Для определения магнитуды землетрясения по величине l и a из выражений (1) и (8) имеем:

$$M = \frac{1,935(\lg a + 1,734\lg l) - 1,06}{1,8} \tag{9}$$

По известной магнитуде может быть определена интенсивность землетрясения в баллах по шкале МСК по выражению [2]:

$$I = BM - \gamma \lg \sqrt{l^2 + h^2} + 3,1 \tag{10}$$

где: В и γ региональные коэффициенты, для условий Дагестана соответственно равны 1,5 и 3,6.

h - глубина залегания очага.

Вывод. Подключение сейсмографов к ЭВМ, позволит определить в реальном масштабе времени энергетические характеристики землетрясения по математическим зависимостям (8), (9), (10).

Библиографический список:

- 1. Асланов Г.К., Гаджиев М.М., Исмаилов Т.А., Магомедов Х.Д. О землетрясениях. (Прошлое, современность, прогноз). Махачкала, ИПЦ ДГТУ, 2001. 98 стр.
- 2. Быстрицкая Ю.В. Соотношение и сопоставление макросейсмических и инструментальных данных (дагестанские землетрясения). В сборнике «Сейсмичность и гидрогеогазохимия территории Дагестана. Вып. 2 (17).- Махачкала, 1978.

УДК 536.7

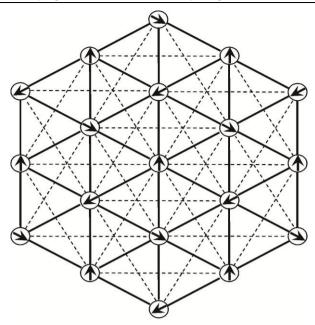
Бабаев А.Б., Дибирова Г.А., Саидахмедова М.Б.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ФАЗОВЫХ ПЕРЕХОДОВ В ДВУМЕРНЫХ СТРУКТУРАХ, ОПИСЫВАЕМЫХ ТРЕХВЕРШИННОЙ АНТИФЕРРОМАГНИТНОЙ МОДЕЛЬЮ ПОТТСА НА ТРЕУГОЛЬНОЙ РЕШЕТКЕ

Babaev A.B., Dibirova G.A., Saidakhmedova M.B.

COMPUTER SIMULATION OF PHASE TRANSITIONS IN THE TWO-DIMENSIONAL STRUCTURES DESCRIBED THREE-VERTEX ANTIFERROMAGNETIC POTTS MODE ON A TRIANGULAR LATTICE Методом Монте-Карло проведено компьютерное моделирование фазовых переходов в двумерных структурах, описываемых трехвершинной моделью Поттса на треугольной решетке с учетом антиферромагнитных обменных взаимодействий между ближайшими J_1 и вторыми соседями J_2 . Изучены фазовые переходы в этой модели для отношения обменных взаимодействий вторых и ближайших соседей $r=J_2/J_1$ в диапазоне значений $r=0 \div 2.0$. На основе анализа энтропии, теплоемкости, и кумулянтов Биндера четвертого порядка показано, что в модели Поттса с величинами взаимодействий $J_1<0$ и $J_2<0$ в интервалах изменений величины $0 \le r<0.2$ и 1.0 < r<2.0 наблюдаются фазовые переходы первого рода. В то время как в интервале $0.2 \le r \le 1.0$ фазовый переход отсутствует, и наблюдаются фрустрации.

Ключевые слова: фазовый переход, критические явления, фрустрации.


Using Monte-Carlo simulations, we investigated phase transitions and frustrations in the three-state Potts model on a triangular lattice with allowance for antiferromagnetic exchange interactions between nearest-neighbors J_1 and next-nearest-neighbors J_2 . The ratio of the next-nearest-neighbor and nearest-neighbor exchange constants $r=J_2/J_1$ is chosen within the $0\div 2$ range. Based on the analysis of the entropy, specific heat, system state density function, and fourth order Binder cumulants, the phase transitions in the Potts model with interactions $J_1<0$ and $J_2<0$ are shown to be found in value ranges of $0\le r<0.2$ and $1.0< r\le 2.0$. In an intermediate range $0.2\le r\le 1.0$ the phase transition fails and the frustrations are revealed.

Key words: phase transition, critical phenomena, frustrations.

