закрепления можно принять за систематические отклонения, величины которые могут быть сведены к минимальным

значениям путем настройки системы станок – приспособление – деталь. В результате, в ходе исследований была получена следующая формула для определения погрешности Δ_i .

$$\Delta_i = 0.5 \cdot C_y \cdot HB \left[S_0^{0.75} \cdot W_{2 \max} \left(t_{\max}^{0.9} - t_{1 \min}^{0.9} \right) + S_0^{0.75} \cdot W_{\theta_{\max}} \left(t_{2 \max}^{0.9} - t_{2 \min}^{0.9} \right) \right]^{0.7},$$

Где: Су – коэффициент, характеризующий условия обработки;

 ${
m HB}$ — твердость обрабатываемого материала равный для поршней из алюминиевого сплава ${
m AK4-1~FOCT~4784-65~HB=100\div140}$ единиц.

 S_0 – подача инструмента;

 $W_{2\text{max}}$ и $W_{\text{вмаx}}$ — суммарная максимальная податливость детали и борштанги в двух взаимно-перпендикулярных направлениях;

 t_{1max} и t_{2max} , t_{1min} и t_{2min} - максимальные и минимальные значения припуска для отверстий в первой и второй бобышках поршня.

После преобразований получим следующее выражение для расчета погрешности перпендикулярности осей поршня и отверстий под поршневой палец.

$$\Delta_{i} = 0.5C_{y} \cdot HB \cdot S^{0.58} \left[W_{2\max} \left(t_{1\max} - t_{1\min} \right)^{0.9} + W\hat{a}_{\max} \left(t_{2\max} - t_{2\min} \right)^{0.9} \right]^{0.77}$$
(2)

Расчеты, выполненные по разработанной формуле для СМД показали хорошую сходимость расчетных и экспериментальных данных, что позволяет рекомендовать её для использована в проектных расчетах точности.

На финишных операциях обработки отверстий в головках шатуна растачиваются на алмазно-расточных станках с одного установа одновременно двумя шпинделями. Шатун в приспособлении устанавливается на подпружиненные фиксаторы, которые входят в растачиваемые отверстия головок. Крепление производится по торцу отверстия. Для обеспечения заданного углового положения используют штифты, а в качестве базы технологический прилив верхней головки шатуна, расточка осуществляется консольными борштангами.

На расположение осей отверстий оказывают влияние также возможности станка обеспечить заданную точность, самопроизвольное смещение узлов станка, от температурных деформаций, а также погрешности приспособления, закрепления и базирования.

Таблица 3 - Результаты измерений пересечений осей верхней и нижней головок шатуна представлены

maryila iipederasiioiisi								
Д	$\frac{S'}{S''}$	Условия	появления схем	Вероятность появления схем контакта				
$\frac{1}{C}$		I	П	III	I	II	III	
48,5/111	0,22÷16 ,7	$0 < \frac{S'}{S''} < 0.22$ $\gamma_1 = 0.025$ рад.	$0.22 < \frac{S'}{S''} < 14.2$ $\gamma_2 = 0.001$ рад.	$14.2 < \frac{S'}{S''}$ $\gamma_3 = 0.07$ рад.	0	0,85	0,15	
H 9,5/11	0,23÷17 ,9	$0 < \frac{S'}{S''} < 0.022$ $\gamma_2 = 0.027$ рад.	$0.22 < \frac{S'}{S''} < 14.2$ $\gamma_2 = 0.0001$ рад.	$14,2 < \frac{S'}{S''}$ $\gamma_3 = 0,07$ рад.	0	0,79	0,21	

Как показал анализ данных таблицы 3 и статистический анализ точности, наблюдается тесная корреляционная связь между, погрешностями.

Для СМД указанную зависимость можно представить в виде:

$$\Delta_{II} = 0.012 + 0.264 \Delta_{IIK}$$
; MM.

Где Δ_{\varPi} и $\Delta_{\varPi K}$ - погрешности пересечения и перекрещивания осей отверстий в головках шатуна.

При
$$\Delta_{IIK} = 0$$
; $\Delta_{II} = 0,012$ и $\Delta_{II} = 0$ $\Delta_{IIK} = 0,045$.

