## ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

УДК 550.34.016

Асланов Г.К., Алимерденов В.Ш., Асланов Т.Г., Тагиров Х.Ю.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТА ЭНЕРГЕТИЧЕСКОГО КЛАССА, ИНТЕНСИВНОСТИ И МАГНИТУДЫ ЗЕМЛЕТРЯСЕНИЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ

Aslanov G.K., Alimerdenov V.Sh., Aslanov T.G., Tagirov H.Yu.

## MATHEMATICAL MODEL FOR CALCULATING ENERGY CLASS, INTENSITY AND MAGNITUDE OF THE EARTHQUAKE REAL TIME

Получены математические зависимости, позволяющие на основе номограммы Т.Г. Раутиан рассчитать в реальном масштабе времени энергетический класс, магнитуду и интенсивность землетрясения.

**Ключевые слова:** землетрясение, номограмма Т.Г. Раутиан, магнитуда, энергетический класс землетрясения, интенсивность, реальный масштаб времени.

The mathematical dependence, allowing a nomogram based on T.G. Rautian calculates real-time energy class, magnitude and intensity of earthquakes.

**Key words:** earthquake, nomogram T.G. Rautian, magnitude, energy class earthquake, intensity, real time.

В настоящее время угроза землетрясения становится все более серьезней с каждым днем.

В среднем по статистике в мире во время землетрясений ежегодно погибает 10 000 человек. Во время особенно сильных бедствий количество жертв измеряется десятками и даже сотнями тысяч. Так при землетрясении 27 июля 1976 года в южных районах Тянь-Шаня погибло от 600 000 до 700 000 жителей КНР, землетрясение 1556 года в китайской провинции Шаньси уничтожило почти 1 млн. человек. Материальный ущерб от землетрясений в среднегодовом исчислении доходит до 400 миллионов долларов [1].

С тех пор как человек испытал на себе разрушительную силу землетрясений, его не оставляет сокровенное желание научиться его предсказывать или по крайней мере, уменьшить его разрушительные последствия.

В Федеральном центре науки и высоких технологий «Всероссийском научно-исследовательском институте по проблемам гражданской обороны и чрезвычайным ситуациям» МЧС России разработана программа, позволяющая по магнитуде землетрясения, глубине очага землетрясения, плотности

населения в районе землетрясения, типам застроек, времени суток и т.д. оценить людские потери. Это позволяет оперативно решить вопрос о количестве привлекаемых к спасательным работам людских, материальных и технических ресурсов. Промедление или неверное решение этого вопроса приводит к увеличению людских потерь из-за несвоевременного оказания помощи пострадавшим.

Для оценки потерь необходимо в реальном масштабе времени определить энергетические характеристики землетрясения, основными из которых являются:

- магнитуда (*M*),
- энергетический класс землетрясения (К),
- интенсивность (*I*).

Магнитуда землетрясения - это, по существу, полученная из сейсмограммы мера смещения почвы (или смещения частиц среды). Смещение почвы и амплитуда сейсмической волны одно и то же, и чем сильнее размах волны, тем больше магнитуда землетрясения.

Лучше всего определять магнитуду Рихтера его собственными словами: «Магнитуда любого толчка определяется как логарифм выраженной в микронах максимальной амплитуды записи этого толчка, сделанной стандартным короткопериодным крутильным сейсмометром на расстоянии 100 км от эпицентра» [1].

За время наблюдений за сейсмической активностью Земли землетрясений с магнитудой 9,0 и выше еще не зарегистрировано. Сильнейшие инструментально записанные землетрясения произошли в Эквадоре в 1906 году и в Японии в 1933 году, их магнитуда около 8,9.

Для описания интенсивности сейсмических воздействий в 1964 г. была разработана и получила широкое распространение в Европе и на территории бывшего СССР 12-балльная шкала Медведева — Шпонхойера - Карника (MSK-64). Макросейсмическая шкала MSK-64 описывает силу землетрясения по характеру его восприятия человеком, характеру разрушений строений и степени изменений в окружающей среде.

Шкала MSK-64 подразделяет землетрясения по интенсивности их проявления на поверхности на 12 баллов (I-XII).