Исследование фазовых переходов (ФП) и критических явлений (КЯ) в спиновых системах с конкурирующим обменным взаимодействием является одной из центральных в физике конденсированного состояния [1]. Это обусловлено тем, что конкуренция обменного взаимодействия может привести к фрустрации, т.е. такому пространственному расположению магнитных атомов в кристалле, при котором невозможно одновременное антиферромагнитное упорядочение всех взаимодействующих спинов [2].

В последнее двадцатилетие исследованию спиновых систем описываемых ферро- и антиферромагнитными (АФ) моделями Поттса на треугольной решетке с взаимодействиями ближайших соседей было посвящено значительное число работ [3-5] в которых были получены ответы на многие вопросы.

Учет взаимодействия вторых ближайших соседей может привести к возникновению фрустраций, что существенно усложняет решение этой модели. В данной работе нами методом Монте-Карло проведено компьютерное моделирование ФП в АФ трехвершинной модели Поттса и предпринята попытка определить поведение ряда термодинамических параметров этой модели при учете взаимодействия вторых ближайших соседей.

Рисунок 1 - Двумерная трехвершинная АФ модель Поттса с учетом вторых ближайших соседей (при r<0.2) на треугольной решетке

Антиферромагнитная модель Поттса с числом состояний спина q=3 на треугольной решетке с учетом взаимодействия вторых ближайших соседей (см. рис.1) описывается следующим микроскопическим гамильтонианом [6]:

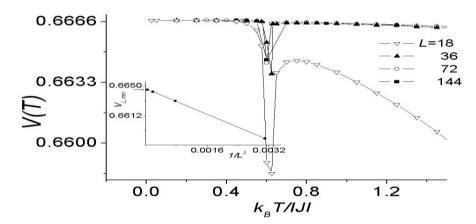
$$H = -\frac{J_1}{2} \sum_{i,j} \cos \theta_{i,j} - \frac{J_2}{2} \sum_{i,k} \cos \theta_{i,k} , \qquad (1)$$

где первый член в формуле (1) учитывает обменное взаимодействие ближайших соседей с величиной $J_1 < 0$, а второй — вторых ближайших соседей с величиной $J_2 < 0$. $\theta_{i,j}$, $\theta_{i,k}$ — углы между взаимодействующими спинами S_i - S_j и S_i - S_k соответственно.

Расчеты проведены для систем с периодическими граничными условиями и с линейными размерами $L \times L = N$, $L = 20 \div 144$, где L - безразмерная величина в единицах межатомного расстояния. При этом соотношение обменного взаимодействия вторых и ближайших соседей $r = J_2/J_1 = 0 \div 2.0$.

Для анализа характера ФП и особенностей поведения термодинамических характеристик вблизи критической точки, в такого рода исследованиях, наиболее эффективным методом зарекомендовал себя метод кумулянтов Биндера четвертого порядка [7]:

$$V_L(T) = 1 - \frac{\left\langle E^4 \right\rangle_L}{3\left\langle E^2 \right\rangle_L^2},\tag{2}$$


$$U_L(T) = 1 - \frac{\left\langle m^4 \right\rangle_L}{3\left\langle m^2 \right\rangle_L^2},\tag{3}$$

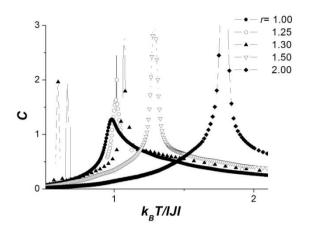
где E- энергия и m- параметр порядка системы с линейными размерами L.

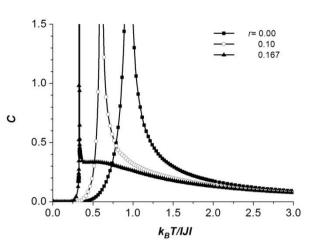
Методика определения критической температуры нами описана в работах [8-10]. Применение кумулянтов Биндера позволяет также хорошо определить род $\Phi\Pi$ в системе. $\Phi\Pi$ первого рода характеризуются следующими отличительными особенностями [11]: усредненная величина $V_{L,min}(T)$ при $T=T_N$ стремится к некоторому нетривиальному значению V^* согласно выражению

$$V_{L\min}(T) = V^* + bL^{-d}$$
 (4)

при $L \to \infty$ и $T = T_N(L)$, где V^* отлично от 2/3, что и продемонстрировано на рис.2 для АФ модели Поттса с q=3 при r=0.1 и T_N =1.261.