В ходе выполненного в работе анализа была получена формула (3) для определения суммарной погрешности (Δ_P) , расположения осей рассматриваемых отверстий шатуна.

$$\Delta_p = 0.5 \cdot Cy \cdot HB \cdot \left[W_1^4 \cdot S_{01}^{1.5} (t_{1\text{max}} - t_{1\text{min}})^{1.8} + W_2^4 \cdot S_{02}^{1.5} (t_{2\text{max}} - t_{2\text{min}})^{1.8} \right]^{0.77} (3)$$

где: Су – коэффициент, характеризующий условия обработки;

HB – твердость обрабатываемого материала равный для шатунов из стали 40X HB = 165 единиц.

 S_{01} и S_{02} – подача инструмента при обработке поршневой (S_1) и кривошипной (S_2) головок;

 W_1 и W_2 максимальная податливость технологической системы при растачивании верхней (W_1) и нижней (W_2) головок в горизонтальном или вертикальном направлениях;

 $t_{1 max}$ и $t_{2 max}$, $t_{1 min}$ и $t_{2 min}$ - максимальные и минимальные значения припуска для отверстий в верхней /1/ и нижней /2/, головках шатуна.

В зависимости от того, в каком направлении в горизонтальном W_{1r} и W_{2r} или в вертикальном W_{1B} и W_{2B} будет рассчитано и представлено в формулу (4) значение W, получим погрешность $\Delta_{p(r)}$ или $\Delta_{p(B)}$, характеризующее пересечение или перекрещивание осей.

Податливость технологической системы можно принять равной сумме податливости детали (W_g) и податливости борштанги (W_6), а угол отклонения суммарного вектора расположения осей от вертикальной оси шатуна, обусловленное различием жесткости последнего в вертикальном и горизонтальном направлениях для СМД равным 27°.

Статическая обработка результатов измерений показала, среднее арифметическое отклонение пересечения осей составляет $\Delta_{D(\tilde{q})} = 0.0206^{MM}$ перекрещивания осей $\Delta_{P(B)} = 0.032$ мм, что соответствует углу отклонения суммарного вектора расположения осей от вертикальной оси шатуна 27 и 31⁰ соответственно. Погрешность от упругогоотжатия борштанги (д.) можно рассчитать по предлагаемой формуле:

$$\Delta_{\delta} = P_{q(\tau)} \cdot \ell_{\delta}^{3} / _{3EI}, \tag{4}$$

Где: $P_{q}(T)$ — радиальная (тангенциальная) сила резания;

Е и Ј – модуль упругости и момент инерции борштанги;

 ℓ_{δ} - длина борштанги.

Из формулы (5) следует, чем больше припуск, следовательно больше радиальная сила резания, и длина борштанги, тем выше погрешность Δ_{δ} , а увеличение модуля упругости и момента инерции способствует снижению значения погрешности от упругого отжатия борштанги (табл. 4).

Определенный интерес представляет расчетное определение формы отверстий в верхней и нижней головках при их механической обработке. Для этих целей можно воспользоваться зависимостями, предложенными в работах [3,4,5,].

Таблица 4 - Результаты, экспериментальных измерений погрешности расположения осей верхней и нижней головок 150 шатунов СМД Ч8,5/11 и Ч9,5/11