Для примера отметим, что при 5 баллах MSK просыпаются почти все люди, колеблются и частично расплескивается вода в сосудах, могут опрокинуться легкие предметы, разбиться посуда. Здания не повреждаются, а при 8 баллах, с трудом удается удержаться на ногах. В грунте возникают трещины, на склонах осыпаются камни. На мелкоблочных зданиях - появляются трещины, в несущих (капитальных) стенах обваливается штукатурка, на крупноблочных зданиях появляются широкие трещины по периметру блоков, происходит смещение блоков, в блоках возникают трещины. В любых зданиях возникают повреждения, иногда происходит частичное разрушение перегородок.

В России, как и в других странах бывшего Советского Союза, употребляется еще одна характеристика величины землетрясения, эквивалентная магнитуде и называемая энергетическим классом.

Для пересчета магнитуд в значения энергетических классов K используется выражение:

$$K = 4 + 1.8M$$
 (1)

В свою очередь энергетический класс связан с сейсмической энергией простым соотношением:

$$E = 10^K \tag{2}$$

Следовательно, магнитуду можно связать с сейсмической энергией следующим образом:

$$LgE = 4 + 1.8M \tag{3}$$

Для определения энергетического класса произошедшего землетрясения по расстоянию от сейсмодатчика до очага землетрясения и по показаниям и свойствам сейсмометра используется номограмма Раутиан.

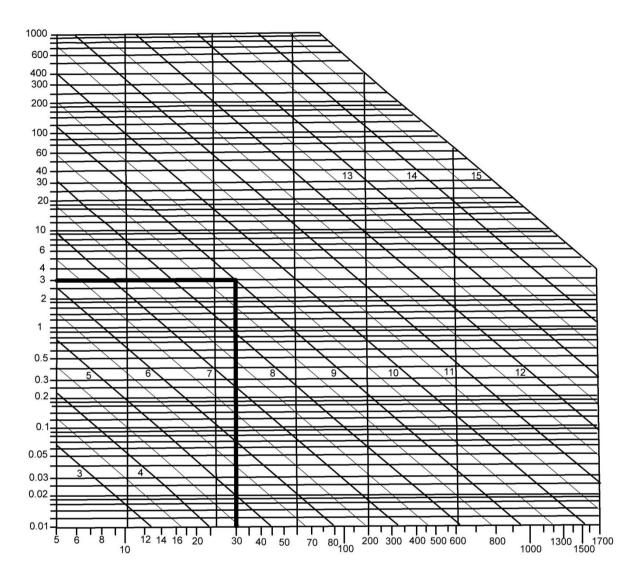
На номограмме Раутиан по оси абсцисс откладывается расстояние от сейсмодатчика до очага землетрясения в километрах, а по оси ординат величина a равная (рисунок 1):

$$a = \frac{A_p + A_s}{V} \tag{4}$$

где:  $A_p$  u  $A_s$  соответственно максимальные амплитудные значения продольной и поперечной сейсмических волн в микронах.

V – коэффициент усиления (передачи) сейсмографа.

Например: при расстоянии от сейсмодатчика до очага землетрясения l=30 км, a=3 имеем энергетический класс K землетрясения равное 9.


Ставится задача получить математическую зависимость, описывающую номограмму Раутиан.

Из рисунка 1 видно, что, если l и a отложить по осям в логарифмическом масштабе, то между lgl и lga существует линейная зависимость. Обозначив lgl=x и lga=y можно записать:

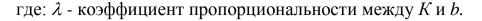
$$y = kx + b \tag{5}$$

На рисунке 2 приведена номограмма Раутиан в линейной системе координат.

Так как все изолинии K параллельны то  $\kappa$  (в выражении 5) для всех них является одинаковым. Для определения  $\kappa$  воспользуемся изолинией K=9 которая пересекает ось ординат в точке 3,1, а ось абсцисс, смешенную по оси ординат на -2 в точке 2,94.



**Рисунок 1 -** Номограмма Раутиан для определения энергетического класса землетрясения


Тогда:

$$\hat{e} = (-2 - 3.1) / 2.94 = -1.734$$
.

Так как между линиями энергетических классов и семейством уравнений (5) имеется взаимно однозначное соответствие, то установим эту связь.