Рисунок 2 - Температурная зависимость кумулянтов Биндера $V_L(T)$ двумерной трехвершинной АФ модели Поттса при r=0.1

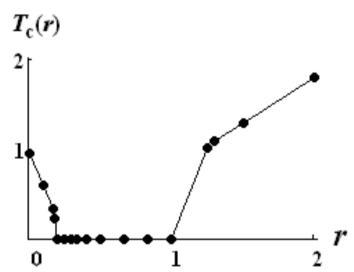

Аналогичное поведение наблюдалось и для величин r=0, 0.167, 1.25, 1.30, 1.50 и 2.00.


Для наблюдения за температурным ходом поведения теплоемкости и восприимчивости использовались флуктуационные соотношения [12]:

$$C = (NK^2)(\langle U^2 \rangle - \langle U \rangle^2), \qquad (5)$$

$$\chi = (NK)(\langle m^2 \rangle - \langle m \rangle^2), \tag{6}$$

где $K=|J|/k_BT$, $N=L^2$ -число магнитных узлов, U-внутренняя энергия, m-параметр порядка системы с линейными размерами L, угловые скобки означают термодинамическое усреднение.



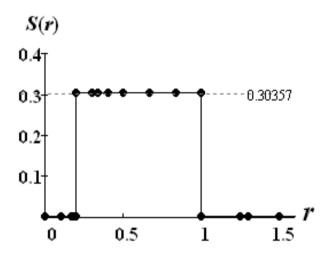

Рисунок 3 - Температурные зависимости теплоемкости в интервале изменений r, 1.0 < r < 2.0

Рисунок 4 - Температурные зависимости теплоемкости в интервале изменений r, $0 \le r \le 0.167$

На рис.3 и 4 представлены характерные температурные зависимости теплоемкости для двумерной АФ модели Поттса при различных отношениях r обменных параметров, $r = \frac{J_2}{J_1}$. Как видно из рис.3, уменьшение значения r в интервале $1.0 \le r \le 2.0$ приводит к сдвигу максимумов в сторону более низких температур. При этом наблюдается и уменьшение абсолютных значений максимумов теплоемкости.

Рисунок 5 - Зависимость точки фазового перехода в 3-вершинной модели Поттса на треугольной решетке от параметра $r=J_2/J_1$

Рисунок 6 - Зависимость энтропии (при T=0) в 3-вершинной модели Поттса на треугольной решетке от параметра r= J_2/J_1 .

Такое поведение температурных зависимостей теплоемкости в зависимости от r обусловлено тем, что с уменьшением взаимодействия вторых соседей

уменьшается вклад энергии взаимодействия по модулю, что ослабевает жесткость системы и, соответственно, понижает температуру фазового перехода. Уменьшение абсолютных значений максимумов теплоемкости происходит за счет конкуренции первых и вторых ближайших соседей.

Кроме того, из рисунка 3 видно, что при r=1.0 очевидной расходимости в критической области не наблюдается, что характерно для фрустрированных систем. И, наоборот, для систем с r=1.25, 1.30, 1.50 и 2.0 в критической области наблюдается явная расходимость. При r=1.25 и 1.3 наблюдается расщепление теплоемкости. Расщепление теплоемкости обычно характерно вблизи точки фрустрации. На рис. 4 такое поведение теплоемкости было обнаружено для значения r=0.167.

Основываясь на результатах данной работы и предыдущих исследований [13, 14], мы построили зависимость точки фазового перехода (рис.5) в 3-вершинной модели Поттса на треугольной решетке от параметра $r=J_2/J_1$.

Зависимость нуль-температурной энтропии от величины r приведена на рисунке 6. Как видно из рисунка 5 выделяются две фазы с соответствующими интервалами изменений величины r, $0 \le r < 0.2$ и $1.0 < r \le 2.0$ для которых имеется дальний порядок по ориентации спинов в каждой из подрешетках. Энтропия этих упорядоченных фаз как видно из рис. 6 равна нулю. В тоже время в интервале изменений величины $0.2 \le r \le 1.0$ энтропия отлична от нуля, что является характерным признаком отсутствия упорядочения в рассматриваемой магнитной системе.