00011 2	еринен	11 11117	кнеи голов	JOR 13	o maryno	D C1117	10,5/117	1 17,5	/ 1 1		
№п/п	Откло нения	п/п	Отклонен ия	п/п № п/ п	Отклоне ния, мм.	п/п № п/п	Отклоне ния, мм.	п/п № п /п	Отклоне ния, мм.	№ п /п п	Отклоне ния, мм.
	1		2		3		4		5		6
1	0,04	26	0,06	51	0,09	76	0,10	101	0,06	126	0,05
2	0,06	27	0,07	52	0,10	77	0,02	102	0,04	127	0,03
3	0,14	28	0,01	53	0,03	78	0,05	103	0,09	128	0,04
4	0,06	29	0,05	54	0,08	79	0,04	104	0,05	129	0,02
5	0,05	30	0,02	55	0,12	80	0,09	105	0,03	130	0,10
6	0,03	31	0,02	56	0,03	81	0,08	106	0,08	131	0,08
7	0,13	32	0,08	57	0,11	82	0,04	107	0,04	132	0,04
8	0,00	33	0,04	58	0,04	83	0,06	108	0,06	133	0,07
9	0,13	34	0,08	59	0,06	84	0,05	109	0,11	134	0,07
10	0,08	35	0,03	60	0,04	85	0,08	110	0,06	135	0,02
11	0,10	36	0,10	61	0,12	86	0,04	111	0,05	136	0,05
12	0,09	37	0,02	62	0,09	87	0,11	112	0,05	137	0,06
13	0,04	38	0,04	63	0,06	88	0,03	113	0,14	138	0,09
14	0,11	39	0,05	64	0,09	89	0,07	114	0,06	139	0,05
15	0,08	40	0,08	65	0,07	90	0,06	115	0,07	140	0,08
16	0,07	14	0,15	66	0,06	91	0,09	116	0,09	141	0,07
17	0,05	42	0,06	67	0,05	92	0,05	117	0,15	142	0,08
18	0,03	43	0,07	68	0,09	93	0,03	118	0,10	143	0,06
19	0,12	44	0,06	69	0,05	94	0,06	119	0,02	144	0,05
20	0,04	45	0,10	70	0,02	95	0,13	120	0,07	145	0,13
21	0,07	46	0,05	71	0,11	96	0,06	121	0,09	146	0,11
22	0,06	47	0,04	72	0,07	97	0,08	122	0,05	147	0,06
23	0,10	48	0,07	73	0,04	98	0,06	123	0,12	148	0,01
24	0,03	49	0,14	74	0,04	99	0,07	124	0,07	149	0,08
25	0,05	50	0,06	75	0,08	100	0,09	125	0,06	150	0,14

При этом следует иметь в виду, что на погрешность формы оказывает влияние материал обрабатываемой детали. Так, при прочих равных условиях, погрешность формы отверстия в нижней головке в 4 раза меньше, чем погрешность формы отверстия во втулке из оловянистой бронзы (Бр ОЦ10 – 2 ГОСТ 18175–72), запрессованной с натягом $45 \div 120$ мкм, в верхнюю головку шатуна. Объясняется это влиянием материала шатуна (ст. 40X ГОСТ 4543 - 71) и втулки (Бр. ОЦ10 – 2ГОСТ 18175-72).

Выполненные исследования позволяют раскрыть механизм образования погрешностей обработки основных размеров поршней и шатунов с целью разработки мероприятий по совершенствованию технологических процессов и стабилизации геометрических параметров точности.

Библиографический список:

- 1. Бочкарев В.Н. исследование и оптимизация допусков на изготовления деталей цилиндропоршневой группы судовых малоразмерных дизелей. Диссертация к.т.н. Л 1975 289с.
- 2. Булатов В.П. Исследование и оптимизация параметров точности и технологических методов формирования поверхностей трения деталей цилиндропоршневой группы судовых дизелей: Автореферат диссертации, д.т.н. Л.,1981 36с.
- 3. Артомонова Е.С. Поноровская Е.В. Черный А.П., Точность формы поперечного сечения при тонком растачивании Станки и инструмент., 1977с. 4 10.
- 4. Дамский А.М. Технология обеспечения надежности высокоточных деталей машин. М. Машиностроение.1975. 223с.
- 5. Капустин Н.М. Разработка технологических процессов обработки деталей на станках с помощью ЭВМ. М., Машиностоение,1976 288с.

УДК 621.882.085/.086.004

Вагабов Н.М., Курбанов А.З.

ОБОСНОВАНИЕ И РАЗРАБОТКА КОМБИНИРОВАННОГО ИНСТРУМЕНТА ЗЕНКЕР-МЕТЧИК С НОВОЙ СХЕМОЙ РЕЗАНИЯ

Vagabov N.M., Kurbanov A.Z.

EXPLANATION END DEVELOPMENT OF COMBINED TOOL CORE DRILL TAP WITH THE NEW CUTTING SCHEME

Приведены результаты исследования процесса изготовления резьбы в труднообрабатываемых материалах. Разработана новая технология с применением комбинированного зенкер-метчика, который позволяет стабилизировать припуск под дальнейшую обработку, исправить ось отверстия и обеспечить большую жесткость инструмента. Установлены факторы, влияющие на качество и производительность изготовления резьбы, надежность и работоспособность режущего инструмента метчика. Даны рекомендации по уменьшению трения и нагрева инструмента, что обеспечит большую жесткость и стойкость.

Ключевые слова: резьба, припуск, зенкер-метчик, жесткость, стойкость, шероховатость.

The results of the research on thread making in hard-to-machine materials are given. A new technology with use of combined core drill tap allowing the stabilization of the stock for