Из рисунка 2 видно, что энергетический класс может быть определен по формуле:

$$K = 2,94 + \lambda b \tag{6}$$



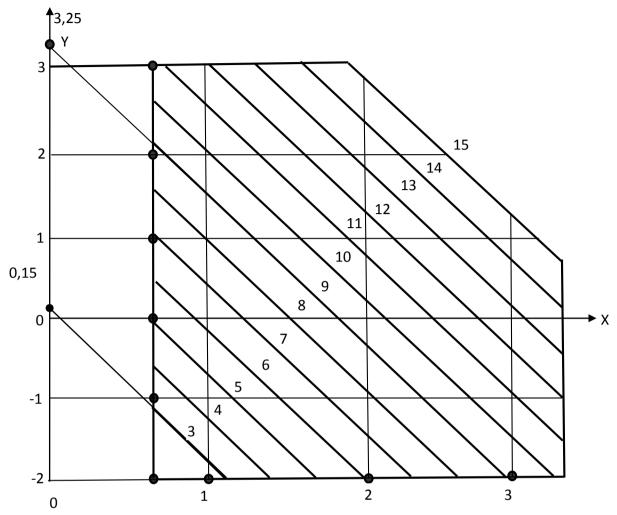



Рисунок 2 - Номограмма Раутиан в линейной системе координат

Для определения  $\lambda$  воспользуемся линиями энергетических классов 3 и 9. Имеем:

$$\lambda = \frac{6}{3.1} = 1,935\tag{7}$$

Таким образом, уравнение (6) с учетом уравнения (5) и найденных значений  $\kappa$  и  $\lambda$  может быть записано в виде:

$$K = 2.94 + 1.935(\lg a + 1.734 \lg l)$$
 (8)

Для значений a = 10 и l = 100 имеем:

$$K = 2,94 + \lambda b = 2,94 + 1,935(1 + 1,734 * 2) = 11,58$$

Точность результатов расчета подтверждается данными номограммы Раутиан. Для определения магнитуды землетрясения по величине l и a из выражений (1) и (8) имеем:

$$M = \frac{1,935(\lg a + 1,734\lg l) - 1,06}{1,8} \tag{9}$$

По известной магнитуде может быть определена интенсивность землетрясения в баллах по шкале МСК по выражению [2]:

$$I = BM - \gamma \lg \sqrt{l^2 + h^2} + 3,1 \tag{10}$$

где: В и  $\gamma$  региональные коэффициенты, для условий Дагестана соответственно равны 1,5 и 3,6.

h - глубина залегания очага.

**Вывод.** Подключение сейсмографов к ЭВМ, позволит определить в реальном масштабе времени энергетические характеристики землетрясения по математическим зависимостям (8), (9), (10).

## Библиографический список:

- 1. Асланов Г.К., Гаджиев М.М., Исмаилов Т.А., Магомедов Х.Д. О землетрясениях. (Прошлое, современность, прогноз). Махачкала, ИПЦ ДГТУ, 2001. 98 стр.
- 2. Быстрицкая Ю.В. Соотношение и сопоставление макросейсмических и инструментальных данных (дагестанские землетрясения). В сборнике «Сейсмичность и гидрогеогазохимия территории Дагестана. Вып. 2 (17).- Махачкала, 1978.

## УДК 536.7

Бабаев А.Б., Дибирова Г.А., Саидахмедова М.Б.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ФАЗОВЫХ ПЕРЕХОДОВ В ДВУМЕРНЫХ СТРУКТУРАХ, ОПИСЫВАЕМЫХ ТРЕХВЕРШИННОЙ АНТИФЕРРОМАГНИТНОЙ МОДЕЛЬЮ ПОТТСА НА ТРЕУГОЛЬНОЙ РЕШЕТКЕ

Babaev A.B., Dibirova G.A., Saidakhmedova M.B.

COMPUTER SIMULATION OF PHASE TRANSITIONS IN THE TWO-DIMENSIONAL STRUCTURES DESCRIBED THREE-VERTEX ANTIFERROMAGNETIC POTTS MODE ON A TRIANGULAR LATTICE