Вывод. При рассмотренных нами соотношениях между ближайшими и вторыми соседями (J_1 <0 и J_2 <0) в двумерной антиферромагнитной модели Поттса с q=3 на треугольной решетке фрустрации наблюдаются не в одной точке величины r, а на линии - на отрезке $0.2 \le r \le 1$ (рис.5). В этом интервале изменения r в системе возникают фрустрации. В то время как при других значениях наблюдается фазовый переход, а фрустрация не существует. Работа поддержана грантом РФФИ №13-02-00220.

Библиографический список:

- 1. Diep H.T. Frustrated spin systems. Singapore: World Scientific Publishing Co. Pte. Ltd., 2004.
- 2. Гехт Р.С. Успехи физических наук. 1989. Т. 159. С. 261.
- 3. Murtazaev A.K., Babaev A.B. Phase Transitions in the Two-Dimensional Ferro- and Antiferromagnetic Potts Models on a Triangular Lattice // Journal of Experimental and Theoretical Physics. 2012. V. 142. P. 1189.
- 4. Муртазаев А.К., Бабаев А.Б., Атаева Г.Я. Фазовые переходы в двумерной ферромагнитной модели Поттса при q=3 на треугольной решетке // Физика низких температур. 2013. Т. 39. С. 194.
- 5. Муртазаев А.К., Бабаев А.Б. Фазовые переходы в двумерной антиферромагнитной модели Поттса на треугольной решетке // Известия Ран. Серия физическая. 2013. Т. 77. С. 1476.
- 6. Wu F.Y. The Potts model // Rev. Mod. Phys. 1982. T. 54. C. 235.

- 7. Eichhorn K., Binder K.J. Monte Carlo investigation of the three-dimensional random-field three-state Potts model // Phys.: Condens. Matter. 1996. V. 8. P. 5209.
- 8. Murtazaev A.K., Babaev A.B. Critical properties of the three-dimensional Ising model with quenched disorder // Journal of Magnetism and Magnetic Materials. 2009. V. 321. P. 2630.
- 9. Murtazaev A.K., Babaev A.B. Phase transitions and critical phenomena in a three-dimensional site-diluted Potts model // Journal of Magnetism and Magnetic Materials. 2012. V. 324. P. 3870.
- 10. Муртазаев А.К., Бабаев А.Б. Трикритическая точка трехмерной модели Поттса (q=4) с вмороженным немагнитным беспорядком // Письма ЖЭТФ. 2014. Т. 99. С. 618.
- 11. Loison D., Schotte K.D. First and second order transition in frustrated XY systems // The European Physical Journal B. 1998. V. 5. P. 735.
- 12. Peczac P., Ferrenberg A.M., Landau D.P. High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet // Phys.Rev. B. 1991. V. 43. P. 6087.
- 13. Муртазаев А.К., Бабаев А.Б., Магомедов М.А., Касан-Оглу Ф.А., Прошкин А.И. Фрустрации и фазовые переходы в трехвершинной модели Поттса на треугольной решетке с взаимодействиями вторых ближайших соседей // Письма ЖЭТФ. 2014. Т. 100. С. 267.
- 14. Murtazaev A.K., Babaev A. B., Kassan-Ogly F.A. The investigation of phase transitions in two-dimensional 3-state antiferromagnetic Potts model on a triangular lattice with interaction of next nearest neighbors // Solid State Phenomena. 2014. V. 215. P. 52.

УДК 621.22

Курбанова З.А.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ ПО ИССЛЕДОВАНИЮ ВЛИЯНИЯ СОСТАВА СООРУЖЕНИЙ ВОДОСЛИВНОГО ФРОНТА ПЛОТИНЫ НА ЗНАЧЕНИЕ УДЕЛЬНЫХ РАСХОДОВ

Kurbanova Z.A.

COMPUTER MODELING AND NUMERICAL EXPERIMENT TO STUDY THE INFLUENCE OF COMPOSITION STRUCTURES SPILLWAY FRONT OF A DAM ON THE VALUE OF THE SPECIFIC EXPENSES

Из-за отсутствия в нормативных документах методик и рекомендаций для определения удельных экономичных расходов водосливных плотин, с уче-